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TUniv Rennes, INSA Rennes, CNRS, IETR-UMR 6164, Rennes, France

Abstract—Integrated sensing and communication (ISAC) is
envisioned to be one of the pillars of 6G. However, 6G is also
expected to be severely affected by hardware impairments. Under
such impairments, standard model-based approaches might fail
if they do not capture the underlying reality. To this end, data-
driven methods are an alternative to deal with cases where
imperfections cannot be easily modeled. In this paper, we
propose a model-driven learning architecture for joint single-
target multi-input multi-output (MIMO) sensing and multi-input
single-output (MISO) communication. We compare it with a
standard neural network approach under complexity constraints.
Results show that under hardware impairments, both learning
methods yield better results than the model-based standard
baseline. If complexity constraints are further introduced, model-
driven learning outperforms the neural-network-based approach.
Model-driven learning also shows better generalization perfor-
mance for new unseen testing scenarios.

Index Terms—Auto-encoder, integrated sensing and communi-
cation, joint radar and communications, model-driven machine
learning.

I. INTRODUCTION

Integrated sensing and communication (ISAC) has in the
past few years become one of the key enabling technologies
within the vision for 6G [1]-[3]. In this 6G context, ISAC not
only provides a means to reuse communication infrastructure
for sensing purposes, it also provides a way to optimize the
operation of the communication system itself, in the form of
blockage prediction, radio mapping, and proactive resource
allocation.

ISAC can be broadly categorized as radar-centric and
communication-centric. In radar-centric design, the aim is
to provide communication capabilities on top of existing
radar sensing infrastructure, as e.g., in [4], [5]. Gener-
ally, radar-centric designs exhibit poor communication per-
formance, driven largely by hardware and cost constraints.
Communication-centric ISAC relies on modifying commu-
nication waveforms and signal processing to enable high-
resolution sensing. At a cost of a potential reduction in data
rate, flexible sensing performance is attained, due to the
high degree of freedom provided in communication signal
optimization, including power allocation, beamforming design,
and scheduling [6], [7].
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Research Center Consortium (CHAIR), by the European Commission through
the H2020 project Hexa-X (Grant Agreement no. 101015956) and by the
MSCA-IF grant 888913 (OTFS-RADCOM). The work of C. Higer was also
supported by the Swedish Research Council under grant no. 2020-04718.

() ()

Communication

data [1SAC transmitter]

Y,
€

radar receiver

Communication
% Communication | data
receiver

Fig. 1: Considered ISAC scenario with an ISAC transmitter, co-located sens-
ing/radar receiver, and a remote communication receiver. The learned transmit
beams provide a flexible trade-off between sensing and communication.
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Within communication-centric ISAC, both the problem of
signal design and that of signal processing have been tra-
ditionally treated under the umbrella of model-based signal
processing. Model-based methods have important benefits,
such as performance guarantees, explainability, and predictable
computational complexity. However, they suffer from perfor-
mance degradation under model mismatch and can be hard to
derive when models are complicated. These issues have been
addressed via data-driven designs, relying on machine learning
(ML). Among ML-based ISAC works, we mention [8]-[15]. In
[8], the potential of ML in ISAC is discussed. An extensive
survey on ML in ISAC is provided in [9], though with an
emphasis on sensing. In [10], ML is used in sensing to learn
the model order. In [11], a two-level multi-task artificial neural
network is proposed to replace the ISAC receiver, which is
shown to mitigate the imperfections and non-linearities of THz
systems. In [12], ML-aided beamforming in ISAC is tackled,
where a neural network learns the mapping from received
signal to angle (see also [16]). A vehicular beamforming sce-
nario is considered in [13], [14], where ML is applied to learn
beamformers. Finally, in our previous work [15], we developed
an end-to-end approach for the ISAC problem, applying an
autoencoder (AE) [17] to account for hardware impairments.
These ML-based approaches to ISAC can operate under model
mismatch and in general require little knowledge about the
problem, other than the loss function. The drawbacks of this
class of methods lies in the lack of performance guarantees,
limited interpretability, and often high training complexity.

A third way, in between model-based and ML-based ISAC
is provided by so-called model-driven ML (MD-ML) [18].
This recent approach proved particularly relevant for commu-
nication systems [19], [20], due to the abundance of models
characterizing them. In MD-ML, existing designs, algorithms
or functional decompositions are reformulated as structured
neural networks. An early example is the principle of deep



unfolding [21], [22], in which the iterations of an iterative
method are interpreted as the layers of a neural network (see
[23] for a survey of deep unfolding applied to communication
systems). As an added benefit, the neural network can be
initialized from the model-based counterpart, thus starting
from a already reasonably well performing point instead of
at random. Especially relevant for ISAC are models linking
sent or received signal at antenna arrays to directions of
propagation. For instance, in [24], the steering vector models
are taken as an initialization and made flexible by learning
with a neural network of varying depth unfolding the matching
pursuit algorithm [25]. The approach was then optimized and
extended to the frequency response vector model in [26].

In this paper, we apply MD-ML for end-to-end ISAC.
Although MD-ML has been investigated in communication
scenarios [19], [20], [23], [24], [26], there is no research
on MD-ML for sensing. Our main contribution is to apply
MD-ML to single-target sensing and extend this approach to
obtain performance trade-offs between sensing and a MISO
communication link. As MD-ML end-to-end learning, we
optimize a model-based matrix of steering vectors to account
for hardware impairments. However, unlike [24], we propose
an architecture with parameter sharing to perform 2 tasks
simultaneously: (i) precoder designing at the transmitter and
(ii) target angle-of-arrival (AoA) estimation at the receiver.
A comparison between (i) MD-ML, (ii) neural-network-based
learning and (iii) the best-known baseline is made under
hardware impairments and complexity constraints.

II. SYSTEM MODEL

In this section, we describe the considered ISAC scenario,
which is depicted in Fig. 1.

A. Sensing Model

We consider a monostatic radar with a uniform linear
array (ULA) of K antenna elements. At each transmission,
the transmitter sends a complex signal € CX, subject to
E[||z||?] < Ex. A single target in the environment might
reflect the signal back to the transmitter. The probability that
the target is present is drawn from a Bernoulli distribution
t ~ Bern(1/2). If a target is present (¢t = 1), the received
signal at the ULA is

Y, = aan(0)a. (0)x +n, ()
where we assume a Swerling-1 model of the target, such
that o ~ CN(0,02), with o2 representing the loss of power
due to path loss and the target’s radar cross section. The
steering vector is [ax(0)]x = [awx(0)]r = exp(—72n(k —
(K — 1)/2)dsin(f)/\), with d = A/2 and A the wave-
length. The AoA of the target 6, is uniformly distributed
as 0 ~ U[Omin, Omax). The prior knowledge {Omin,Omax} is
assumed to be available, with —7/2 < Oy < Omax < /2.
Regardless of the target presence, complex Gaussian noise
n ~ CN (0, NoIg) is added at the receiver side.

The goal of the co-located receiver is to maximize the
detection probability of the target, subject to some false alarm

probability, and to estimate 6 in the case of target detection,
based on y,-.

B. Communication Model

We consider the same transmitter of /K antenna elements.
The transmitter maps a message m € M from a set of
possible messages M into a complex symbol s(m) € C.
The symbol s(m) is precoded by v € CX to steer the
ULA energy towards the receiver direction. The output signal
is z(m) = ws(m), again subject to E[|z|?] < Ei. The
receiver has a single antenna element, which yields a MISO
communication link. The communication receiver is always
present, and the received signal follows the model

ye = Bag (9)a(m) +n, @)
where a Rayleigh channel is considered, with 8 ~ CN (0, c2)
and n ~ CN(0,Np), and the communication receiver is
randomly located in a certain angle-of-departure (AoD) range
¥ ~ U min; Vmax|, with prior knowledge of {Umin, Fmax}
and —7/2 < Ypin < Imax < /2. We also assume that
the receiver has access to the channel state information (CSI)
k = Ba (9)v through a pilot sequence transmission.

The goal of the remote receiver is to retrieve the transmitted
message based on the observation y..

C. Integrated Sensing and Communication

The purpose of ISAC is to combine the sensing and commu-
nication transmitters into a joint transmitter that can be opti-
mized to allocate energy between the target and the communi-
cation receiver direction. The transmitter considers the joint a
priori angular information ® = {00, Omax; Ymin, Ymax }- The
receivers and the transmitter can be jointly optimized to obtain
a trade-off between communication and sensing performance.

III. BASELINE APPROACH

The proposed learning approach is highly driven by the
structure of standard model-based methods. Here we provide
the derivation of the baseline, which is compared later with
end-to-end learning approaches in Section V.

A. Transmitter Benchmark

We design the benchmark for the transmit beamformer x in
(1) or (2) by resorting to the beampattern synthesis approach
in [27], [28]. We define a uniform angular grid covering
[—7/2,7/2] with Nyq grid locations {6;}.%". For a given
angular range By,ne., We denote by b € CNeria X1 the desired
beampattern over the defined angular grid, given by

[Bl: = {K’ H 6 € Orne ©)

0, otherwise.
The problem of beampattern synthesis can then be formulated
as min ||b— AT x| ;, where A = [aw(61) ... ax(On,..)] €
CcK X Ngria denotes the transmit steering matrix evaluated at the

grid locations. This least-squares (LS) problem has a simple
closed-form solution

x=(AAT)"1A*D, )




which yields, after normalization according to the transmit
power constraints, a communication-optimal beam x. or a
radar-optimal beam x,..

For ISAC scenarios, a radar-communication trade-off beam
is needed to provide adjustable trade-offs between the two
functionalities. Using the approach from [29], we design the
ISAC beam as

/T = pel®
v(p.p) = VB VLI EVIZ TR
N
where p € [0,1] is the ISAC trade-off parameter and ¢ €
[0, 27) is a phase ensuring coherency between multiple beams.
By sweeping over p, we explore the ISAC performance of the
baseline.

B. Radar Detection Benchmark

Since the radar detection problem in (1) involves random pa-
rameters « and 6, we derive the maximum a-posteriori (MAP)
ratio test (MAPRT) detector [30] as our detector benchmark,
which takes into account the prior information on « and 6. Let
Ho and H; denote the absence and the presence of a target,
respectively, in (1). Then, the corresponding MAPRT is given
by [30]

E(yr) _ maXey,0,x p(Oé, 9, €z, Hl ‘ yr) ?%1 ,,7
p (HO ‘ y?”) Ho
Assuming p(Ho) = p(H1) = 1/2, we find, after some
derivation, that the test simplifies to'(see [15, App. A])

—~ Hq
laf (B)y,|” = 7, 7
Ho

where 7 is a threshold determined based on a given false alarm
probability and

(6)

§=arg max ‘aﬂ(@)yrf . (8)

0€ [Omin,Omax]
C. Communication Receiver Benchmark

Given the CSI k = fal(0)v, the received signal is
Yo = ks(m) + n. Hence, symbol error rate (SER) is min-
imized by using maximum likelihood estimation (MLE) as

m(yC) = arg min,, ¢ m ”yc - /{8(771)”2.
IV. ISAC END-TO-END LEARNING

In the following, we first describe the architecture of neural-
network-based learning and the loss functions involved during
training for the ISAC scenario. Then, we specify how model-
driven learning is trained, and how the ISAC trade-offs are
assessed. In Fig. 2 we represent how the different components
of the system are related for model-driven learning.

A. Neural-Network-Based End-to-End Learning

We use 5 feed-forward neural networks as depicted in
Table 1. This AE architecture is based on our previous work
[15], with some modifications. On the transmitter side, the

! Although x is known to the radar receiver, taking it as unknown in the
MAPRT formulation (6) and plugging in its optimal value as a function of 6
simplify the detection test in [15, Eq. (16)] to a simple matched filter receiver
in (7).

TABLE I: Neural network architectures.

Network Input layer ~ Hidden layers Output layer
Encoder fe |M]| (K, K,2K) 2 (linear)
Beamformer f, 4 (N,N,N) 2K (linear)
Presence det. f, 2K +2 (N,N,N) 1 (sigmoid)
Angle est. f, 2K +2 (N,N,N) 1 (tanh)
Comm. receiver fy, 4 (K,2K,2K) |M]| (softmax)

encoder takes a one-hot encoded message m and outputs a
complex number interpreted as the symbol of a constellation.
The beamformer uses as input the prior information ® to yield
a complex precoder v. The radar receiver is divided into 2
networks: (i) for target detection, the network concatenates
the received signal y, and the sensing angular information
{Omin, Omax} as input, to predict the target probability as
output; (ii) the angle estimator uses the same input as the
presence detector, but it gives an estimate of the target angle
6. The communication receiver maps the concatenation of the
received signal y. and the CSI k to a vector of probabilities
m, where the i-th element of 7n represents the probability that
the ¢-th message was transmitted. For complex-valued inputs
or outputs, the concatenation of the real and imaginary parts
is utilized. In Table I, the dimensions correspond to the real-
valued concatenated vectors.

1) Loss Functions: We choose a suitable loss function

based on the task to be solved.

« Target Detection. We use the binary cross-entropy (BCE)
loss. Let p € [0, 1] be the estimate of the probability that
the target is in the environment. The BCE loss is then

Jmw = —E[tlog(p) + (1 —t)log(1 — p)]. )

« Angle Estimation. We use the mean squared error (MSE)
loss between the estimated and true angles according to
Tangle = E[|§ — 6]2]. Note that this loss is meaningful
only when ¢ = 1 and the neural network estimates that
there is a target.

« Communication Message Estimation. We treat this
problem as a multi-class classification problem, where
each of the classes corresponds to a transmitted message.
Hence, we resort to the categorical cross-entropy (CCE)
loss. Let m®™ € {0, 1}/ be the one-hot encoding of m
and m € [0, 1]MI a | M|-dimensional probability vector.
Then, the CCE loss is

| M|
Jeomm = —E | > m<™ log(1iz;) (10)
j=1

2) Neural-network Based ISAC: To obtain a good ISAC

trade-off, we could train all 5 networks from Table I at the
same time. However, the scale of the detection and angle
estimation loss functions might differ in several orders of mag-
nitude. Then, we apply a 2-step learning procedure. Firstly, we
learn €, u, p,m based on target detection using the following
loss function

Tisac = wl{t = 3 Jm + (1 — w.) Teomm,  (11)

where w, € [0, 1] is a hyperparameter that allows for flexible
trade-offs between sensing and communication performance,
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Fig. 2: Block diagram of the ISAC model-driven approach. The matrix A € CHE X Nerid jg optimized via end-to-end learning by only considering single-target
sensing. The communication encoder and receiver are implemented as in the baseline with no learnable parameters.

and I{-} is the indicator function. Secondly, we learn v and
update €, i, ) by training for angle estimation, using the joint
loss function

angle

ISAC — wrxyangle + (1 - wr)\Z:omm~ (12)

B. Model-Driven end-to-end Learning

1) Trainable Model-Driven Transmitter: According to the
benchmark, the transmitter precoder is based on (4), which
involves the vector b and the matrix of steering vectors A.
The binary vector b is completely determined by the prior
angular information Bpae.. We let A € CHK*Neria pe a matrix
of complex trainable parameters. In this way, the matrix A is
able to adapt to the hardware impairments in the transmitter
ULA that are described in Section V-C.

Nevertheless, (4) involves a matrix inversion. Therefore, we
instead compute a matrix M, which is the result of the matrix
equation (A*AT)M = A*. The transmitter signal is simply
o = Mb, which is then normalized to have energy Eix.

2) Trainable Model-Driven Sensing Receiver: The test
statistic in (7) to compute the probability of detection is based
on the angle estimation of the target. Hence, we imitate the
same kind of procedure during learning, i.e., we only train A
to yield a good angle estimate 6. Note that the same matrix
A is shared between transmitter and receiver. Moreover, the
angle estimation from the benchmark in (8) resorts to finding
the argument that maximizes the test statistic. This operation
is not differentiable, and we compute instead

g = softmax(|A"y,| © b), (13)

where we first compute the test statistic | A% y,.| similarly to
the benchmark, but we restrict this metric to be within Orage
by means of the element-wise product with b. Ideally, g should
be close to 1 in the position corresponding to the true angle.
Hence, by computing gTOgrid, we expect to obtain a close
estimation of the true angle.

Regarding target detection, even though we do not train the
system for this task, we mimic (7) and perform detection based
on

H
max{|A"y,| © b} 51 7, (14)

0

for some threshold 7).

3) Model-based Communication Components: We use a
standard |M]|-QAM encoder for the transmitter and the MLE
approach from Section III-C at the receiver, which is optimal
given the CSI. However, no parameters are trained for the
communication link.

4) Model-driven ISAC: We note that, in contrast to neural-
network-based learning, there is no need to directly train
for ISAC, since the communication encoder and receiver are
implemented following the baseline. Moreover, once we train
A for sensing purposes, the transmitter can be used to point
towards different directions (given different inputs). Hence,
we train A solely for single-target sensing. After that, to
evaluate the ISAC trade-offs, we create a joint precoder based
on (5), with p = w, and ¢ = 0. In Fig. 2, it is depicted
how we use different inputs to create a radar precoder (v,)
and a communication precoder (v,.), which are combined later
following (5) to yield the ISAC precoder v € CX.

V. RESULTS

In this section, we compare the performance of (i) model-
driven learning, (ii) neural-network-based learning, and (iii)
the model-based baseline described in Section III.

A. Parameter Selection, Random Training, and Evaluation

On the transmitter side, we consider an ULA with K = 16
antenna elements, Eix = 1, and | M| = 4 possible messages.
The average radar signal-to-noise ratio (SNR) is chosen as
SNR,. = 02/Ny = 0dB and the average communication SNR
as SNR, = 02 /Ny = 20dB.

For simplicity, we assume that the communication receiver
is located at a random position within a fixed angular sector
[Pmin, Ymax] = [30°,50°]. However, in the sensing scenario,
we randomize the angular sector of the target as in [31].
We first draw the mean angle of the sector as Opess ~
U[—60°,60°] and the span as A = U[10°,20°]. The target
prior information is then {&min, Omax} = {Omean—2A/2, Omean+
A/2}. However, we show only results corresponding to a
testing interval of [Oin, Omax] = [—40°, —20°].

We use the Adam optimizer [32] for the learning
approaches, with a learning rate of 10~ and a batch size of
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Fig. 3: Results without hardware impairments and without complexity restric-
tions. The target lies in the angular sector [Opin, Omax] = [—40°, —20°].

10,000 samples. In model-driven learning, the matrix A is ini-
tialized as a perturbed version of the baseline steering matrix,
ie., [Alm,; = exp(—yr(m — (K — 1)/2)sin(6;)) + n, with
n ~ N(0,0.1). The values for the trade-off parameter are w, €
{0,107%,1075,10*,1072,1072,0.05,0.1,0.15,0.4, 0.6, 0.8,
1}. For each w, value, we retrain all neural networks from
scratch.

During the testing stage, we evaluate the performance of
each method by computing the probability of misdetection
Pna = p(t = 0|t = 1), the SER p(rir # m), and the sensing
\/ E[|6 — 0] for a
given false alarm probability P, = p(f = 1|t = 0) = 1072
The RMSE is calculated only when the target is present and
it has been detected by the receiver.

angle root mean squared error (RMSE)

B. Results without Hardware Impairments

We first consider the case of ideal conditions in the ULA
array (d = \/2), without complexity restrictions. We set
the number of hidden neurons in the neural networks of
the sensing AE as N = 1024, giving approximately 6.4
million real-valued trainable parameters. We also fixed a grid
of Ngig = 500 discrete angles, resulting in 8000 complex-
valued trainable parameters for the model-driven learning
architecture. Further increasing the number of parameters did
not yield significant performance improvement. The number
of training iterations is set to 50,000.

Fig. 3 shows the ISAC results for one particular testing
angular sector. No significant differences can be observed
between the learning approaches and the baseline. Indeed, for
this scenario the baseline transmitter and receiver algorithms
are either optimal (for communications) or close to optimal
(for radar sensing). Moreover, without complexity constraints
both learning approaches can be trained to perform similar to
the baseline.

C. Results under Hardware Impairments

We now consider hardware impairments, which consist of
perturbing the spacing between antenna elements in the trans-
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Fig. 4: Results under hardware impairments. The target lies in the angular
sector [Omin, Omax] = [—40°, —20°].

mitter ULA as dj, ~iiq. N(N/2,0%), with k =0,..., K — 2.
We assume oy = A/30. Fig. 4 shows the ISAC trade-off curves
for a single realization of d;. The main difference with respect
to Fig. 3 is that the performance of the baseline drops in terms
of angle estimation. This occurs naturally when the assumed
models differ from reality (the assumed steering vector differs
for hardware impairments). Conversely, when complexity is
not limited, both end-to-end learning approaches are able
to adapt to the impairments and show good performance,
although neural-network learning slightly outperforms model-
driven learning.

For complexity limitation, the number of hidden neurons
in the neural-network-based learning is reduced to N = 21,
and the grid points in A to Ngig = 156. This makes the
number of trainable parameters of the sensing neural networks
(approximately 5,000 real-valued parameters) comparable to
the model-driven approach (approximately 2,500 complex-
valued parameters). Neural-network-based degrades both for
detection probability and angle estimation when the number of
parameters is reduced. However, model-driven learning shows
similar performance with respect to unlimited complexity. This
indicates that in cases where complexity is limited, model-
driven approaches perform better than neural-network-based
learning.

D. Generalization Results

We now assess the generalization performance of the
considered schemes via the testing scenario [Oin, Omax] =
[—20°,20°] which is not included in the training dataset.
Fig. 5 depicts the results assuming no complexity restrictions.
We expected that the baseline would outperform learning
approaches since they are tested on new unseen data. However,
model-driven learning is the best approach, outperforming
neural-network learning for both target detection and angle
estimation. This implies that the model-driven approach does
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Fig. 5: Results under hardware impairments with low complexity constraints.
The target lies in an angular sector [Omin, Omax] = [—20°,20°], which is
not included in the training dataset.

not overfit to the training data, and it also captures the model
structure of the impaired steering vectors.

VI. CONCLUSIONS

In this work, we have developed a model-driven ML ap-
proach for ISAC and compared to both a neural-network-based
ML approach and a model-based baseline. Under hardware
imperfections in the transmitter ULA, both learning methods
outperform the model-based baseline since the assumed model
differs from reality. In addition, the model-driven learning
approach outperforms neural-network-based learning under
complexity constraints and shows better generalization behav-
ior for testing scenarios that are not seen during training. In
future works, complexity reduction can be carried out applying
pruning [33] techniques to the neural networks. In addition,
the sample complexity of the proposed approach could be
optimized, for example by introducing physically motivated
constraints on the weight matrix A, as in [26]. Moreover,
the time complexity of training could potentially be reduced
using hard thresholding that produces sparse activations in the
network, as in [34].
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