arXiv:2307.01843v1 [quant-ph] 4 Jul 2023

ATOM: An Efficient Topology Adaptive Algorithm
for Minor Embedding in Quantum Computing

Hoang M. Ngo
University of Florida
hoang.ngo@ufl.edu

Abstract—Quantum annealing (QA) has emerged as a powerful
technique to solve optimization problems by taking advantages of
quantum physics. In QA process, a bottleneck that may prevent
QA to scale up is minor embedding step in which we embed
optimization problems represented by a graph, called logical
graph, to Quantum Processing Unit (QPU) topology of quantum
computers, represented by another graph, call hardware graph.
Existing methods for minor embedding require a significant
amount of running time in a large-scale graph embedding. To
overcome this problem, in this paper, we introduce a novel notion
of adaptive topology which is an expandable subgraph of the
hardware graph. From that, we develop a minor embedding algo-
rithm, namely Adaptive TOpology eMbedding (ATOM). ATOM
iteratively selects a node from the logical graph, and embeds it to
the adaptive topology of the hardware graph. Our experimental
results show that ATOM is able to provide a feasible embedding
in much smaller running time than that of the state-of-the-art
without compromising the quality of resulting embedding.E]

Index Terms—quantum annealing, adaptive hardware topology

I. INTRODUCTION

Quantum computing has shown its supremacy over classical
computers as it exponentially reduces the running time of
certain computational tasks [1I] in cybersecurity [2], machine
learning [3]], and optimization [4]] among others. One of the
most outstanding paradigms for quantum computing is Quan-
tum Annealing (QA). It focuses solely on solving optimization
problems by utilizing quantum fluctuation effect. QA scales to
significantly larger number of qubits. This characteristic en-
ables QA to solve large optimization tasks such as scheduling
deep space network [4], designing logistic network [5]], finding
optimal traffic flow [6], and TDMA scheduling in wireless
sensor networks [7]], to name a few.

QA-inspired quantum computers solve an optimization
problem in three steps. First, the quadratic unconstrained bi-
nary optimization (QUBO) representation of the given problem
is encoded by a graph, called logical graph. Second, the
resulting logical graph is embedded into Quantum Processing
Unit (QPU) whose topology is represented by another graph,
called hardware graph such that the logical graph can be
obtained from the embedded subgraph of the hardware graph
by edge contraction. This embedding process is called minor
embedding. Finally, quantum computers run the quantum
annealing process repeatedly on the embedded QPU to obtain
the optimal solution for the given optimization problem. Along

I'This work is partially funded by NSF under Award 2111679 and 1908594.

Tamer Kahveci
University of Florida
tkahveci@ufl.edu

My T. Thai
University of Florida
mythai @cise.ufl.edu

with the rapid development in the QPU size, QA-inspired
quantum computers are able to solve large optimization prob-
lems. The fundamental challenge here is that solving minor
embedding problem is non-trivial for the topology of the
hardware graph or its induced sub-graphs may not be identical
to that of the logical graph. Therefore, embedding process
remains to be a bottleneck, especially, when the logical graph
size is large. There is an urgent need for an effective minor
embedding method which scales to large logical graphs.

Related Work. There are two main approaches to solve
minor embedding, namely top-down and bottom-up. Top-down
approach aims to find embeddings of complete graphs [8]],
[9]I, [10] in the hardware graph. Although the embedding of a
complete graph can be the solution for any incomplete graph
with smaller or same size, embedding for incomplete graphs,
especially sparse graphs may require much fewer qubits than
embedding a complete graph. Thus, top-down approach is not
effective for embedding sparse logical graphs. To address this
problem, Goodrich et al. proposed a post-process the resulting
embedding to reduce the number of qubits required [11].
They introduced a new notion of biclique virtual hardware
framework, which is constructed by compressing the hardware
graph. They find a virtual embedding of the logical graph in
the virtual hardware framework using the Odd Cycle Traversal
(OCT)-based algorithm. OCT-based method is the-state-of-the-
art embedding for general logical graphs. However, the post-
process in OCT-based method is not efficient for large logical
graphs due to its high complexity.

In contrast, bottom-up approach directly constructs solutions
based on the topology of the logical and the hardware graphs.
It computes minor embedding either by using Integer Pro-
gramming (IP) which find an exact solution from predefined
constraints [12], or by using a progressive heuristic method
which embeds one node of the logical graph to the hardware
graph at a time [13], [14]. Notably, Minorminer method
[13] commercially developed by D-Wave Inc. scales well for
sparse logical graphs. Intuitively, Minorminer quickly finds
an infeasible embedding in the hardware graph, and then re-
embeds overlapping nodes until it obtains a feasible one. The
first disadvantage of Minorminer is that the complexity of
their algorithm depends on the input hardware graph size, so
the running time grows considerably for inappropriate input
hardware graphs. In addition, the number of re-embedding
may be large, which can contribute significantly in total

running time.

Contributions. In this paper, we introduce a novel idea of
adaptive topology for the hardware graph whose size grows
along with the size of embedding as needed. We develop an
efficient minor embedding method, called Adaptive TOpol-
ogy eMbedding (ATOM). Our method follows the bottom-
up approach in which we embed one node in the logical
graph at a time to an adaptive hardware graph. Unlike existing
approaches, ATOM does not require a fixed hardware graph
size. This leads to a significant reduction in the running time,
and overcomes the aforementioned limitations.

In our experiments, we compare our method with OCT-
based [[11], and Minorminer [13|] which are two state-of-the-
art embedding methods in each category as discussed in the
related work. Our results demonstrate that ATOM requires
significant less running time, while the hardware size and the
number of qubits required for embedding are comparable to
the best settings of hardware size for two other methods.

Organization. The rest of the paper is structured as fol-
lows. Section [lI| introduces the definition of minor embedding
and related notions. Our solution, ATOM, and its theoretical
analysis are described in Section Section [[V] presents our
experimental results. Finally, Section [V] concludes the paper.

II. PRELIMINARIES

Here, we first present the fundamental terminology needed
to understand how QA solves optimization problems. Next,
we describe the minor embedding problem in QA.

Recall from Section [I|] that QA consists of three steps.
Below, we elaborate on this process. In the first step of
QA, given an optimization problem with the set of binary
variables x = {x¢, x1, ..., x5 } and quadratic coefficients Q; ;,
we represent the problem with QUBO form, and express the
optimal solution for the given problem corresponding to the
state with lowest energy of final Hamiltonian as x* such that:

x" = arg min, (g 135 ZQi,jl‘ﬂj (D)
1<j
for Qi, j € R

We encode the QUBO formulation using a graph called
logical graph. In the logical graph, each node corresponds to
a binary variable x;. We draw an edge between the nodes
corresponding to two variables x; and z; if the quadratic
coefficient @; ; is nonzero.

The hardware graph is a representation of the topology of
QPU with nodes corresponding to qubits and edges corre-
sponding to qubits’ couplers. QA system of D-Wave consists
of three QPU topologies, namely Chimera - the earliest
topology, Pegasus - the latest topology, and Zephyr - next
generation QPU topology. These topologies are all in form of
a grid of identical sets of nodes called unit cells. In this paper,
we consider the Chimera topology. The reason is that [[15]]
embedding methods in Chimera topology may be translated
to Pegasus topology without modification, because Chimera
is a subgraph of Pegasus. In other words, the method we
develop for Chimera model also works for Pegasus topology.

The Chimera topology is in form of n x m grid of K. . unit
cells as T'(n,m,c) .

QUBO models given optimization problems as a logical
graph, and the topology of QPU used in QA as a hardware
graph. In order to solve the final Hamiltonian which QA
processes, we need to find an mapping from the logical graph
to the hardware graph. Below we formally define the minor
embedding problem:

Definition 1. (Minor embedding). Given a logical graph P =
(Vp,Ep) and a hardware graph H = (Vy, Ey,T), minor
embedding problem seeks to a mapping ¢ : Vp — P(Vy)
satisfying three conditions:

1) Chain connection: We denote a subset of nodes in H
that are mapped from a node u in P as chain ¢(u). Any
subgraph H’ of H induced by a chain ¢(u) from H is a
connected component with Yu € Vp.

2) Global connection: For every edge (u,v) € Ep, there
exists at least one edge (u’,v’) € Ey such that u’ € ¢(u),
and v’ € ¢(v).

3) One-to-many: Two chains ¢(u) and ¢(v) in the hardware
graph do not have any common nodes with Vu,v €
Vp,u # v.

Because hardware graphs based on QPU topologies are
fixed-structured and incomplete graphs, finding minor embed-
ding is a difficult problem.

III. ADAPTIVE TOPOLOGY EMBEDDING (ATOM)

Here, we describe our algorithm, called Adaptice TOpology
eMbedding (ATOM) for the minor embedding problem. We in-
troduce the notion of adaptive topology of the hardware graph.
We leverage the Chimera topology to expand a hardware
graph T'(n,m,c) to a new hardware graph T'(n/,m/,c) with
n’ > n, and m’ > m such that properties of an embedding in
T(n,m,c) is still preserved in T'(n', m’, ¢). With this finding,
we define adaptive topology as a subgraph of the hardware
graph which grows along with size of current embedding. To
be consistent with the Definition [I] in which hardware graph
H is fixed, in our representation below, we assume that the
hardware graph H is large enough for every embedding.

A. ATOM Algorithm

Algorithm |1| outlines the ATOM algorithm for minor em-
bedding. The algorithm takes the logical graph P = (Vp, Ep)
which encodes the QUBO formulation, and the hardware
graph H = (Vg, Eg,T(n,m,c)) where T'(n,m,c) encodes
its initial adaptive topology as input. It finds an embedding
¢ : Vp — P(Vy) which satisfies the three conditions of minor
embedding provided in Definition |1} We call such embedding
feasible embedding. Recall that a chain ¢(v) with v € P
indicates the set of node in the hardware graph H embedded
by v. Let us denote a subset of nodes in P with S. We define
P[S] as the subgraph of P induced on S. To be simple, we
also assume that the logical graph P is a connected component.

The main idea behind ATOM is that nodes in P are
progressively embedded to H at a time. We denote the

process to embed one node to H as furn of embedding.
We denote the embedded set after the ith turn with .S;, and
the embedding after the ith turn with ¢;. ATOM has three
major steps: Initialization, Node Embedding, and Topology
Adapting. Initialization determines the value of the set Sy, the
embedding ¢¢, and other variables (lines 1 - 7). By finding a
feasible embedding 1 of the k-node subgraph P’ of P with
the most edges in H, ATOM initializes Sy as V(P’), and
¢o as 1. After initialization, at each turn, a new unembedded
node is selected, and current embedding is updated by adding
chains of the new node, and its neighbors in H through Node
Embedding (lines 9 - 11). If the new node is successfully
embedded to H, algorithm [T| updates current embedding with
an additional embedding which includes new chains found
in Node Embedding (lines 16 - 20). Otherwise, algorithm |I|
expands current embedding, and current adaptive topology
through Topology Adapting, and re-embeds the new node with
expanded topology (lines 12 - 14). We explain the process of
embedding a new node to H in section B, and then describe
the process of expanding current embedding in subsection C
below. In the rest of this paper, we omit the proofs of all
lemmas and theorems due to page limit.

B. Node Embedding

Algorithm 2] outlines how an additional embedding is found
from current embedding at each turn. The algorithm takes
the logical graph P = (Vp, Ep), the hardware graph H =
(Vi, Eg,T(n,m,c)), the embedding at current turn ¢, the
embedded set at current turn S, and the new node v to be
included in the embedding as input. The goal of the algorithm
is to find a new embedding ¢’ such that combination of ¢’
and ¢ is a feasible embedding for P[S U {o}]. Before going
any further, we define the reverse mapping from a node in H
to a node in P as ¢~ !. If a node u € H is not embedded
by any node v € P through the embedding ¢, we call node
u as a free node with ¢~!(u) = —1. In addition, we define a
path from u € Vj to the chain ¢(v) with v € Vp with length
of Lyy as Zyy = {20, 21,22,...,2L,,}. If Z,, satisfies the
condition in which for 0 < i < Ly, — 1, ¢7(z) = —1
and, ¢~1(21,,) = v, the path Z,, is a clean path. Finally,
we define the subgraph of H induced from adaptive topology
T(n,m,c) as H'.

Algorithm [2] splits the whole process into two major steps:
(1) finding center for new chain of the new node v (lines
1 - 8), and (2) assigning free node to connect the new
chain to the existing embedding (lines 9 - 14). For the first
step, after determining the embedded neighbour set of v as
A = {vlv € S,(v,v) € Ep}, algorithm [2| generates all
possible clean shortest paths Z,,,, from a free node u € Vg to
chains ¢(v) with v € A included in the set Z by Breath First
Search algorithm (lines 3 - 4). If from existing clean paths
in Z, no feasible center can be found for the new chain (line
6), algorithm [2| returns an embedding ¢’ with ¢'(v) = @ for
Vv € P, called empty embedding. In contrast, the center of the
chain for new node ¢ () is selected as the free node % to which
sum of shortest clean paths from ¢(v) with v € A is minimum

Old unit cell Semi unit cell
E 13 9 9
1) 14554410 10
2) 11 1
3 . alz) a7
i)
1 14
2
3
5 13 5 5
6 14 6 6
7 7 7
8 8 8
4 13
1 14

Figure 1: A hardware graph in form of T(4,4,4) after
expanding. Unit cells with red line border are old unit cells
forming the hardware graph before expanding 7'(2,2,4). The
unit cell with green dash border is an example for semi unit
cell used to connect old unit cells after expanding.

(lines 7 - 8). After finishing the first step, we switch to the
second step in which algorithm 2] assigns free nodes in clean
paths from @ to existing chains of nodes in P, and includes
these assignment in the additional embedding ¢’ (lines 9 - 13).
Our node assignment does not only ensure to generate new
global connections (Definition [I) from the new chain ¢(7)
to the existing embedding, and preserve chain connections
(Definition [I) in every chains, but it also distributes fairly
the cardinality of new embedded nodes to the new chain, and
existing chains based on degrees of nodes in P. As a result,
it reduces the number of nodes needed in future embedding.

Lemma 1. Assume that ¢;—1 is a feasible embedding for
P[S;_1] and v is new node to be embedded in the ith turn,
the embedding ¢; generated with ¢;(v) := ¢;_1(v)Ug'(v) for
Vv € P is a feasible embedding of P[S;] with S; = S;_1U{v}
if embedding ¢’ is not empty embedding.

In some turns, it is possible that there exists no free node
@ € H such that all chains ¢(v) with v € A can connect to
by clean paths. We call it isolated problem.

C. Topology Adapting

Next, we show how to expand an adaptive topology to solve
the isolated problem. Recall that using the Chimera model, the
adaptive topology of H as T'(n,m,c) is an nxm grid of K, .
unit cells. Each unit cell K . is a bipartite graph with ¢ nodes
on each partite. Each node u € H has a coordinate (2, Yu, 2v)
in the topology T'(n,m,c) with x,, € [0,n — 1] indicates the

row index, y, € [0,m — 1] indicates the column index, and
zy € [0,2¢ — 1] indicates the bipartite index. In a unit cell,
nodes on the right partite have connections to corresponding
nodes in two adjacent unit cells in the same row while nodes
on the left partite have connections to corresponding nodes in
two adjacent unit cells in the same column (see in Figure [)).

Algorithm [3] presents the topology adapting algorithm. The
algorithm takes current embedding ¢, and current adaptive
topology T'(n,m, c) as input. The current embedding of nodes
located in the unit cell (z,y) in H is shifted by = rows and
y columns to the bottom right corner of H (lines 4 - 6). As
a result, there are two kinds of unit cells after expanding,
called empty unit cells whose nodes are not assigned to any
chains and old unit cells whose nodes are assigned to chains
from the embedding ¢. Algorithm (3| then, assigns nodes in
empty unit cells located in between two old unit cells. These
unit cells are called semi unit cells. Then, we denote semi
unit cells in between two old unit cells in the same row as
row semi unit cells, and semi unit cells in between two old
unit cells in the same column as column semi unit cells. The
rule of assignment is that nodes on the right partite of a row
semi unit cell (x,y) are assigned to the same chain with the
corresponding node in the adjacent left old unit cell (x — 1,y)
while nodes on the left partite of a column semi unit cell (z, y)
are assigned to the same chain with the corresponding node
in the adjacent top old unit cell (z,y — 1). Figure |1| shows the
expanding process. We realize that semi unit cells are bridges
to keep chain connections, and global connections from ¢ after
expanding. It implies that the embedding ¢! expanded from
¢; is a feasible embedding of P[S;].

Lemma 2. After expanding the current embedding ¢ to new
embedding ¢! by the Algorithm (3| the addition embedding ¢'
found by the Algorithm [Z] with current embedding as ¢ is not
empty embedding.

We conclude from Lemma[2] that our method avoids isolated
problem after expanding the current embedding.

Theorem 1. Given S; as the embedded set, and ¢; as the
embedding found by the Algorithm 2| after the ith turn, ¢; is
a feasible embedding for PIS;].

Theorem |1| implies that the resulting embedding ¢ after
|[Vp| — |V (P’)| turns is a feasible embedding of P in H.

Theorem 2. The Algorithm [I] returns a feasible embedding
for P after at most 3|Vp| iterations.

IV. EXPERIMENTS

In this section, we evaluate our method on synthetic dataset.
We compare our method to two state-of-the-art methods: OCT-
based [11]] , and Minorminer [[13|] which was developed by
D-Wave. Minorminer is the best heuristic method as of now
for sparse logical graphs.

We construct logical graphs using three models, namely,
Barabasi-Albert with initialization by star graphs (BAgtar),
Barabasi-Albert with initialization by complete graphs

Algorithm 1: Algorithm ATOM
Input: Logical graph P = (Vp, Ep), hardware graph
H = (VH; EHa T(n, m, C))
Output: A feasible embedding ¢ : Vp — P(Vy)

wv] :=0 for Vv € Vp
isolated := False

while i < |Vp| — |[V(P)| do
if not isolated then

1 Let the subgraph of H induced by T'(n,m,c) as H'.
2 Let the densest k-subgraph of P be P’.

3 Let the complete embedding of P’ in H' be .

4 Initialize ¢¢ such that ¢g(v) := ¥ (v) for Vv € Vp.

5 Sy =V (P)

61:=1

7

8

9

-
=]

1 v = arg minUGVP\S ZuES,(u,U)EEP Wy

12 | ¢ := NODE_EMBEDDING(P, H, ¢;_1,Si_1,0)

13 | if Jv € Vp such that ¢’ (v) # () then

14 1solated := False

15 Initialize ¢; such that ¢;(v) := ¢;—1(v) U ¢'(v)
for Vv € Vp

16 Si =81 U{th wlo):i=d;i:=i+1

17 else

18 isolated = True

19 (biflv T:= TOPOLOGY_ADAPTING(H, Qﬁi,l)

20 return ¢‘VP|*‘V(P,)|

(BAcompiete), and d-Regular. For each model, we generate 38
logical graphs by varying the number of nodes, and average
node degree d as |Vp| € {100,200,...,1900} and degree
d € {10,20}.

We use the following three criteria to evaluate our method,
and the competing methods.

1) Minimum hardware size. We compute the smallest hard-
ware size needed to include the resulting embedding. Since
Minorminer, and OCT-based take a specific hardware size
as input, we run their method with the hardware graph fol-
lowing the topology T'(n,n,4) with n € {20, 60, ..., 500}.
Unlike these methods, ATOM adapts the hardware size to
the given problem instance. Thus, we report the size of
final adaptive topology as the minimum hardware size of
ATOM.

2) Running time. We measure the time needed to return a
feasible embedding, or the time needed to claim that no
feasible embedding exists for the given hardware size. We
set the time limit to 14000 seconds.

3) The number of qubits needed. We measure the number of
nodes in H which are mapped by a node in P in the
resulting embedding.

Environment. We implement ATOM in C++. We use
Minorminer, and OCT-based code provided by their authors.
For OCT-based method, we select Fast-OCT-reduce version
as it is the most effective version of OCT-based. We run all

14000

12000

10000

8000

6000

4000

Running Time [seconds]

2000

0

=¥~ OCT-based
~—&— Minorminer
—A— ATOM

Running Time [seconds]

14000

12000

10000

8000

6000

4000

2000

0

~—&— Minorminer
—&— ATOM

Running Time [seconds]

14000

12000

10000

8000

6000

4000

2000

o

~&— Minorminer

—&— ATOM Ak

20 60 100 140 180 220 260 300 340 380 420 460 500
Hardware Size

(a) # of nodes = 400

20 60 100 140 180 220 260 300 340 380 420 460 500
Hardware Size

(b) # of nodes = 600

20 60 100 140 180 220 260 300 340 380 420 460 500
Hardware Size

(c) # of nodes = 900

Figure 2: Running time of OCT-based, Minorminer, and ATOM for different hardware sizes. Logical graphs are generated
using BAcompicte model with the number of nodes = 400, 600, 900 in (a), (b), (c) respectively. Blue points represents for
hardware graph size for which the corresponding method can find a feasible embedding. Red points represents infeasible cases.

In (b) and (c), we do not report OCT-based as it cannot return any feasible embedding.

14000

14000

14000
1900
[]
12000] 12000 ® 12000 N 1700
¥ 10000 % 10000 3 10000 1500
g g g |x
S 3 g 1300 ,
& 8000 & 8000 & 8000 L4 K
v o o 1100 g
£ A £ ° A £ £
S 6000 ° S 6000 S 6000 900 ©
o o ° *
£ < < °
£ s000{ @ € 4000 € 4000 700
5 5 [S A
< OCT-based = X OCT-based < o X OCT-based 500
2000 x 2000 4, A 2000 ;
A @ Minorminer a @® Minorminer ° A @® Minorminer 300
A ATOM ATOM A ATOM
olaana A ojArALA A o {LAlA 4 100
200 400 600 800 1000 1200 200 400 600 800 1000 [200 400 600 800 1000
of qubits needed (x 1000) # of qubits needed (x 1000) # of qubits needed (x 1000)
(a) BAgiqr with d = 10 (b) BAcompiete With d = 10 (¢) Regular with d = 10
14000 = 14000 14000
X OCT-based 1900
12000 12000 @ Minorminer 12000 1700
A ATOM A
8 10000 6 10000 ° $ 10000 ° 1500
§ § §
g g g 1300
3 8000 3 8000 4 3 8000 8
e 2 e ™ 1100 ¢
S 6000 £ 6000 £ 6000 %0 ©
2 4 g A £ *
€ 4000 A € 4000 € 4000 700
5 5 H
= X OCT-based = “ [] A X OCT-based 500
“base -
2000 A @® Minorminer 2000 A 2000 p A @® Minorminer 300
IS
obasa A ATOM o A A odnianad A ATOM 0
4 200 400 600 800 1000 1200 100 200 300 400 500 600 700 800 900 0 200 400 600 800 1000 1200

of qubits needed (x 1000)

(d) BAsta,r with d = 20

of qubits needed (x 1000)

(e) BACompletE with d = 20

of qubits needed (x 1000)

() Regular with d = 20

Figure 3: Running time and the number of qubits needed for embedding synthetic instances using B Agiar, BAcompiete, and
Regular graph models for degree d € {10, 20}. Different colors indicate sizes of logical graphs ranging from 100 to 1900.

experiments on a Debian GNU/Linux machine with Intel(R)
Xeon(R) CPU E5-2697 v4 @ 2.30GHz.

a) Evaluation of the effect of hardware size: Recall that
the fundamental contribution of this paper is that our method
adapts to the given hardware size unlike existing state-of-the-
art methods. We first evaluate how this affects the cost of
solving the minor embedding problem. Figure [2] shows the
minimum hardware size needed to find a feasible embedding
from OCT-based, Minorminer, and ATOM for different log-
ical and hardware graph sizes. Our resuts demonstrate that
ATOM outperforms competing methods for all logical and
hardware graph sizes. The performance of both OCT-based,
and Minorminer depends on how we select hardware sizes,
while ATOM computes the minimum hardware size from final

embedding. We observe that, OCT-based, and Minorminer
return infeasible solutions if selected hardware size is too
small. In addition, Minorminer can result in large running time
for inappropriate hardware sizes. Second, minimum hardware
size from ATOM is comparable to two other methods in all
cases. Thus, we conclude that ATOM is effective for finding
embedding on real QPU topology whose size is always fixed.

b) Evaluation of the number of qubits needed: The suc-
cess of a QA algorithm depends on the number of qubits it uses
as well as the time it takes to embed the given optimization
problem to so many qubits. Ideally, it is preferable to embed
into a small number of qubits in short amount of time. In figure
Bl we show the relation between the running time, and the
number of qubits needed for three methods. We observe that

Algorithm 2: NODE EMBEDDING

Input: Logical graph P = (Vp, Ep), hardware graph
H = (Vi,Eg,T(n,m,c)), current embedding
¢, current embedded set S, new node v
Output: Additional embedding ¢’
1 Let the subgraph of H induced by T'(n,m,c) as
H' = (VH/,EH/).
2 Let the embedded neighbour set of v be
A={vlveS, (v,v) € Ep}.
3 Let Zyy := {20, 21, 22, ..., 21, } be the clean shortest
path from node u to the chain ¢(v).
4 Let Z be the set of all possible clean shortest paths
D With u € Vg, v € A.
s Initialize ¢’ with ¢'(v) = 0 for Vv € Vp.
6 if Ju € Vi such that 32, € Z for Yv € A then
7 L return ¢’

8 U= argmin,ey so1(y)=_1 Y vea | Zuol

9 ¢'(v) « ¢'(v) U{u}

10 for v € A do

1 Find the biggest index ¢, from 1 to Lg, — 1, such
that there exists v/ # v, v’ € A, 2z; € Zyyr.

2 | 6= (Lay —1—1)]
13| (V) ¢ (D) U{z]1 <i<i,+0}
1 | ¢'(v) ¢ (v)U{zli, +0+1<i< Lay}

15 return ¢’

Algorithm 3: TOPOLOGY ADAPTING

Input: Hardware graph H = (Vg, Eg, T(n, m,c)),
current embedding ¢
Output: An expanded embedding ¢ : Vp — P(Vy),
and the adaptive topology T after expanding
1 Initialize ¢' such that ¢f(v) := () for Vo € Vp.
2 for v € Vp do
for u € ¢(v) do
Let (z,y, z) be the coordinate of w.
Let v’ € H with coordinate of (2z,2y, z).
o' (v) « ¢T(v) U {u'}
if 2z <c—1 then
Let u” € H with coordinate (2x + 1,2y, 2)
| S s

o e N AN e W

10 else
1 Let u” € H with coordinate (2z,2y + 1, z)
12 ¢'(v) < ¢'(v) U {u"}

13 return ¢, T(2n, 2m, c)

ATOM outperforms two others in running time for all cases.
On average, ATOM is up to 20 times faster than Minorminer,
and up to 66 times faster than OCT-based.

As a result, with the timeout is 14000 seconds, ATOM is
able to find feasible embeddings for logical graphs with size
of 1800, and 1500 for d = 10, and d = 20 respectively,

while the corresponding numbers for Minorminer is 1500,
and 1000, and for OCT-based is 500, and 400. The number
of qubits needed for embedding resulted from ATOM is
comparable with OCT-based, and Minorminer, and even better
in some cases. Therefore, ATOM is able to provide a feasible
embedding for QA much faster than Minorminer, and OCT-
based can, but do not require much more additional resources.
That leads to more economic advantages since with ATOM,
people can solve more optimization problems in QA at the
same time.

V. CONCLUSION

In this work, we introduce a novel notion of adaptive
topology, and propose a minor embedding algorithm, namely
Adaptive TOpology eMbedding (ATOM). ATOM is able to
provide a feasible embedding without fixing the hardware
graph size. Our experimental results show that ATOM requires
much less running time to find a feasible embedding without
demanding additional resources, compared with two state-of-
the-art methods: OCT-based, and Minorminer. In the future,
along with the rapid expansion in QPU size, and increasing de-
mand on solving large optimization problems quickly, ATOM
will be an efficient choice for minor embedding in QA.

REFERENCES
[1

—

Arute and et al, “Quantum supremacy using a programmable supercon-

ducting processor,” Nature, vol. 574, pp. 505-510, Oct 2019.

[2] A. A. Abd El-Latif and et al, “Quantum-inspired blockchain-based

cybersecurity: Securing smart edge utilities in iot-based smart cities,”

Information Processing & Management, vol. 58, no. 4, p. 102549, 2021.

Jerbi and et al, “Parametrized quantum policies for reinforcement learn-

ing,” in Advances in Neural Information Processing Systems, vol. 34,

pp. 28362-28375, 2021.

Guillaume and et al, “Deep space network scheduling using quantum

annealing,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1—

13, 2022.

Ding and et al, “Implementation of a hybrid classical-quantum annealing

algorithm for logistic network design,” SN Computer Science, vol. 2,

p. 68, Feb 2021.

Neukart and et al, “Traffic flow optimization using a quantum annealer,”

Frontiers in ICT, vol. 4, 2017.

F. Ishizaki, “Computational method using quantum annealing for tdma

scheduling problem in wireless sensor networks,” in 2019 13th Inter-

national Conference on Signal Processing and Communication Systems

(ICSPCS), pp. 1-9, 2019.

[8] V. Choi, “Minor-embedding in adiabatic quantum computation: IIL
minor-universal graph design,” Quantum Information Processing,
vol. 10, pp. 343-353, Jun 2011.

[9] C. Klymko, B. Sullivan, and T. Humble, “Adiabatic quantum pro-
gramming: Minor embedding with hard faults,” Quantum Information
Processing, vol. 13, 10 2012.

[10] T. Boothby, A. D. King, and A. Roy, “Fast clique minor generation in
chimera qubit connectivity graphs,” Quantum Information Processing,
vol. 15, pp. 495-508, Jan 2016.

[11] T. D. Goodrich, B. D. Sullivan, and T. S. Humble, “Optimizing adia-
batic quantum program compilation using a graph-theoretic framework,”
Quantum Information Processing, vol. 17, p. 1-26, may 2018.

[12] Bernal and et al, “Integer programming techniques for minor-embedding
in quantum annealers,” in Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pp. 112-129, 2020.

[13] J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding
graph minors,” 2014.

[14] J. P. Pinilla and S. J. E. Wilton, “Layout-aware embedding for quantum
annealing processors,” in High Performance Computing, pp. 121-139,
Springer International Publishing, 2019.

[15] K. Boothby, P. Bunyk, J. Raymond, and A. Roy, “Next-generation

topology of d-wave quantum processors,” 2020.

[3

[4

[5

=

[6

=

[7

	Introduction
	Preliminaries
	Adaptive topology embedding (ATOM)
	ATOM Algorithm
	Node Embedding
	Topology Adapting

	Experiments
	Conclusion
	References

