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Abstract—Communication load balancing aims to balance the
load between different available resources, and thus improve
the quality of service for network systems. After formulating
the load balancing (LB) as a Markov decision process problem,
reinforcement learning (RL) has recently proven effective in
addressing the LB problem. To leverage the benefits of classical
RL for load balancing, however, we need an explicit reward defi-
nition. Engineering this reward function is challenging, because it
involves the need for expert knowledge and there lacks a general
consensus on the form of an optimal reward function. In this
work, we tackle the communication load balancing problem from
an inverse reinforcement learning (IRL) approach. To the best
of our knowledge, this is the first time IRL has been successfully
applied in the field of communication load balancing. Specifically,
first, we infer a reward function from a set of demonstrations,
and then learn a reinforcement learning load balancing policy
with the inferred reward function. Compared to classical RL-
based solution, the proposed solution can be more general and
more suitable for real-world scenarios. Experimental evaluations
implemented on different simulated traffic scenarios have shown
our method to be effective and better than other baselines by a
considerable margin.

I. INTRODUCTION

The volume of wireless communication data has been
snowballing in recent years. As reported in [1], the annual
mobile data has increased seven times in the past six years
and it is expected to reach 220.8 million terabytes per month
by 2026. Alongside surge in mobile traffic, their distribution
is also very uneven. As reported in [2], over 50% of the
mobile traffic is being routed through a number as low as
15% of the existing cells, severely hampering the quality of
experience of the users being served by these overloaded cells.
Load balancing aims to balance the traffic distribution within
the network, improving the quality of service (QoS) of the
systems and the quality of experience (QoE) for the customers.

Load balancing algorithms can be classified into two broad
categories: rule-based methods, and reinforcement learning-
based methods. Rule-based methods aim to balance the load
distribution using pre-determined rules but they usually lack
the ability to adapt to rapidly evolving network conditons.
Reinforcement learning (RL) is a class of learning algorithms,
where a controller is optimized by interacting with an envi-
ronment. RL has recently shown impressive performance on
communication load balancing [3, 4, 5, 6, 7]. It is particularly
suited for solving intricate tasks with well-defined rewards like
Atari games [8]. It has also been applied for real-world tasks
such as self-driving cars [9], smart grid [10, 11, 12? ? ], traffic

control [13]. The outcome of an RL policy is contingent upon
the design choices of the associated reward [14]. Reward-
engineering, i.e., the design of the RL reward function, for
real-world tasks can be quite challenging. Especially, for
tasks like load balancing in communication networks, where
improvement in the QoE of the customers is gaining significant
traction. But QoE can be vague and different network perfor-
mance indicators can contribute to varying degrees to form the
desired reward function that can effectively capture the QoE
for a demographic. Inverse reinforcement learning (IRL) [15]
can act as a potential solution by circumventing the need for
tedious reward designing instead inferring it from expert data.

IRL leverages a set of expert demonstrations to infer the
underlying reward function that best explains the behavior
of the expert. It has been used for real-world problems that
lack a well-defined reward function like in robotics [16, 17]
and autonomous driving [18]. Traditionally, IRL algorithms
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Fig. 1: Overview of our IRL-based pipeline for load balancing.

are generally formulated under the assumption that “expert”
demonstrations are optimal and, the goal of such algorithms
is to recover the reward function that best explains the
observed expert behavior. This assumption, however, limits
the performance of the output policy to that of the expert
demonstrations, which in reality are rarely actually optimal.
This limitation is addressed in a recent work on reward
extrapolation [19]. Reward extrapolation is able is exploit sub-
optimal demonstrations to infer a reward function which is
used to train policies that can outperform the demonstrator.

In this paper, we present, the first attempt of using IRL
and reward extrapolation for communication load balancing.
The contributions of this paper are two-fold: (1) an IRL-based
learning framework (see Fig.1) to train a reward function that
accurately captures the latent reward function from a set of
ranked sub-optimal demonstrations. This reward function is
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used in a downstream RL task to train a policy function
that significantly outperforms the demonstrations; and (2)
a trajectory sub-sampling technique, Temporally Consistent
Sampling (TCS), that is suited for load balancing.

II. BACKGROUND

A. Terminology and notation

For consistency, we define a few terms that will be used
throughout this paper as well as some mild simplifying
assumptions. A communication network is composed of a
number of base stations (eNB). An eNB is a physical site
containing radio access devices. Each eNB in turn consists of
NS sectors. Each sector is made up of NC cells (c1, c2, ...cNc

),
one for each frequency in the sector. A cell serves user
equipment (UEs) of a particular carrier and is directional
in nature. The sectors of an eNB are designed in a non-
geographically overlapping fashion to maximize coverage. A
schematic diagram of a base station is shown in Fig.2. In
practice, although actual networks may violate some of these
assumptions, they are needed only for explanatory purposes.
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Fig. 2: The simulated communication network layout with seven eNBs along
with a graphical representation of a base station within the network.

B. Load balancing mechanisms

Out of the many network load balancing mechanisms
presently in practice, in this work, we focus on idle mode user
equipment based load balancing and mobility load balancing.
They differ by the status of the UEs that they redistribute,
targeting idle and active UEs respectively.

Idle mode UE based Load Balancing: IULB deals with
offloading idle UEs from an overloaded cell to its neighbors
by adjusting cell re-selection priorities. Each cell i has an
associated IULB weight (wi). Once the load of a given cell
breaches a specific threshold, idle UEs from that cell move
to nearby cells with probability proportional to their current
IULB weight. As IULB deals with idle UEs, improvements
are perceived when the UEs becomes active.

Mobility Load Balancing: MLB focuses on migrating active
UEs from an overloaded cell to their less-loaded counterparts
through handovers. MLB gets triggered when the IP through-
put of a given cell (source cell) falls below a predetermined
threshold value. Then, the source cell determines the set of
UEs to transfer and their corresponding target cells according
to the signal quality from the UEs and the IP throughput of the

neighbouring cells. Unlike IULB, MLB has immediate effect
on the network.

C. Metrics for load balancing

Many metrics, focusing on different aspects of the network,
can be used to quantify the condition of a network. In this
work, we use the IRL approach that, in theory, should bypass
the need for reward engineering in favour of pairwise trajectory
ranking provided by an expert. However, due to the lack of
such infrastructure, we resort to using an engineered reward
function. We focus on a set of metrics based on the throughput
of the network following the practice used in a few recent
works [4, 20, 21].

1) Tmin = mini∈{1,...Nc} xi denotes the minimum IP
throughput among the cells of the sector under con-
sideration. Here, xi denotes the IP throughput of cell
i. Higher Tmin indicates better worst case cell perfor-
mance.

2) Tstd =
√

1
Nc

∑Nc

i=1(xi − 1
Nc

∑Nc

i=1 xi)
2 is the standard

deviation in IP throughput of the cells. Lower Tstd

implies fairer services across the cells.
3) Tcc =

∑Nc

i=1 1(xi < x) counts the number of cells in
the sector that have a throughput lower than a given
threshold value x. Here x is chosen to be a small
constant. Lower Tcc suggests less congested cells.

In addition to gauging performance, the above KPIs individu-
ally or as a combination can also serve other roles like creation
of a reward function in an RL setting [21].

D. Load balancing algorithms

Classic load balancing algorithms are rule-based and use
expert domain knowledge to make informed decisions. [22]
performs intra-frequency load balancing in Long Term Evo-
lution (LTE) networks by automatically adjusting the cell-
specific offset based on the current cell loads. [23] focuses
on the use of adaptive step-size to adjust the offset be-
tween neighboring cells. [24] exploits the geometric properties
of the network infrastructure and uses Voronoi tessellations
over a geographical area to compute UE association with
nearby edge servers. Data-driven approaches have recently
enjoyed considerable success. Various learning-based methods,
including supervised and reinforcement learning, have been
successfully applied to the problem of load balancing. [25] use
spatio-temporal network data to predict future traffic patterns
and subsequently use this information to perform proactive
user association. [26]and [27] use Q-learning to address the
load balancing in self-organizing networks, and heterogeneous
networks respectively. [3] proposes a multi-agent actor-critic
network model in a model-free off-policy setting to obtain an
optimal policy for MLB. [28] uses RNN to understand past
SINR measurements as a function of UE trajectory and number
of HOs. [4] propose a data-efficient transfer learning-based RL
approach that is robust to environmental fluctuations.

A thorough scrutiny, however, will reveal a lack in con-
sensus for the choice of reward function. [26] considers the
change in load while optimizing for MLB. [3] use the inverse



of the maximum load of a cell in a given neighborhood and,
[27] relies on the change in overload among neighboring cells.
The choice of the reward function, in RL, defines the task [29]
and plays a pivotal role in determining the final performance
of the controller policy. There are different opinions in the
community on what an ideal reward function should be.

E. Inverse RL and reward extrapolation

Inverse RL aims to recover a reward function from expert
demonstrations that best explains the expert’s behavior [15].
While the use of IRL is yet to receive traction in network load
balancing community, there has been recent work that use it
in the field of cellular networks. [30] use IRL to optimally
allocate power in multi-user cellular networks. Other real-
world applications where IRL has seen significant success are
autonomous driving and dexterous robotic manipulation. In
autonomous driving, expert demonstrations are used to train
a policy that drives [18] and parks [31] like a human driver.
For robotic manipulation, [16] uses IRL to train a robot to
perform dexterous tasks. [32] trains a model to learn grasping
from failed demonstrations. Recent works like TRajectory
EXtrapolation (T-REX) [19] aim towards reward extrapolation.
The goal being able to leverage the goodness of expert data to
come up with a reward function that can infer rewards from
unseen states. It is a relatively new topic, with applications
limited to environments like Atari and Mujoco [33].

III. PROPOSED METHOD

Our proposed method, TRajectory EXtrapolation(T-REX)
[19] using Temporally Consistent Sampling (TCS) follows a
similar training pipeline of T-REX along with the inclusion
of a data-augmentation module, that uses TCS, to generate
training data for better extrapolation results. We start by defin-
ing the problem in Section III-A, followed by the individual
components of the IRL-based learning framework in Sections
III-B and III-C.

A. Problem formulation

The problem is modelled as an Markov decision process
(MDP) represented by a 4-tuple (S, A, P , R) and are defined
as follows:

1) S is the set of states. Each state, s ∈ R3xNC , consists of
3 components: the number of active UEs sue ∈ R, the
average throughput per cell sip ∈ R, and the average
percentage of the physical resources of each cell used
sprb ∈ R of every cells of a given sector. The number
of cells in our system, NC , is 4. Hence s ∈ R12.

2) A is set of actions. Each action, a consists of two parts,
one to initiate IULB (aIULB ∈ RNC ) and one that
controls handover thresholds to trigger MLB (aMLB ∈
R3xNC ). All the actions are discrete with a step size of
1.

3) P(s, a, s′) = P (s′ = st+1|s = st, a = at) are the state
transition probabilities.

4) R : S → R is the reward function.

For IRL, R is unavailable and the objective is to learn the
reward function from expert observations. A policy πφ :
πφ(a|s) ∈ [0, 1], parameterized by φ, is a function that maps
a given state, s ∈ S , to a distribution over actions, a ∈ A. A
trajectory τ of length n is represented by a sequence of states
{s1, s2, ...sn}.

Given a set of m ranked trajectories, {τ1, τ2, ...τm} where
τj is better than τi (i.e., τi ≺ τj) if i < j, the objective
is to find a parameterized reward network r̂θ that is able to
capture the relative ranking of the demonstrated trajectories.
In the process, it has to extrapolate the underlying reward
function the demonstrations are trying to maximize. Once, r̂θ
is obtained, it is used to train a policy that has the potential
to outperform the demonstrations.

B. Reward extrapolation using T-REX

The goal is to train a reward network, r̂θ, that maintains
Ĵθ(τi) < Ĵθ(τj) when τi ≺ τj , where Ĵθ(τi) =

∑
s∈τi r̂θ(s)

denote the total reward obtained by trajectory τi using r̂θ.
For such a model, the general loss function can be given by
Equation 1.

L(θ) = Eτi,τj∈Π

[
ξ(P (Ĵθ(τi) < Ĵθ(τj)), τi ≺ τj

]
(1)

where Π is the set of ranked demonstrations, and ξ is a binary
classification loss. Following the classic models of preference
[34] (Equation 2), and using a cross-entropy loss for ξ, L can
be rewritten as Equation 3.

P

(
Ĵθ(τi) < Ĵθ(τj)

)
≈

exp
∑
s∈τj

r̂θ(s)

exp
∑
s∈τi

r̂θ(s) + exp
∑
s∈τj

r̂θ(s)
(2)

L(θ) = −
∑
τi≺τj

log

( exp
∑
s∈τj

r̂θ(s)

exp
∑
s∈τi

r̂θ(s) + exp
∑
s∈τj

r̂θ(s)

)
(3)

Once a reward network r̂θ is trained, it is used to train a
policy using Proximal Policy Optimization (PPO) [35]. Ad-
ditional details about the training parameters for both reward
and policy learning are provided in Section IV-C.

C. Temporally Consistent Sampling

The collection of expert demonstrations is expensive, and
reward extrapolation relies on data augmentation making the
sub-sampling technique employed for the data augmentation
a vital component of the training pipeline. [19] proposes the
sampling of contiguous blocks of states of equal length from
randomly selected starting points in trajectories. The method
assumes that the relative ranking of these sub-trajectories
match that of the complete trajectories they were sampled
from. While this assumption is reasonable in certain domains
such as Atari and Mujoco, we argue that it can be detrimental
in the load balancing domain when the performance is mainly
determined by the throughput-based metrics as presented in
Section II-C. It is commonly observed that the network
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Fig. 3: Plot of all trajectories from the demonstration set from a load balancing
scenario. The trajectories exhibit a periodic behavior over the minimum IP
throughput. Similar trends are observed across different network KPIs.

throughput varies significantly through time due to regular
daily high and low usage periods. For example, Fig. 3 shows
the variation of the minimum IP throughput among the cells
(Tmin) in the span of one week. Clearly, sampling pairs of
sub-trajectories from different time intervals would often result
in an inconsistency between the assumption from [19] and
the performance metric. Indeed, we find such inconsistency in
35% of our samples in our experiment. Its adverse effect on
the learning capabilities of the reward network is discussed in
detail in Section IV-D.

To mitigate the problem, we propose a new sampling proce-
dure: Temporally Consistent Sampling(TCS). TCS introduces
two changes to the previously proposed sub-sampling tech-
nique. Firstly, to account the temporal variation in the network
throughput, we opt for sampling over random time indexes
rather than contiguous blocks. Secondly, as the variation in
the network KPIs across different trajectories at a given time
index is relatively lower and fairly consistent with the original
relative ranking (Figure 4), we mandate temporal consistency,
i.e., given a pair of ranked trajectories, a sub-trajectory should
be sampled from the same time indexes for both the tra-
jectories maintaining temporal consistency. Empirically, TCS
can reduce the aforementioned inconsistency from 35% to
15%, significantly increasing the effectiveness of the training
samples. Our approach is summarized in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Simulation environment

The experiments are conducted on a system-level RAN
simulator[36, 37] consisting of seven eNBs. Each base station
consists of three sectors, which in turn comprises of four
cells with different carrier frequencies. Six eNBs are arranged
in a uniform hexagonal ring with one eNB at the center as
shown in Figure 2. The UEs in the system are randomly
distributed over the geographical area and are assumed to be
points with fixed velocities and random directions drawn from
a uniform distribution. We test the extrapolation performance
of the reward network in two traffic scenarios and the load
balancing performance of the policy network in four scenarios
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Fig. 4: Scatter plot of the minimum IP throughput at different timesteps of
two trajectories. While the value across different timesteps varies widely, for
a given time, minimum Ip throughput of the state from the better trajectory
is consistently (9/10) higher than its worse counterpart. Only 10 such states
are shown for visual clarity.

Algorithm 1: Temporally consistent sampling
Input : Ranked demonstrations: DE , Number of

samples to generate: tsub
begin

for i = 1 to tsub do
Randomly select a pair of trajectories, tx and
ty , from DE

Define the length of a sample sub-trajectory, l.
Randomly select a set of l indexes, nl.
tsampx ← tx[nl], tsampy ← ty[nl]
if rank(tx) > rank(ty) then

tlabel ← 0
else

tlabel ← 1

Append {(tsampx , tsampy ), tlabel} to Ts.
Return Ts

Output: Training set, Ts

(ID 1-4). These scenarios are determined by different number
of UEs, request packet size and interval distributions.

B. Collecting demonstrations

For each scenario, we collect a set of 100 trajectories using
a random controller. A random controller randomly samples an
action at each hour. In the absence of an external critic to rank
the demonstrations, we resort to an ad-hoc ranking function,
Rf , based on a weighted combination of a set of KPIs. We
use the reward function from [21] as our ranking function.
We would like to emphasise the fact that the use of ranked
trajectories provides a significantly low resolution image of
the reward landscape than using a reward function to learn a
controller in an RL setting which needs access to the reward
corresponding to each state it encounters. For a given pair of
expert demonstrations τi and τj , τi ≺ τj when

∑
s∈τi Rf (s) <∑

s∈τj Rf (s). From the set of 100 trajectories, we select the
worst 70% to build our training set and leave the rest to test
the extrapolation capabilities of the trained reward network.



C. Training details
The reward network consists of 3 fully-connected layers

with a leaky ReLU activation function [38] for the input and
the first hidden layer. Other hyperparameters of the training
the reward and the policy networks are listed in Table Ia. The
training time for the reward network took on average roughly
45 hours on an NVIDIA A6000. The policy network is trained
using PPO. Both the actor and value network consist of 3
fully-connected layers with 256 neurons in each layer and use
the tanh activation function. All the networks are optimized
using Adam [39]. Hyperparameters used for training the policy
network are listed in Table Ib.

Learning rate 1e− 5
Weight decay 1e− 4
No. of epochs 1200
No. trajectory pairs 1000
No. sub-trajectory
pairs

50000

(a) Reward learning.

Learning rate 0.0003
Weight decay 1e− 4

Total timesteps 200k
Gamma 0.97

Clip range 0.15
Batch size 64

(b) Policy learning.

TABLE I: Training hyperparameters for different parts of the learning pipeline.

ID Method Training Extrapolation

1 T-REX (Original) 0.98 0.83
T-REX + TCS(ours) 0.94 0.94

4 T-REX (Original) 0.99 0.53
T-REX + TCS(ours) 0.98 0.93

TABLE II: Pearson correlation on the training and extrapolation set for dif-
ferent sub-trajectory sampling techniques. Maintaining temporal consistency
between candidate sub-trajectories during sampling from a given pair of
trajectories consistently outperforms its counterpart across different scenarios.
For reference: a higher value is better.

D. Results: Reward extrapolation
To test the performance of the algorithm, we use the Pearson

correlation coefficient [40]. It calculates the linear relationship
between two datasets and outputs a value in the range of
[−1, 1] which is proportional to their correlation. Table II
shows the correlation values obtained between the ranking
reward function and the reward predicted by the trained reward
network. From Table II, we see that while the original method
(T-REX) outperforms in the training set, using TCS shows
consistent improvement in the extrapolation or test set across
different scenarios. This indicates that the model trained from
samples generated from the original sampling technique learns
a reward function that lacks generalization. A possible expla-
nation for this stems from the empirical observations that the
probability of mislabeling a sub-sample pair using TCS drops
from 0.35 to 0.13, helping the model better capture the latent
ranking reward and thus contributing to better extrapolation. A
qualitative overview of the extrapolation performance is shown
in Figure 5.

E. Results: Model performance
We compare the load balancing performance of the trained

policy with four baselines, i.e., demonstrations, fixed rule-
based method, adaptive rule-based method and the original
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Fig. 5: Scatter plots qualitatively showing the correlation between the pre-
dicted and ad-hoc reward for the demonstration trajectories in the training
and test (extrapolation) set.

TREX method. Demonstrations are the set of trajectories
generated from the random controller on which the reward
network was trained. Fixed rule-based method is a rule-based
method consisting of a set of fixed IULB and MLB parameters
as used in [4]. Adaptive Rule-based method is a rule-based
load balancing algorithm [41] that dynamically adjusts the
IULB and MLB parameters according to the difference in the
loads between neighboring cells. We do not include RL based
methods in the comparison because these methods usually
require access to rewards from individual states as compared
to pairwise trajectory ranks utilized by our method. Pairwise
ranking on a trajectory level is far more accessible as compared
to the former, especially in the real world, and in this work
we focus on methods that can be trained and deployed in such
conditions.

We evaluate the performance of the methods on a single
sector of the central base station on the three metrics intro-
duced in Section II-C. Table III reports these metrics averaged
over the entire sequence of a given scenario at each hour.

ID Method Tmin Tstd Tcc

1

Ours 2.69±0.01 1.46±0.02 0.00±0.00
Fixed rule 1.60± 0.01 2.55± 0.02 0.09± 0.01

Demonstrations 1.89± 0.19 2.29± 0.29 0.05± 0.07
Adaptive rule 2.15± 0.05 2.05± 0.05 0.03± 0.01

TREX(Original) 2.51± 0.02 1.66± 0.02 0.00±0.00

2

Ours 1.97±0.02 1.07±0.01 0.02±0.01
Fixed rule 1.50± 0.01 1.51± 0.02 0.03± 0.01

Demonstrations 1.45± 0.13 1.74± 0.28 0.25± 0.19
Adaptive rule 1.44± 0.07 1.89± 0.10 0.32± 0.07

TREX(Original) 1.68± 0.02 1.34± 0.01 0.02±0.01

3

Ours 1.63±0.02 1.63±0.04 0.20±0.02
Fixed rule 1.47± 0.02 2.31± 0.04 0.31± 0.02

Demonstrations 1.54± 0.08 2.07± 0.15 0.30± 0.10
Adaptive rule 1.57± 0.04 2.06± 0.06 0.28± 0.03

TREX(Original) 1.62± 0.02 1.74± 0.04 0.21± 0.02

4

Ours 2.77±0.01 1.73±0.02 0.01± 0.00
Fixed rule 2.05± 0.01 2.58± 0.02 0.00±0.00

Demonstrations 2.09± 0.15 2.61± 0.29 0.02± 0.03
Adaptive rule 2.27± 0.07 2.41± 0.12 0.02± 0.01

TREX(Original) 2.38± 0.01 2.14± 0.02 0.01± 0.00

TABLE III: Evaluation results on different traffic scenarios. For Tmin, a
higher value translates to a better performance and for Tstd and Tcc, lower
is better. Our method enjoys an an average improvement of 19.6%, 26.7%
and 32.3%in Tmin, Tstd and Tcc respectively over the next best method.

Table III, shows that our proposed method consistently



outperforms the other methods across different network sce-
narios. For Tmin, we achieve on average an improvement
of 10.3% over the second best performing method across
different scenarios. Figure 6a shows that our method is able to
obtain significantly higher Tmin values at times of moderately
high traffic. At times when the network traffic is low, the
performance of all the methods is comparable due to the lack
of any room for further optimization to wring out more from
the existing network infrastructure. Our method also attains
a substantial reduction in Tstd. It outperforms its nearest
competitor by approximately 14.4% averaged across all the
scenarios, and it shows consistent improvement across both
periods of high and low traffic as seen from Figure 6b.
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into low and high traffic intervals. The line plots show that our proposed method better
capitalizes on the network resources during moderately low network traffic hours when
compared to the other baselines improving the minimum IP throughput in the network.
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(b) Standard deviation in IP throughput over time. The plot shows that our method
consistently maintains a lower standard deviation across the entire week.

Fig. 6: Performance of competing methods in different network KPIs.

V. CONCLUSION AND FUTURE WORK

With the rapid increase and uneven distribution of commu-
nication traffic, communication load balancing has become a
pressing problem in maintaining the quality of experience for
customers. In this work, we showcase the first attempt to use
inverse reinforcement learning for communication load balanc-
ing, bypassing the need for an explicitly defined reward signal.
We can learn a reward function from a collection of system
demonstrations and then utilize that to train a reinforcement
learning-based load balancing control policy. Experimental
results on different traffic scenarios have showcased the the
proposed solution can help significantly improve the system
performance. We believe that this work has showcased the
effectiveness of inverse reinforcement learning and provides
a new direction for future load balancing research. In the
future, we plan to further improve the data efficiency of
the proposed solution and investigate the applicability of the
proposed solution to other networking optimization problems,
e.g., energy saving, network slicing.
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