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Abstract—The flying ad hoc network (FANET) will play a
crucial role in the B5G/6G era since it provides wide coverage
and on-demand deployment services in a distributed manner.
The detection of Sybil attacks is essential to ensure trusted com-
munication in FANET. Nevertheless, the conventional methods
only utilize the untrusted information that UAV nodes passively
“heard” from the “auditory” domain (AD), resulting in severe
communication disruptions and even collision accidents. In this
paper, we present a novel VA-matching solution that matches the
neighbors observed from both the AD and the “visual” domain
(VD), which is the first solution that enables UAVs to accurately
correlate what they “see” from VD and “hear” from AD to detect
the Sybil attacks. Relative entropy is utilized to describe the
similarity of observed characteristics from dual domains. The
dynamic weight algorithm is proposed to distinguish neighbors
according to the characteristics’ popularity. The matching model
of neighbors observed from AD and VD is established and
solved by the vampire bat optimizer. Experiment results show
that the proposed VA-matching solution removes the unreliability
of individual characteristics and single domains. It significantly
outperforms the conventional RSSI-based method in detecting
Sybil attacks. Furthermore, it has strong robustness and achieves
high precision and recall rates.

Index Terms—Sybil attacks detection, Flying ad hoc network,
visual and auditory domains, multi-UAV matching.

I. INTRODUCTION

The Unmanned Aerial Vehicle (UAV) network has been
envisioned as a promising solution for numerous applications
since it provides wide coverage and on-demand deployment
services for the B5G/6G mobile communication. The high
deployment cost and poor efficiency of the centralized UAV
networks could be eliminated via the distributed and collabo-
rative self-organized one, the flying ad-hoc network (FANET)
thus emerges. However, UAV nodes in FANET are contin-
uously exposed to attacks that might cause severe accidents
[1]. For instance, in Kamkar’s Skyjack project, a malicious
node easily intruded on UAVs with disguising identities, which
forcibly disconnected them from the legitimate transmitter
and arbitrarily fed commands to all possessed zombie UAVs
[2]. Besides, with the flight control system being hacked,
several UAVs rained down on civilians during an anniversary
celebration of a supermarket in China’s Zhengzhou city last
year [3]. These issues might have been avoided if UAVs could
accurately identify the disguised nodes. The requirement for
trusted communication thus naturally arises in FANET.

Utilizing the shared medium and the broadcast nature of
wireless communication, malicious UAVs usually generate

several virtual and fake identities to intrude and disturb a
considerable portion of FANET, which is known as the Sybil
attack [4]. It provides chances for disruptions in resource al-
location, vote mechanisms, time synchronization, and routing
decisions [5]. Based on symmetric keys protocols, blockchain
techniques have been utilized for Sybil detection. Whereas
the time consumption of the transaction execution can not be
overlooked in the case of a large blockchain-based network.
For instance, the blockchain-assisted solution [6] consumes
2000ms in a FANET with 50 UAV nodes. It is intolerable since
the topology of FANET changes rapidly. Given this, a fast and
secure group key establishment protocol is proposed in [7], and
another temporal credential-based anonymous lightweight user
authentication mechanism for UAV networks is presented in
[8], which provides lower costs in both computation and com-
munication. Whereas the compromise of the authentication
server would result in the exposure of keys when conducting
such centralized schemes.

To address the above-mentioned issues, some lightweight
and distributed Sybil detection methods that are built upon
other principles are well underway, including radio resource
tests-, relative distance-, neighbor information-, mobility- and
energy-based techniques. However, most of them are dedi-
cated to mobile ad hoc networks with low mobility and are
unsuitable for UAV networks for the following reasons. The
radio resource test [9] does not work if malicious UAVs
utilize multiple radio devices simultaneously. The received
signal strength indicator (RSSI) scheme [10] fails when the
malicious nodes shift their transmission powers. The neighbor-
based solution [11] loses its efficacy in a dense network since
two adjacent legitimate UAVs will be misjudged owing to
the same neighbor list. The mobility-based technique [12]
may fail since a set of legitimate UAVs flying in formation
will be erroneously identified as Sybil nodes. The energy-
based method [13] may not work since a malicious UAV may
mutely monitor the behavior of legitimate nodes and keep a
record of them, and then impersonate their identity and level
of energy. Despite years of intensive research, the limitation
of the aforementioned solutions stems from the following fact:
UAVs only utilize the information they passively obtain, which
has poor reliability.

In essence, the above issues occur since the neighbor’s
information is only passively “heard” from the radio domain,
i.e., UAVs are communicating with eyes closed. Following
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the spirit of “seeing is believing”, they should have the
capability to open their eyes when communicating with others
[14] [15]. Compared with the “auditory domain (AD)”, the
physical characteristics observed in the “visual domain (VD)”
are difficult to be disguised, which enhances the detection
reliability of the Sybil attacks. For example, one malicious
UAV can effortlessly disguise multiple Sybil identities in AD,
but it is difficult to disguise in VD since such identities do
not exist in the real world [16]. To this end, UAVs should
be capable of additionally observing the neighbor’s physical
characteristics in VD to realize trusted communication.

The exciting part is that VD-based sensing is easy to
accomplish since state-of-the-art techniques have been utilized
on UAVs to enable active sensing ability. The most typical
ones include Lidar, high-resolution cameras, circular scanning
millimeter-wave (CSM) Radar, and laser range finder (LRF)
[17]. Nevertheless, the information obtained in AD and VD is
still separated thus far. In addition, it is not trivial to match
what the UAVs hear and see due to the Similarity issue. That
is, the physical characteristics of neighbors tend not to differ
much sometime or somewhere. For instance, the difference in
relative velocity is more distinctive if UAVs fly freely, whereas
paltry when they are in formation. Uncertainty is another
issue since most physical characteristics are observed with
specific deviations. These issues may induce difficulty in dis-
tinguishing or even mismatches when associating observations
from both domains.

The above issues and challenges motivate us to fully utilize
the information from dual domains to detect the Sybil attacks.
This paper presents a lightweight Sybil detection solution by
matching the neighbor information obtained from VD and AD,
which is called VA-matching. To the best of our knowledge,
this is the first solution that enables UAVs to accurately
correlate what they “see” and “hear” to improve the detection
accuracy of the Sybil attacks. To address the Uncertainty
issue, we utilize relative entropy (RE) to describe the similarity
of the densities of physical characteristics. Aiming at solving
the Similarity issue, we propose a dynamic weight algorithm
to distinguish various physical characteristics and calculate
the matching cost via their popularity. The matching model is
established by a bipartite graph and solved by the vampire bat
optimizer (VBO). The main benefits of VA-matching are two
folds. i) It removes the low detection accuracy of Sybil attacks
induced by inaccurate and untrusted information obtained
from a single domain, especially from AD. Consequently,
it outperforms the AD-only method in detection precision.
ii) The rates of precision and recall are identical in VA-
matching. Therefore, one can achieve the best performance
without the other being compromised, which is challenging
for conventional solutions.

II. SYSTEM MODEL

A. Motivation Scenario

As present in Fig. 1, a FANET consisting of multiple UAVs
is deployed to provide aerial monitoring and high-capacity
wireless communication for the smart city. With the region
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Fig. 1. The typical scenario for Sybil attacks in FANET.

of interest appearing randomly, UAV nodes move freely, i.e.,
adjust the destination, moving speed, and heading direction
independently. To realize the communication functionality,
each UAV is equipped with an omnidirectional antenna above
the rotor. In addition to passively receiving messages from
AD, high-resolution cameras, CSM Radar, and LRF are also
equipped to enable active sensing ability from VD. Similar to
most UAV-related studies [18] [19], we assume that the link
between UAVs is mainly dominated by the line of sight (LoS)
channel1. There are three categories of nodes involved in the
motivation scenario, namely legitimate UAVs, malicious UAVs
and their Sybil identities. A malicious UAV attempts to attack
its one-hop neighbors by utilizing multiple disguised nodes,
namely the Sybil identities. The legitimate UAVs intend to
detect and find the Sybil identities.

B. Network Model

Assuming there are N UAVs moving in a cube region with
a length of L, a width of W , and a height of H . All UAVs
are aware of their own location and velocity via a global
navigation satellite system and inertia surveying system within
tolerable error. Consequently, each UAV has the capability to
measure a location vector pn = [pn(1), pn(2), pn(3)]

T and
a velocity vector vn = [vn(1), vn(2), vn(3)]

T of itself. The
mobility information will be embedded in beacons and period-
ically exchanged, and also exploited to perform VA-matching.
Recall that the LoS links dominate the UAV communication
links, the path loss model between the ith UAV Ui and the
jth UAV Uj is assumed to follow d(i, j)−α, where α is the
mean value of path loss exponent and d(i, j) is the Euclidean
distance between Ui and Uj .

The Signal to Interference plus Noise Ratio (SINR) from
Ui to Uj is given by γ(i, j) = P (i)h(i,j)d(i,j)−α

N0+NI
, where

P (i) is the transmission power of Ui, and N0 is the additive
white Gaussian noise. The power gain of small-scale fading
channel h(i, j) is assumed to be exponentially distributed with

1Our solution can be easily extended to the Non-LoS (NLoS) and multi-
antennas scenarios. Given the page limit, it won’t be reiterated here.



a unit mean. According to [20], the interference is given by
NI =

∑
k ̸=i,jPkh(k, j)d(k, j)

−α =
3Ne(D

3−α
m −D3−α

s )
2D3

m(3−α) , where
Ne = 4πD3

mN/(3L × W × H) is the equivalent number
of UAVs in a sphere with radius Dm =

√
L2 +W 2 +H2,

which is the maximum distance between any two UAVs.
Ds is the safe distance of UAVs to avoid collisions. There-
fore, the outage probability Prob (γ(i, j) ≥ γth) is given by
Po(i, j) = Prob {h(i, j) ≥ γthd(i, j)

α(N0 +NI)/P (i)} =
exp (−γthd(i, j)

α(N0 +NI)/P (i)), where γth is the SINR
threshold. The condition Po ≥ Pth should be satisfied to en-
sure the communication demands, where Pth is the constraint
on SINR probability. Therefore, the effective transmission

distance can be calculated by Dr(i, j) =
(
− P (i) ln(Pth)

γth(N0+NI)

) 1
α

.

C. Attack Model

We assume that there are a certain number of malicious
nodes in the network, accounting for Pm of the total number
of UAV nodes. Each malicious node can create Ns Sybil iden-
tities, and make direct, simultaneous, and fabricated attacks
with the following implications. 1) Direct attack: a malicious
UAV along with its Sybil identities broadcast beacons to show
its presence, and a legitimate node receives the beacon and
then responds via a one-hop link. Consequently, the Sybil
nodes directly attack the legitimate node by pretending its
one-hop neighbors. 2) Simultaneous attack: At the nth epoch,
the malicious UAV introduces all Sybil identities at once.
3) Fabricated attack: malicious UAV fabricates some fake
identities that do not exist previously, rather than stealing
the existing identities of legitimate nodes. Fig. 1 intuitively
presents an example, where a malicious UAV M disguises
three Sybil nodes S1, S2, and S3, and forces the legitimate
nodes U4 and U5 to mistake them as one-hop neighbors.

III. DETECTING SYBIL ATTACKS BY VA-MATCHING

As shown in Fig. 2, the proposed VA-matching solution is
started by letting each UAV observe the physical character-
istics of neighbors from dual domains. Recall that AD only
refers to wireless communication while VD contains all the
active sensing methods, e.g., Radar and cameras, etc. At the
nth epoch, a UAV measures neighbors’ physical characteristics
VF[n] = {vf [n]i , i = 1, ...,Kv} and AF[n] = {af [n]j , j =
1, ...,Ka}, where Kv and Ka denote the number of neigh-
bors observed in VD and AD, respectively. vf [n]i,k and af [n]j,k,
k = 1, ...,Kf denote the kth physical characteristic of the ith
neighbor in VD and the jth neighbor in AD, respectively. Kf

is the total number of observable characteristics. Subsequently,
each UAV processes the obtained characteristics and matches
the neighbors in dual domains, and finally detects the Sybil
attacks. The specific scheme is as follows.

A. Characteristic Processing

The physical characteristics obtained from AD and VD will
be extracted to get further process. Their reliability varies
greatly since they generally deviated from the true value with
Gaussian error. Furthermore, the reliability depends on their

Dual-domain Matching
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Similarity Calculation Detecting 
Sybil Attack

Characteristics Observation

VDAD

Radio CameraRadar

Ⅲ-A

Ⅲ-B

Fig. 2. The framework of VA-matching. The critical steps are shown in red
and presented in Sec. III-A and III-B.

popularity. For instance, the relative distance is perfect to
distinguish neighbors in different locations while the relative
velocity is not a good characteristic if neighbors are moving in
formation. Therefore, the similarity of any two characteristics
is calculated by RE to solve the Uncertainty issue. They
are also assigned with dynamic weights according to their
popularity to address the Similarity issue. The characteristic
processing includes the following two folds.

1) Relative Entropy Calculation: The RE of two probability
density functions p(x) and q(x) is defined as R(p||q) =∫
p(x)ln (p(x)/q(x)). It measures the ineffectiveness when the

true distribution is p and the assumed distribution is q. There-
fore, the similarity of the two characteristics can be determined
by calculating the pair of probability density functions (PDF).
Note that the observation results can be written in Gaussian
forms, which can be seen from the experimental results in Sec.
IV-A, so the RE of two characteristics fa and f b is given by

R(fa, f b) =
ln (σb/σa)

2σ2
bσ

2
a

√
2πσb

∫
exp

(
− (x− fa)2

2σ2
a

)
×(

σ2
a(x− f b)

2 − σ2
b(x− fa)

2
)
dx,

(1)

where σ2
a and σ2

a are the variance of fa and f b, respectively.
Due to the asymmetric problem of RE, namely R(p, q) ̸=
R(q, p), the R(vf i,k, af j,k) can not be directly utilized in the
subsequent matching procedure. The similarity of vf i,k and
af j,k should be the same as that of af j,k and vf i,k. We consider
a Jensen–Shannon divergence D(fa, f b) = R(fa,M)/2 +
R(f b,M)/2 to measure the similarity between fa and f b,
where M = (fa + f b)/2.

2) Dynamic Weight Assignment: By exploiting the RE,
the similarity of two physical characteristics can be calcu-
lated. When they come from the same domain, D(fa, f b)
describes the similarity of physical characteristics of two
UAVs. When they come from various domains, D(fa, f b)
describes how likely two physical characteristics belong to the
same UAV. Assume that AFk = {af1,k, ..., af j,k, ..., afKa,k

}
denotes the measurement of the kth physical characteristics
of Ka neighbors in AD. The weight of kth characteristic
is assigned as wk = 1

Ka

∑Ka

j=1 pj,k, where pj,k denotes the
distinguishability of af j,k, i.e., the probability that af j,k is
different from other Ka − 1 characteristics in AFk. The



smaller it is, the more popular the kth physical characteris-
tic is, and its contribution is expected to be smaller when
calculating the similarity. Therefore, pj,k is defined as pj,k =∑

p ̸=j D
(
af j,k, afp,k

)
×

∏
q ̸=j,p(1 − D(af j,k, af q,k)), where

D
(
af j,k, afp,k

)∏
q ̸=j,p(1−D(af j,k, af q,k)) denotes the prob-

ability that af j,k is the same as afp,k but different from the
other measurements in AFk. In this way, the characteristic with
a high distinguishability will be assigned with a large weight,
and the Similarity issue could be solved commendably.

B. Dual-domain Matching

1) Similarity Calculation: Based on the characteristic pro-
cessing procedure, the similarity of vf[n]i and af[n]j can be
calculated. We defined it as the harmonic mean of individuals
s
[n]
i,j =

{∑Kf

k=1 w̃
[n]
k D−1

(
vf [n]i,k, af [n]j,k

)}−1
, where w̃

[n]
k is the

normalized weight. In this way, the physical characteristics
will be dynamically distinguished according to their popular-
ity. It assigns small weights to characteristics that are hard
to distinguish the neighbors. For instance, if all neighbors are
moving in formation, we’ll have pi,k → 0 for the characteristic
of relative velocities since they hardly have any difference, and
thus the corresponding weight will tend to zero. Consequently,
the relative velocity will almost have no contribution when
measuring the similarity of neighbors. In addition, if all the
relative locations are distinguishable enough, then the weight
for distance will be relatively large and it thus yields a higher
weight and plays a more important role. In addition, another
crucial property of harmonic mean is that when w̃

[n]
k is given,

s
[n]
i,j will tend to zero if any D(vf [n]i,k, af [n]j,k) tends to zero. In

other words, if two neighbors have high dissimilarities in most
characteristics, the similarity will be small despite the large
weights of other characteristics. This property can effectively
eliminate the impact of outliers.

2) Characteristics Matching: The physical characteristics
obtained from AD and VD will be exploited to establish
a bipartite graph matching model shown in Fig. 3. The
edge’s weight is defined as the matching cost c[n]i,j = 1/s

[n]
i,j ,

namely the reciprocal of similarity between vf[n]i and af[n]j .
To minimize the global cost and balance the individual cost,
the optimization target of dual-domain matching is given by
min(f1 + f2), where f1 =

∑Kv

i=1

∑Ka

j=1 a
[n]
i,j c

[n]
i,j and f2 =∑Kv

i=1

∑Ka

j=1

(
a
[n]
i,j c

[n]
i,j − f1

)2
are the sub-problems about the

global and individual costs, respectively. The constraints are
defined as

∑Kv

i=1 a
[n]
i,j = 1, j = 1, ...,Ka and

∑Ka

j=1 a
[n]
i,j =

1, i = 1, ...,Kv , which indicates that any physical characteris-
tic obtained from AD can be only matched with the other one
in VD and vice versa. a[n] is the assignment matrix, where
a
[n]
i,j = 1 if vf [n]i is assigned to af [n]j , otherwise a

[n]
i,j = 0.

Note that there are more neighbors observed in AD than in
VD since the Sybil node only exists in the former, thus the
existing assignment algorithm cannot be used directly since
the cost matrix is generally not a square one. We thus expand
it by adding Ka −Kv lines of infinite elements below C[n].

The above-mentioned problem of matching neighbors in
dual domains can be solved by the VBO, which is an effective
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Fig. 3. Bipartite graph model for matching neighbors in VD and AD.

optimizer we recently proposed. The specific steps of VBO
will not be introduced here due to page limitations, and readers
can refer to our recent work [21] for more details.

C. Detecting Sybil Attacks

Our aim is to detect the Sybil identity created by mali-
cious UAVs. Here, we will explain how the proposed VA-
matching completes this task. Since the legitimate UAV is
within the one-hop communication range of the malicious
UAV, it therefore mistakenly believes that the disguised Sybil
nodes are the actual neighbor around. Therefore, the number
of the neighbor list obtained in AD and VD is unequal. By
comparing the number of neighbors in AD and VD, some
additional nodes will be found in AD but we still can not
tell which are Sybil nodes. That’s the reason why the VA-
mapping solution is designed to find the neighbors in AD that
are most similar to those in VD. Finally, after matching the
characteristics of neighbors in dual domains, the remaining
unmatched neighbors in AD (if any) will be determined as
Sybil nodes.

D. Computational Complexity

Here we analyze the computational complexity of the pro-
posed VA-matching. Note that the procedures before VBO
mainly include the dynamic calculation of the similarity of
dual domain neighbors, which depends on the number of
neighbors and the observed characteristics. Specifically, there
will be (Ka − 1)2 calculations before determining the dis-
tinguishability of each physical characteristic of neighbors,
namely the complexity is O(K2

a). Based on this, the similarity
calculation of the features observed in AD and VD consumes
another Kf iterations. Therefore, the total complexity is
O(KfK

2
a). In addition, the VBO has the order of complexity

O(K2
a log(KaC)) to equalize and minimize the local cost,

where C is the maximum absolute value of competition.
Considering that the Kf is sufficiently smaller than log(KaC)
in the large-scale FANET, the computational complexity of the
proposed VA-matching solution can be thus regarded as that
of the VBO.

IV. EXPERIMENT AND SIMULATION

A. Real-World Experiment

The real-world experiment aims to determine the measure-
ment error of UAV’s characteristics in both AD and VD. As
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shown in Fig. 4(a), we deploy CSM Radar, Zenmuse H20
gimbal & camera system, and infrared sensing system on DJI
Matrice 300 (M300) RTK. To build a VD-based measurement
approach, we applied YOLO version 5 on M300 RTK to detect
the relative distance and velocity of ZF-F1200, a six-rotor UAV
shown in Fig. 4(b). Instead of exchanging beacons between
them, we calculate the relative velocity and distance based on
the exported data of positioning and speed sensors of M300
and ZF-F1200, and regard them as characteristics obtained
in AD2. It can be seen from Fig. 5 that AD has a lower
measurement error of speed but a higher one of distance.
We also find that their errors follow Gaussian distributions.
Specifically, when using the Gaussian distribution based on
the mean and variance in Table I, the experimental results
are fitted with an average probability error below 0.0005. This
means that they follow the normal distribution, which provides
the basis of experimental data for the formula (1).

To build an RSSI-based Sybil detection as a comparison
scheme for the subsequent simulation, we establish an error
model for the RSSI-based ranging method. An Ettus USRP
B210 connected to a mini-computer with OpenAirInterface
(OAI) platform is developed in the pod of ZF-F1200. A Sam-
sung S6 mobile phone is fixed in M300’s pod to receive the
signal transmitted by the OAI platform. The RSSI is measured
and recorded via the Cellular-Z application in Samsung S6.
The ranging error of RSSI is shown in Fig. 6. Within the
range of 10m, the median value is 1.08m, and the upper and
lower quartiles are 1.88m and 0.45m, respectively. The average
probability loss is the smallest (remains below 0.0025) when
fitting the error by a normal distribution with a mean value of
1.26m and a variance of 0.86m.

2Even if the beacons are exchanged, the embedded states are derived from
sensors. So we omit the beacon exchange to simplify the experiment.

TABLE I
THE PARAMETERS OF GAUSSIAN DISTRIBUTION THAT FITS THE RESULTS

OF THE REAL-WORLD EXPERIMENT.

Domain Characteristic Mean (m) Variance (m) Average fitting error

AD
distance 1.5704 0.5991 3.3905×10-4

speed 0.3661 0.0532 4.9922×10-4

VD
distance 1.0970 0.4403 4.4463×10-4

speed 0.5432 0.0772 3.7320×10-4
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Fig. 6. Real-world experiment results: (a) the relationship of RSSI and
distance; (b) ranging error.

B. Simulation Results

In the large-scale simulations, we set α = 2, Pth = 0.8,
Ds = 5m for the communication model. The transmit power
of each UAV node is 30 dBm. UAVs are moving with the ran-
dom waypoint model in a region of 600m×600m×300m and
400m×400m×200m. The number of UAV nodes is between
20 and 150, and their lowest speed is 5m/s while the maximum
speed varies from 10m/s to 20m/s. The SINR threshold varies
from -10dB to -4dB. The proportion of malicious nodes Pm is
set as 0.1 and 0.2, and each of them could generate 10 Sybil
identities. The total simulation time is 300s and the results are
collected every 2s. The error model of RSSI-based ranging as
well as the observation in AD and VD are from the results of
the real-world experiment. The competing rate is set as 1 and
ϵ = 0.02 in the VBO. Simulations are run 20 times and the
results with 90% confidence are analyzed as follows.

1) Matching Accuracy: Since the proposed VA-matching
is working based on matching theory, we first evaluate the
matching accuracy, which is defined as the proportion of
correctly matched neighbors in the dual domain. As shown
in Fig. 7, the distance-only and velocity-only schemes, whose
cost matrix is only generated based on distance or speed,
are used for comparison. They can be regarded as the case
where our scheme only utilizes one characteristic, i.e., weights
for others are 0. The proposed dynamic weight outperforms
the distance-only and velocity-only methods by 15.12% and
25.43% on average, respectively. As expected, our proposal
has the best performance, namely over 98.05% matching
accuracy under all maximum speeds and network densities,
since it distinguishes the popularity of characteristics and
assigns dynamic weights. In contrast, the distance-only method
only uses the relative distances of neighbors regardless of
their velocities. As a result, it is worse than our VA-matching
and is sensitive to the total number of UAVs. The denser the
network, the more neighbors each UAV will have, resulting in
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Fig. 7. Matching accuracy of various solutions under different scenarios.

a higher possibility of similar relative distances and therefore
a worse matching accuracy. The velocity-only method, as the
name implies, only utilizes the velocity feature to generate
the cost matrix. It is sensitive to the network density for the
same reason as the distance-only one. Furthermore, because
the minimum speed is limited to 5m/s, a lower upper-speed
limit means that there is a greater probability of neighbors
with similar speeds. Consequently, in a network with 150 UAV
nodes, the matching accuracy of the velocity-only method is
lower than 60% when the upper-speed limit is 10m/s.

2) Performance of Detecting Sybil Attacks: To a certain
extent, the matching accuracy will affect the detection preci-
sion of Sybil attacks since the unmatched neighbors in AD
will be regarded as Sybil nodes. As shown in Fig. 8, we
evaluate the precision of Sybil attacks under various simulation
environments. The detection precision of the Sybil attacks is
defined as P=TP/(TP+FP), where the true positive (TP) means
the number of the actual Sybil nodes that are successfully
detected, while the false positive (FP) denotes the number of
nodes that are misjudged as the Sybil nodes. All schemes have
lower precision in small-size networks since the number of
neighbors will increase, leading to the possibility of similar
characteristics and making it more difficult to distinguish.
However, the difference is that our solution is slightly affected,
while the other two schemes, especially the distance-only one,
are greatly affected at a low SINR threshold. This is because a
low SINR threshold, namely a large effective communication
range, increases the number of neighbors and the possibility
of equidistant or constant velocity neighbor events. This is
more severe in the small-size network. Besides, it is worth
noting that changes in the SINR threshold have little impact
on the performance of our dynamic weight scheme. Although
the precision of the comparison schemes will be improved
with the increase of the SINR threshold, they still fall behind
our proposal with an average gap of 7.86% and 8.95%.

Finally, we compare the proposed VA-matching with the
RSSI-based Sybil detection method. The principle of the RSSI-
based method is: Messages sent by malicious nodes with
different identities are constrained to have the same RSSI
values at the receiver. If the RSSI of multiple neighbors are
similar, they will be judged as Sybil nodes generated by the
same malicious node. The RSSI ranging error model comes
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Fig. 8. Detection precision of various solutions under different scenarios.

from the results of the real-world experiment. The detection
recall is defined as R=TP/(TP+FN), where the false negative
(FN) means the number of undetected Sybil nodes.

As shown in Fig. 9(a), both solutions have slightly better
accuracy in a lower-density network for the following reasons.
For one thing, matching errors hardly occur in VA-matching.
For another, it is more difficult to have two neighbors with
similar relative distances, i.e., similar RSSI, when using the
RSSI-based method. In the high-density network, both solu-
tions are insensitive to the maximum speed. This is because
the number of neighbors and the topology change rate, which
affects the matching accuracy and the possibility of RSSI
similarity, are mainly affected by the network density rather
than mobility in a dense network. In a sparse one, high-
speed means worse precision for the RSSI-based method since
the neighbor list change frequently. Consequently, new neigh-
bors enter the communication range from all directions and
undoubtedly increase the possibility of RSSI similarity. Our
scheme is also insensitive to speed thanks to the high matching
accuracy shown in Fig. 7. When the proportion of malicious
nodes decreases from 0.2 to 0.1, the number of Sybil nodes
has been reduced by half. As a result, among the detected
results, the proportion of Sybil nodes that meet the RSSI
threshold requirements decreases. Therefore, the precision of
the RSSI-based solution scheme roughly decreases from 74%
to 66%. Our solution is also not sensitive to this parameter. In
conclusion, the detection accuracy of VA-matching is 23.29%
better than the RSSI-based one on average, and our solution
has strong robustness.

Another important conclusion is that, unlike the conven-
tional solutions, the precision and recall rates of our proposed
VA-matching are equal rather than compromised. For the
conventional solutions represented by the RSSI-based one, a
higher recall is generally achieved at the cost of increasing the
number of detected samples (e.g., increasing the threshold of
RSSI difference to add more candidate nodes), which usually
causes more legitimate nodes to be misjudged. It can be easily
seen from the comparison results of Fig. 9(a) and Fig. 9(b)
that in a network with 20 nodes, when the maximum speed is
20m/s, the RSSI-based method obtains a precision of 73.84%
and a recall of 78.00%, while realizing a precision of 87.05%
and a recall of 66.08% when the maximum speed is set to
10m/s. Recall that the difference in the number of neighbors



Fig. 9. Sybil detection performance of VA-matching and RSSI-based method under different scenarios: (a) precision; (b) recall.

in AD and VD is strictly equal to the real number of Sybil
nodes. The VA-matching treats all the unmatched neighbors
in AD as Sybil nodes, whose amount is equal to the number
of real Sybil nodes. Consequently, the precision and recall
are equal since they have the same denominators, which is of
great significance in reality. Our solution can ensure that most
of the Sybil nodes can be detected, and there will be almost
no misjudgment of legitimate nodes.

V. CONCLUSION

In this paper, we have presented how to enable UAVs to
accurately match what they “see” and “hear”. The proposed
VA-matching solution utilizes relative entropy to describe the
similarity of characteristics and distinguishes UAVs by their
popularity. Experiment results show that it yields better preci-
sion and recall when detecting Sybil attacks, and significantly
outperforms the RSSI-based method. Given the page limit,
we designate the detailed observation techniques in the dual
domain and the real-world experiments of detecting Sybil
attacks as our future work.
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