
Change a Bit to save Bytes: Compression for Floating Point

Time-Series Data
∗

Francesco Taurone, Daniel E. Lucani, Marcell Fehér and Qi Zhang
DIGIT, Department of Electrical and Computer Engineering

Aarhus University
{francesco.taurone, daniel.lucani, sw0rdf1sh, qz}@ece.au.dk

March 9, 2023

Abstract

The number of IoT devices is expected to continue its dramatic growth in the coming years
and, with it, a growth in the amount of data to be transmitted, processed and stored. Compression
techniques that support analytics directly on the compressed data could pave the way for systems
to scale efficiently to these growing demands. This paper proposes two novel methods for pre-
processing a stream of floating point data to improve the compression capabilities of various IoT
data compressors. In particular, these techniques are shown to be helpful with recent compressors
that allow for random access and analytics while maintaining good compression. Our techniques
improve compression with reductions up to 80% when allowing for at most 1% of recovery error.

1 Introduction

IoT devices generate large amounts of data that need to be transmitted, stored and analyzed. The
advantages of compressing chunks of data include reductions in data transmission costs and more
efficient use of bandwidth, as well as reduced data storage. We focus on time-series data compression
algorithms [1], where the most common objective is to generate, packetize, compress and store a con-
tinuous data stream, it being IoT, financial, or for other use cases, using little memory and computing
power.

This paper focuses on data manipulations prior to using a compression algorithm. Our goal is to
modify individual samples to make them better suited for compression than the original data stream.
More specifically, we propose two novel transforms: the addition and multiplication transform. We
summarize them in Fig. 1, where assuming a one-dimensional set of samples [x1, . . . , xn] as input, after
applying the transforms, we obtain a dataset [y1, . . . , yn]. We operate on a per-value basis exploiting
floating point representation characteristics, whose basic structure is in Fig. 2, in order to cater to
random access compressors, e.g., generalized deduplication [2]. The parameters of each transformation
are selected so that all yi have some identical bits at the same position (e.g., all zero bits in the last
21 mantissa bits in the last row of Table 1). In data recovery, the inverse transformation results in
[x̃1, . . . , x̃n], which is the reconstructed dataset. Although our methods are lossy, the user can specify
an upper bound for the maximum recovery error (i.e., distortion) of each sample in the data stream.
The larger the maximum allowed error, the more potential for compression.

1.1 Motivating example

Consider that we have two numbers x1 and x2 as in Table 1. Although they share a lot of digits in
their decimal form, their mantissas have only 2 bits in common. When we first apply the addition

∗This work was supported by the IoTalentum Project within the Framework of Marie Sk lodowska-Curie Actions
Innovative Training Networks (ITN)-European Training Networks (ETN), which is funded by the European Union
Horizon 2020 Research and Innovation Program under Grant 953442.

1

ar
X

iv
:2

30
3.

04
47

8v
1

 [
cs

.D
S]

 8
 M

ar
 2

02
3

Substitute Compress

Decompress

Multiplication Method

Compress

Decompress

Addition Method

x1... xi ...xn xi yi = xi +

yi ,
xi = yi
~~ ~

xi yi = xi

xi = yi /
~ yi ,

xi

_x1... xi ...xn
~

x1... xi ...xnx1... xi ...xn

~ ~x1... xi ...xn
~

Figure 1: Preprocessing and compression diagram from original xi to recovered x̃i with the two
proposed methods. xi and x̃i might differ from each other.

11.62 = 0 10000010 01110011110101110000101
Sign Exponent Mantissa

s1 e1 e8 m1 m23

Figure 2: Encoding of a 32-bit IEEE 754 floating point number.

transform, we select a parameter A to be added to all data in the stream, represented by x1 and x2

in this example. Here, we use A = 1738.0, that generates y1 = 1791.333 and y2 = 2047.333. Although
the transform seems simple, it results in multiple bits having the same value in both y1 and y2, which
can then be compressed more effectively than the originals. Moreover, the exponents of both numbers
are now the same as well.

For the multiplication transform, we first modify the bit streams judiciously to create patterns in
the mantissa that, when multiplied by a specificM value, generate a sequence of zeros in the resulting
mantissas. The first bit pattern transformation outputs x̂1 from x1 and x̂2 from x2 . We then multiply
by M = 3.0 to generate y1 and y2. We note that all 23 bits in the mantissa are common and could
lead to more effective compression.

1.2 Related work

Exploiting data structure and its contextual meaning to achieve compression reductions has been
researched extensively, e.g. with images, audio and time-series data [1]. One of the crucial steps
for compression is the initial dataset manipulation, where the objective is to clean it and filter out
noise, outliers or other unwanted components that might undermine compression. This process is
particularly crucial for data coming from IoT devices since sensors can be quite noisy and degrade
over time [3]. It is often up to the user’s knowledge and experience to prepare data for compression. A
complementary approach, usually part of the compressor pipelines, is to represent the same information
using predictors or models of the sampled system [4]. Alternatively, we can change the domain of the
signal to encode other characteristics, e.g frequency domain in DCT and DWT [5]. Some of these
techniques perform well when applied to specific types of dataset, as part of specialized compressors
pipelines. We propose two more general-purpose preprocessing methods that transform floating point
time-series streams before passing them as input to a wide range of possible compressors. They
improve the compressor effectiveness by increasing the number of bit values shared in the dataset to
reduce its entropy. This objective is also part of the preprocessing method proposed by Klöwer et al.
in Nature Computational Science [6], which we use as benchmark for the evaluation of our proposed
techniques.

2

Table 1: Before and after preprocessing

Original Floating point representation (Sign·Exp·Mant)

x1 = 53.333 1·25·[1.10101010101010101010100]base2

x2 = 309.333 1·28·[1.00110101010101010101011]base2

Common bits: xx

Addition transformation, A = 1738.0

x1 +A = 1791.333 1·210·[1.10111111110101010101000]base2

x2 +A = 2047.333 1·210·[1.11111111110101010101000]base2

Common bits: x x xxxxxxxxxxxxxxxxxxxx

Multiplication transformation, M = 3.0

x̂1 = 53.33333206176758, x̂2 = 309.3333435058594

x̂1 · M = 160.0 1·27·[1.01000000000000000000000]base2

x̂2 · M = 928.0 1·29·[1.01000000000000000000000]base2

Common bits: xxxxxxxxxxxxxxxxxxxxxxx

2 Background

2.1 Performance metrics

We ultimately want to show that these techniques improve compression performances in terms of
output package size. We use the compression ratio (CR) as metric, defined as

CR =
size of compressed data

size of uncompressed data
. (1)

We also need a parameter called maximum recovery error, so the user can impose the recovery error
upper bound, which ultimately depends on its application needs. We do so by defining it both in
terms of absolute error

E∆ = max
i

∆i with ∆i = |x̃i − xi|, (2)

and relative to the original value

Eδ = max
i
δi with δi = (| x̃i − xi

xi
|). (3)

2.2 Floating point numbers (FP)

While there are various ways to represent real and rational numbers [7], we focus on the standard IEEE-
754 [8]. Although our description and experiments use the 32-bit version, the proposed transforms
are easily adapted to smaller or extended precision formats in the standard, e.g. 16, 64, and 128 bits.
Given a FP number n, its 32-bit structure is divided into three parts, as per Fig. 2:

• Sign ‘S’ : {s1} bit. ‘0’ for n ≥ 0, ‘1’ for n < 0.

• Exponent ‘E’ : {e1 . . . e8} bits. It is biased, meaning that it is interpreted as an unsigned integer
once the bias b = 2k−1 − 1 = 127 is subtracted from it, where k is the number of exponent bits.

• Mantissa ‘M’ : {m1 . . .mi . . .m23} bits. Each mi represents 2E−b−i.

In order to translate bits to numbers, we use the equations

n = (−1)S · 2E−b · (1 + M · 2−23)

= (−1)S · [2EU +m1 · 2EU−1 + · · ·+m23 · 2EU−23]
(4)

3

-4

numbersnumbers

-2 -1 0 1 4

223

2

2
2.xx1.xx223

Figure 3: Floating point distribution on the real axis for 32-bits floats.

8 16 32

m1
m2
m3
m4

0

0

0

0 0 0 0 0 0 0 0 00 0 0 0 0 0 111 1 1 1 1 11 1 1 1 1 1 1 1

0 0 0 0 0 0 0

000

01 1

1 1 1 1

1 1 1 1 1 1 1 1

0

12 20
EU
n

3 4

Figure 4: Dataset (range in orange) with xi ∈ [8, 12]. By applying yi = xi + 8, we move the dataset
to the region [16, 20], where numbers have larger exponent (EU = 4, against the original EU = 3).
Therefore, every number in the shifted dataset will have m2 = 0.

where EU = E − b 6= 0. For each n, the smallest quantity we can use in its representation is 2EU−23,
which depends on the exponent of the number. We can define this Precision as

P (EU) = 2EU−23. (5)

Therefore, two consecutive FP-representable real numbers in the region with precision P (EU), differ
by P (EU), or more formally

|n1 − n2| ≥ P (EU),∀n1 6= n2 ∈ [2EU ; 2EU+1]. (6)

Since the distance between two consecutive FP-representable numbers depends on their exponent, i.e.
EU , the further we go from zero, the sparser floating point numbers become on the real axis, as per
Fig. 3. When n ∈ [0, 2−b[, with b = 127 for 32-bit floats, E = 0 and the number is called subnormal.
The standard defines specific rules for representing and operating with these extremely small and
uncommon values, and we will not treat them in the following. The only exception is n = 0.0, which
is handled separately by the proposed transformations.

3 Preprocessing methods

3.1 Addition transform

This method can be summarized as the following operation:

yi = xi +A, ∀xi ∈ D (7)

where A > 0 is called addition parameter, D is the dataset. The idea is to shift all samples of the
dataset to a suitable region on the real axis. As illustrated in Fig. 4, by strategically choosing A we
can guarantee that all numbers in dataset after the addition transform share the exponent and several
mantissa bits. The cost is a possible recovery error due to changing precision from the original region
of each sample xi to the new yi’s precision. In order to recover the original data, we apply the inverse
transformation x̃i = yi −A, thus A needs to be stored as metadata.

4

yA EU (Py)

xA
~ xB

~

Py

yB

EU (Px)

xB xBxB
+_

Px

+

_

xA
_

xA xA
+

+

_ Px Px Px

Figure 5: All xA ∈ D in the violet region are transformed to yA and recovered with x̃A. All xB ∈ D
in the green region go to yB and x̃B. The result for samples from the region with both colors depends
on A and Py.

3.1.1 Recovery error

The recovery error occurs when yi has coarser precision than the original xi in the dataset. The new
precision is shared by all yi when they have the same EU (See Fig. 4). The larger the A value, the
more common bits the numbers share and the higher the recovery error. Let us illustrate this with
an example. Consider x1 = 1.5 and that A = 107. Then, y1 = x1 +A = 10, 000, 002 by adopting the
round to nearest rounding method from IEEE 754 (three other methods are supported [7]), since the
precision of y1 due to the A value being used is P (EU = 23) = 1.0. After decompression, the recovered
sample will be x̃1 = y1 −A = 2.0 instead of 1.5, generating an absolute error of ∆1 = 2.0− 1.5 = 0.5.

Fig. 5 summarizes both the transform and its inverse starting from two real numbers xA, xB ∈ R,
to their recovered form x̃A and x̃B. Considering xA, we use the rules from IEEE-754 to represent
it with a 32 bits FP number and therefore store it as one of its closest neighbour x+

A, x
−
A in the set

of representable FP numbers. Their precision is Px. With the transform, we reach yA = xA + A,
having precision Py. For ensuring more common mantissa bits, we choose A so that Py > Px. By
applying the inverse transform for recovering the sample, we obtain x̃A = yA − A. Both x̃A and x̃B
belong to the subset of numbers in the Px region having no component smaller than Py, since they

have at least log2(
Py

Px
) zeros in the least significant portion of the mantissa. Supposing that all samples

after being transformed have the same EU (Py), x̃A and x̃B will be approximating every xi such that
x̃A ≤ xi ≤ x̃B. This is because given xi ∈ D , during the addition transform yi = xi +A, we are losing
any info smaller than Py, and with x̃i = yi − A we are filling the mantissa bits we lost with zeros.
Therefore,

xi +A = yA, x̃A = yA −A ∀xi ∈ [x̃A; x̃A + Py/2− Px]

xj +A = yB, x̃B = yB −A ∀xj ∈ [x̃A + Py/2 + Px; x̃B]
(8)

meaning that different numbers belonging to the same precision region will result in different recovery
errors. Due to the standard, yi and x̃i for xi ∈]x̃A+Py/2−Px; x̃A+Py/2+Px[depend on the rounding
method and the selected A. The use of the addition transform ensures a bound in the recovery error,
which is a function of Py

∆ ≤ 2E
y
U−23−1 =

Py
2
, (9)

where EyU is the unbiased exponent shared by all samples after the transform.

3.1.2 Selecting the addition parameter

We select A such that:

5

7
4 8

EU
m1
m2
m3
m4

16 32 6440

xi
xi+3

39

xi+35

xi+36

n
2 3 5

Figure 6: With violet, the dataset range of values. A should be selected to make all samples share
their exponent. Moreover, within the same precision region, some A result in more common bits than
others.

a. it is as large as possible while keeping ∆ and δ within the user requirements and complying with
b) and c);

b. the transformed dataset is aligned with the largest powers of 2 in the region;

c. it has the same precision of the numbers resulting from the addition with A.

We can fulfil principle [a.] either by using the error bound in Eq. (2) and Eq. (3) or by checking the
real error for each xi ∈ D . Since we want all yi to share the exponent bits as well, we need to select
A so that they lie on a region with equal precision. Considering the example in Fig. 6, by choosing
A = 3, EyiU ∈ [2, 3], whereas with A = 35, EyiU = 5 ∀yi.

Principle [b.] comes from comparing the choice A = 35 and A = 36 in Fig. 6. Although both shift
the dataset to the same exponent region, A = 35 will result in m2 ∈ {0, 1}, whereas with A = 36,
m2 = 1, making m2 shared. The alignment with the powers of 2 within the selected region is key,
maximizing common mantissa bits. The larger the power of 2 aligned with the shifted dataset, the
more mantissa bits are shared.

Principle [c.] is needed to avoid a counterintuitive phenomenon while selecting A. Although
conventional wisdom would suggest that the smaller we choose A, the smaller and more precise the
transformed numbers in the dataset are, ultimately leading to smaller recovery errors, this is not
always the case: it is only true when xi +A ∈ 2E

A
U , where EAU is A’s unbiased exponent. By selecting

an A compliant with this last requirement, it is guaranteed that smaller addition parameters always
lead to decreasing recovery errors. The implementation used in this paper for choosing A is

Select A : max(xi ∈ D) +A = 2E
A
U +1 − 2E

A
U−23. (10)

3.2 Multiplication transform

This method can be summarized as

yi = x̂i · M, x̂i = f(xi,M) ∀xi : xi ∈ D (11)

where we call M the multiplication parameter, and f is a function that substitutes each data sample
xi in the dataset with x̂i, a version arbitrarily close to the original, but with the nice property of
resulting in many zeros once multiplied by M. So, in contrast to the addition transform, we apply
the multiplication transform on x̂i rather than on the original xi. We aim to maximize the number of
least significant bits in the mantissa equal to zeros. Let us explain this with an example.

3.2.1 Numerical example

We consider x1 = 363.754 and x2 = 366, with x2 having 16 consecutive zeros at the end of the mantissa
and x1 having none. In order to increase the number of common ending zeros, we propose substituting
x1 and x2 with numbers that show the desired zeros after being multiplied by a carefully selected

6

multiplication parameter M. We consider x̂1 = 363.7894592285156 and x̂2 = 366.03509521484375
withM = 57. Then, y1 = x̂1 ·M = 20736.0 and y2 = x̂2 ·M = 20864.0, which share the last 16 zeros.
By storing y1, y2 and M, we can recover the original numbers via the divisions x̃1 = y1/M = x̂1

and x̃2 = y2/M = x̂2 with maximum deviation δ < 0.01%. Other existing methods, like [6], directly
approximate x1 by removing all unwanted least significant mantissa bits to reach 16 ending zeros,
where the recovered sample is x̃1 = 362.0, with deviation δ = 0.48%.

3.2.2 Selecting the multiplication parameter

We use an approach that maps known values (M) to known mantissa patterns that result in all
zero sequences after their multiplication. A possible way to think about this is the equivalent in
base 10. We know that all numbers ending with .5, once multiplied by M = 2, finish with .0, or
that the ending sequence 1.25 × 8 always results in 0.00. The same concept applies to floating point
multiplication, where patterns expressed in base 2 can be exploited as substitutions for xi’s mantissas.
After yi = x̂i ·M, all bits in yi’s mantissa, from the bit representing the starting power of 2 the pattern
onward, will be zeros, making the length of the zeros-sequence an arbitrary choice.

Table 2: M unique patterns in base 2 (with 1 as MSB), expressed in hex

MPattern MPattern MPattern M Pattern M Pattern M Pattern M Pattern M Pattern

3 0x2 11 0x2e8 19 0x35e50 27 0x25ed0 35 0xea0 43 0x2fa0 51 0xa0 59 0x22b63cbeea4e1a0
5 0xc 13 0x9d8 21 0x30 290x8d3dcb0 370xdd67c8a60 45 0xb60 530x9a90e7d95bc60 610x864b8a7de6d1d60
7 0x4 15 0x8 23 0x590 31 0x10 39 0xd20 470x572620 55 0x94f20
9 0x38 17 0xf0 250xa3d70 33 0x3e0 41 0xc7ce0 49 0x14e5e0 57 0x23ee0

In Table 2, we list the unique patterns for each odd number M ∈ {3, . . . , 61}. The larger M is,
the bigger the product’s result and, therefore, the worse its precision, which generally leads to worse
recovery errors. The table could be expanded by including for each M all patterns belonging to its
factors, which also produce zeros. We do not consider even M since powers of 2 in multiplications
only affect the exponent, leaving the mantissa intact. Examples of this process are in Table 3, where

Table 3: Examples of base patterns substitutions and multiplications

xi = 19.6 M = 13 Pattern = 000100111011 xi Mantissa = 00111001100110011001101

x̂i Ex̂iU Ext x̂i Mantissa yi EyiU yi Mantissa Ending zeros ∆

19.61538506 4 00111001110110001001111 255.0 7 11111110000000000000000 16 0.02

19.38461494 4 00110110001001110110001 252.0 7 11111000000000000000000 18 0.22

18.46153831 4 00100111011000100111011 240.0 7 11100000000000000000000 20 1.14

29.53846169 4 001 11011000100111011000101 384.0 8 10000000000000000000000 22 9.94

19.69230843 4 0001 00111011000100111011001 256.0 8 00000000000000000000000 23 0.09

xi → x̂i → yi = x̂i · M. Each pattern instance is boxed. Underlined bits differ from the originals,
colored bit in the same row represent equal powers of 2. Ext = mantissa extension: when looking for
patches, we can append to the mantissa any number of 0s, followed by a 1.

xi = 19.6 gets substituted in multiple ways using the pattern associated withM = 13. Looking at the
first row, suppose that we want to obtain 16 ending zeros from a substitution of 19.6 yet to be found
after multiplying by 13 and that our error bound imposes EyiU = 7. Therefore, the zeros will start
from m8 (in red), which represents the power 27−8 = 2−1. The bit in xi that corresponds to the same
power is m5 (in red), and we should start patching from that position onward. We use the bit-shifted
version of the pattern minimizing necessary changes to the mantissa (underlined) to limit the error
∆. Here, the pattern needs to be repeated twice (see boxes around the pattern) in order to fill the
portion of the mantissa to be patched. After m23, we crop it by rounding to the nearest, producing
yi. From these examples we can conclude that:

• Patterns are bit-shifting invariant.

• Starting patching from the left results in a larger error and more common zeros.

• Typically, the more bits you modify from the original mantissa, the bigger the error will be.

• More zeros at the end of the mantissa do not necessarily mean a larger recovery error.

7

3.2.3 Scaling up to datasets

So far, we have applied the multiplication transform only to sets of up to 2 numbers, finding many
possible substitutions with varying performances. However, we need to process larger collections of
numbers, and looking at Fig. 1 we want to find a singleM that suits all xi and maximizes the number
of common ending zeros. In the current implementation, we approach this problem with a brute force
search, where first we analyze all xi ∈ D ∀M ∈ [3, 61] looking for substitutions that fulfil the error
bound. Among these multiplication parameters, we select the one that maximizes the number of
common zeros for the dataset. The transformed dataset is then built by substituting each xi with x̂i
using the substitution corresponding to the chosenM, having at least the minimum number of ending
zeros found in the search and the smallest possible error.

3.2.4 Multiply and check

Due to the round to nearest approximation method, there are some numbers ỹi that can not have
m23 = 0 when reached via ỹi = x̂i ·M. These numbers are off from being all-ending-zeros by P : after
the multiplication, we might need to adjust the result with yi = ỹi ± P .

4 Performance evaluation

In order to evaluate the performance of our proposed preprocessing techniques, we compare CR using
the setups summarized in Table 4. We analyze the reduction in CR of our proposed addition and

Table 4: Performance evaluation setup
Compressors Preprocessing Dataset collection Example

— Greedy-GD [9] © - Addition transf. with E∆ and Eδ aarhus citylab [10] [35.87]
— bzip2 [11] 5 - Multiplication transf. with E∆ and Eδ chicago [12] [20.5,0,-0.082,0.055,2,12.7]
— lz4 [13] × - Info content transf. with E∆ and Eδ [6] cbb g2 [14] [14310,403388]
— zstd [15] —– - Lossless, it removes decimals by

multiplying all samples for a power of 10
cbb dim2 [14] [12856, 705226]
uci (3500 samples) [16] [3.5892]
cmummac (20000 samples) [17] [-0.497314,0.425049,-0.036255,-0.755371]

multiplication transforms, against a similar lossy preprocessing technique and a lossless method. The
recent work [6] also tries to maximize the number of ending zeros in the mantissa to achieve better
compression. It does so by computing the information content of each mantissa bit, rounding to zero
the ending mantissa bits below a certain threshold. In order to adapt this algorithm to our error-bound
approach, for all dimensions in each dataset, we found the minimum retained information content limit
that fulfilled the error condition under analysis. The lossless preprocessing method simply eliminates
all decimals in the dataset by multiplying all samples with a power of 10.

We use the no-preprocessing results (CRNP) as baseline for comparing performances, with the
formula

∆CR% = (CR− CRNP)/CRNP · 100. (12)

Therefore, ∆CR% < 0 indicates improved compression. In Fig. 7, on the horizontal axis, we plot the ac-
tual maximum error on the recovered dataset imposing the error bounds E∆ ∈ {0.01, 0.1, 0.5, 1.0} and
Eδ ∈ {0.01%, 0.1%, 0.5%, 1.0%}. The chosen datasets represent different combinations of datatypes,
sizes and number of dimensions: aarhus citylab [10] and uci [16] for floats with one dimension,
cmummac [17] for multidimensional floats, cbb gs and cbb dim2 [14] for multidimensional integers
and chicago [12] for a mix of integers and floats. The compressors we use are Greedy-GD [9], a
dictionary-based algorithm using deduplication with random access capabilities, as well as three other
well-established compressors for comparison, namely bzip2 [11], LZ4 [13] and Zstandard [15].

The results in Fig. 7 show that our proposed preprocessing methods outperform the one in [6] for
all datasets and compressors except in Fig. 7c using Eδ, achieving up to 46% better CR in Fig. 7f.
In Fig. 7a and Fig. 7d, the information content transform cannot achieve errors below the desired
bounds, leaving the datasets unprocessed with ∆CR% = 0.

For all datasets and compressors, with ∆ ≤ 1 or δ ≤ 1%, both addition and multiplication
transforms improve compression with respect to the non-preprocessed datasets, with reductions up

8

0 1∆max

−20

0

∆
CR

%
0 1δmax

−20

0

0 1∆max
0 1δmax

0 1∆max
0 1δmax

0 1∆max
0 1δmax

cbb
g2_

4_
50

E∆ Eδ

(a)

0 1∆max

−75

−50

−25

0

∆
CR

%

0 1δmax

−75

−50

−25

0

0 1∆max
0 1δmax

0 1∆max
0 1δmax

0 1∆max
0 1δmax

chicagoBeach
waterQ

ualityD
epth

E∆ Eδ

(b)

0 1∆max

−60

−40

−20

0

∆
CR

%

0 1δmax

−60

−40

−20

0

0 1∆max
0 1δmax

0 1∆max
0 1δmax

0 1∆max
0 1δmax

aarhusC
itylab

hum
idity

E∆ Eδ

(c)

0 1∆max

−50

0

∆
CR

%

0 1δmax

−50

0

0 1∆max
0 1δmax

0 1∆max
0 1δmax

0 1∆max
0 1δmax

uciG
asTurbine

Em
issionsR

educed

E∆ Eδ

(d)

0 1∆max

−50

0

∆
CR

%

0 1δmax

−50

0

0 1∆max
0 1δmax

0 1∆max
0 1δmax

0 1∆max
0 1δmax

cm
um

m
acPilot

P01Brow
nies

PositionR
ed

E∆ Eδ

(e)

0 1∆max

−50

0

∆
CR

%

0 1δmax

−50

0

0 1∆max
0 1δmax

0 1∆max
0 1δmax

0 1∆max
0 1δmax

cbb
dim

2

E∆ Eδ

(f)

Figure 7: Results to compare the novel preprocessing techniques against the lossy method in [6] (×)
and a lossless (orange line) solution, using an array of error bounds, compressors and datasets. All
results are relative to the CR with no preprocessing, which acts as baseline ∆CR% = 0.

9

to 80%. We see cases in Fig. 7a, Fig. 7c and Fig. 7f with E∆ where for small error bounds the
non-preprocessed dataset performs better: however, by switching from Eδ to E∆ (and vice-versa) or
relaxing a bit the error bound, we always achieve improvements.

We also notice that when addition and multiplication transforms outperform the non-preprocessed
datasets, they surpass the lossless performances too, represented by the orange line. This line lies on
y = 0 in Fig. 7a and Fig. 7f since they are integer datasets: the lossless algorithm has no effect on
them. As expected, a higher compression can be achieved at the expense of higher recovery errors.

Moreover, the choice between addition and multiplication transform depends on the dataset and
the error-bound method. For example, in Fig. 7c with E∆, the addition outperforms multiplication,
while in Fig. 7f with Eδ multiplication is better.

Regarding the error bounds, the choice between E∆ and Eδ also depends on the dataset. In
Fig. 7f, choosing a relative error bound is clearly more effective than an absolute one, while in Fig. 7b
the absolute bound produces better results. Generally, E∆ is more suited for datasets having values
close to zero. We should be careful at selecting E∆ so that it does not compromise the information
carried by the dataset. An example of this in Fig. 7e, where E∆ can produce reductions close to 95%:
however, as we can see from the examples in Table 4 for dataset cmummac, selecting E∆ = 1 would
make the recovered dataset unusable. Therefore, in this case we should opt for Eδ.

5 Conclusions

In this paper, we proposed two novel lossy preprocessing techniques to improve the compression ratio
of existing compressors under given error bounds by transforming the dataset before compressing it.
These two methods use simple floating point arithmetic operations like addition and multiplication,
as well as floating point data structure, to increase the number of common bits throughout the whole
dataset. We presented the performances of these techniques by comparing their resulting CR against
the one obtained without preprocessing, with lossless preprocessing, and using a similar lossy prepro-
cessing technique [6], considering four compressors and six datasets. We plan to assess extensions of
these ideas into lossless methods, as well as to achieve improvements in terms of preprocessing time.

References

[1] G. Chiarot and C. Silvestri, “Time series compression: a survey,” 2021. [Online]. Available:
http://arxiv.org/abs/2101.08784

[2] R. Vestergaard, D. E. Lucani, and Q. Zhang, “A randomly accessible lossless compression scheme
for time-series data,” in IEEE INFOCOM - Conference on Computer Communications, 2020.

[3] E. Latyshev, “Sensor data preprocessing, feature engineering and equipment remaining lifetime
forecasting for predictive maintenance,” in DAMDID/RCDL, 2018.

[4] ISO/IEC 15948:2004 Information technology — Computer graphics and image processing —
Portable Network Graphics (PNG): Functional specification, Std., 2021.

[5] I. Batal and M. Hauskrecht, “A supervised time series feature extraction technique using dct and
dwt,” in International Conference on Machine Learning and Applications, 2009.

[6] J. D. e. a. M. Klöwer, M. Razinger, “Compressing atmospheric data into its real information
content,” Nat Comput Sci, 2021.

[7] J.-M. Muller, N. Brisebarre, and F. e. a. Dinechin, Handbook of Floating-Point Arithmetic, 2010.

[8] IEEE Std 754-2019 (Revision of IEEE Std 754-2008) IEEE Standard for Floating-Point Arith-
metic, Std., 2019.

[9] A. Hurst, D. E. Lucani, and Q. Zhang, “GreedyGD : Enhanced generalized deduplication for
direct analytics in IoT,” 2022, submitted to IEEE Transactions on Industrial Informatics.

10

http://arxiv.org/abs/2101.08784

[10] Aarhus Kommune, “Sensordata,” 2017. [Online]. Available: https://tinyurl.com/heeth2fd

[11] J. Seward, “bzip2,” 2019. [Online]. Available: https://sourceware.org/bzip2/

[12] City of Chicago, “Beach water quality - automated sensors,” 2022. [Online]. Available:
https://tinyurl.com/yz5yzy6a

[13] Y. Collet, F. Handte, I. Rosen, and R. Odaira, “LZ4-extremely fast compression,” 2011. [Online].
Available: https://lz4.github.io/lz4/

[14] P. Fränti and S. Sieranoja, “K-means properties on six clustering benchmark datasets,” Applied
Intelligence, 2018.

[15] Facebook, “Zstandard – real-time data compression algorithm,” 2015. [Online]. Available:
https://facebook.github.io/zstd/

[16] H. Kaya and P. Tüfekci, “Gas turbine CO and NOx emission data set data set,” 2019. [Online].
Available: https://tinyurl.com/5bc7yx8u

[17] J. M. e. a. F. De la Torre, J. Hodgins, “Tech. report cmu-ri-tr-08-22,” 2009. [Online]. Available:
http://kitchen.cs.cmu.edu/index.php

11

https://tinyurl.com/heeth2fd
https://sourceware.org/bzip2/
https://tinyurl.com/yz5yzy6a
https://lz4.github.io/lz4/
https://facebook.github.io/zstd/
https://tinyurl.com/5bc7yx8u
http://kitchen.cs.cmu.edu/index.php

