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Abstract—Cellular user positioning is a promising service pro-
vided by Fifth Generation New Radio (5G NR) networks. Besides,
Machine Learning (ML) techniques are foreseen to become an
integrated part of 5G NR systems improving radio performance
and reducing complexity. In this paper, we investigate ML
techniques for positioning using 5G NR fingerprints consisting
of uplink channel estimates from the physical layer channel.
We show that it is possible to use Sounding Reference Signals
(SRS) channel fingerprints to provide sufficient data to infer
user position. Furthermore, we show that small fully-connected
moderately Deep Neural Networks, even when applied to very
sparse SRS data, can achieve successful outdoor user positioning
with meter-level accuracy in a commercial 5G environment.

Index Terms—5G, beamforming, deep neural network, ma-
chine learning, positioning, sounding reference signal, radio
access network, localization

I. INTRODUCTION

For many years, User Equipment (UE) positioning has
been accomplished with Global Navigation Satellite Systems
(GNSS), assisted by cellular networks. Besides aiming to
achieve reliable and low-latency wireless connectivity, high-
accuracy positioning enabled through 5G could coexist and
complement existing GNSS-based systems on 5G-capable
smart devices. However, GNSS technology is based on unicast
transmission and user position is not directly accessible by
cellular networks. The latest features within 5G beam forming
technologies drive a distinctive need to acquire accurate user
location via radio access interface for location-dependent
network functionalities such as beam forming algorithms etc.
It is expected that in dense urban area deployments, sub-
meter mean positioning accuracy can be achieved [1f], [2].
New 3GPP releases are expected to further specify methods for
sub-meter accuracy [3]. A range of positioning methods, both
downlink (DL)-based and uplink (UL)-based, are used. For
radio-based positioning, there is typically a need for specific
signals on which a receiver can measure/estimate channel
characteristics of interest. This is often expressed as channel
sounding. Channel State Information (CSI) for the operation
of massive multi-antenna schemes can be obtained by the
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feedback of CSI reports. In a TDD system, the UL channel
can be estimated based on SRS transmitted from each UE
for which the base station (BS) estimates the DL channel by
exploiting channel reciprocity [4], [5]. UL channel estimation
includes estimating the Time of Arrival (ToA), the received
power, and the Angle of Arrival (AoA) - all being parameters
from which the position of the User Equipment (UE) can
be estimated. As defined in 3GPP [5]], the SRS is a UL
Orthogonal Frequency Division Multiplexing (OFDM) symbol
with a Zadoff-Chu sequence on its subcarriers, known by both
the UE and BS.

Positioning by radio signals is enabled through methods
such as fingerprinting or model-based estimation using signal
features [6]]. The multi-path information of the environment
is embedded in the CSI data, and hence the CSI can be
used to characterize the radio environment. Examples of CSI-
based indoor positioning were presented in [7]], [8] while
researchers in [9] and [10] demonstrated UE positioning via
beam information from Reference Signal Received Power
(RSRP). The work presented in [11] shows that the statistics
of the wireless channel in Long Term Evolution (LTE) can be
used to create a positioning solution even in non Line-of-Sight
(NLoS) conditions through an azimuthal-delay representation
of the wireless channel. Another LTE DL reference signal-
based approach [[12]] demonstrates that multipath effects can
be utilized advantageously to estimate not only user position
but also orientation through wireless fingerprinting.

In related literature, spatial fingerprinting in conjunction
with classical machine learning (ML) methods enables UE
localization via learned features of the environment [13]].
Recent positioning-related results in [[14f], [15[, also appli-
cable to mmWave networks, target localization accuracy in
cases where either the network is optimized for positioning
applications or the positioning algorithm is tailored to the
particular network geometry. One of the few studies exploring
a UL-based method is [[16] where simulated UL SRS channel
estimates are utilized to investigate the feasibility of SRS
estimates for 3D positioning based on joint angle-time estima-
tion and expectation-maximization. Another UL-based method
was presented in [17], where indoor positioning through



simulated UL SRS signals in LTE-FDD was presented. While
the vast majority of the studies above rely on various DL-
based methods for user positioning, we opt to demonstrate a
novel ML-powered method using UL channel estimates from
SRS transmissions generated in a real-world 5G base station
(gNodeB). To the best of the authors’ knowledge, there is no
prior work on this matter. The main contributions of this paper
can be summarized as:

We demonstrate that UL SRS-obtained channel estimation
in the BS provides sufficient information to regress for UE
position through Deep Neural Networks (DNN). In this study,
we consider sparsity to be defined as using channel estimate
information from only a small fraction of the available Phys-
ical Resource Blocks (PRBs). Data sparsity enables minimal
data processing overhead and the use of DNNs that are both
low-power and moderately shallow, which reduce the risk of
causing potential delays and capacity overloads, necessary for
real-time Layer 1 processing where decisions must be made
in milliseconds.

Furthermore, in contrast to the majority of prior studies, we
prove the viability of SRSs collected in a real commercial
5G NR network setup instead of a simulated environment
or non-commercial setup. From a technology perspective,
ML is about improving network decision-making capability
and allowing it to learn from patterns [19]. The latter urges
designing ML-powered methods for real-time operations with
the capability to solve complex and unstructured problems
using data collected at L1-L2 interaction between BS and UE.
Decisions need to be made near where data is generated [20].

II. DATA COLLECTION AND METHODOLOGY

To establish an ML-driven proof-of-concept (POC) for po-
sitioning using channel estimates from UL physical layer
(L1) channel SRSs, we employ a commercial-grade 5G radio
system compliant with 5G NR 3GPP 38.104 Rell5 [18]]. A
commercial-grade Phased Array Antenna Module (PAAM) is
utilized in a BS operating at the center frequency of 3.85 GHz
with a 100 MHz bandwidth. We used a proprietary 5G-
capable, Android-based test UE, with user motion in different
mobility patterns at a distance of approximately 70 m from
the roof-top antenna. We opt to extract the channel estimates
from the BS baseband unit, which processes the time-varying
SRS reports as per the SRS feedback loop structure depicted
in Fig. [1}

The general thought behind positioning with UL channel
estimates is that a physical location under similar network
conditions roughly corresponds to a specific SRS-generated
channel matrix estimate. In other words, different locations in
space have distinct channel fingerprints.

Continuous data collection was specifically chosen for this
study to mirror realistic navigation conditions. The SRSs are
designed to cover the full bandwidth, where the resource
elements are spread across the different symbols to cover
all subcarriers. In the proprietary baseband hardware unit,
the internal beam-space representation of the channel can
be extracted and post-processed after ensuring that the UE

had high data-rate signalling throughout the channel measure-
ments through 4K video streaming. The SRS-derived channel
estimates are stored in a complex-valued matrix structure,
which henceforth is referred to as a channel matrix. For
every SRS sampled from a specific UE, the BS channel
matrix contains channel estimates of 64 directional BS antenna
elements (directions) for each UE antenna and PRB container.
The test UE supports a 1/2/4-antenna configuration, of which
the 4-antenna configuration was used during our testing.
Furthermore, the 100 MHz Time-Division Multiplexing (TDD)
configuration supports 273 PRBs, which in the BS are then
allocated to containers with a configurable number of 2, 4,
or 8 PRBs per container. In our setup, 2 PRBs were enabled
per container. Therefore, there were 137 frequency channels
configured, each containing two adjacent PRBs. The channel
matrices retrievable from the BS thus contained one complex
value/antenna direction for every PRB container and UE/BS
antenna pair. In summary, the retrievable channel estimate
H from our experimental setup consists of a complex-valued
matrix with up to 137 frequency channels, 64 BS antennas and
4 UE antennas. Together, the upper limit for data extraction
in our experimental setup consists of 35072 complex values
per SRS transmission.

Mag [Cap (H)] = Maz [NcpNigNpiy] = 137-4-64, (1)

where N¢y, is the number of channels, /V;, is the number
of UE antennas and Np,;, number of BS antenna elements.
With 35072 complex values extracted potentially every few
milliseconds, the internal data amount handled becomes a
major concern. Due to data rate constraints during data log-
ging, we first aimed to explore how a small data amount is
sufficient for meter-level positioning. Only 3 containers with
2 PRBs each were retrieved, hence 768 input features, or
in other words, 12 of what we term sub-channel matrices,
denoted as Hgyxg. Using only a sparse 768 of the potential
35072 values does not prevent positional information from
being extractable from the SRS-obtained channel estimate. As
shown later in the paper, 768 features still present a unique
opportunity for ML frameworks to learn and later regress
for the UE position. Furthermore, since SRS measurements
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Fig. 1. UL SRS transmission from a UE; The BS obtains Sounding Reference
Signals (SRS) containing channel information data from the UE. The SRS
is designed to cover the full bandwidth, where the resource elements are
spread across the different symbols to cover all sub-carriers. Therefore, SRS
is designed with a comb-based pattern.



are periodic for a given 5G NR waveform numerology, they
present an ideal opportunity for ML frameworks to utilize for
UE localization. The resulting single-measurement data matrix
had a dimensionality as follows:

HNc,xNrxxNy wxNy,, = H3 488 (2)

Channel matrices may also be expressed as in (3)),

H(Ney, Nex)x Ny px Ny, = Hizss- 3)

To utilize the entire 100 MHz bandwidth, the three PRB
containers chosen were the lowest, middle, and highest sub-
channels. This represents solely 2 % of the total number
of possible sub-carriers. The final logging aspect is that of
time. In this case, two timestamps are logged: the frame
number corresponding to the actual network time, and the UTC
time-stamp corresponding to the time a given SRS dataset
was collected and written to the log, used to regress UTC-
timestamped GNSS position to channel fingerprints.

To decide the geographic area to conduct the measure-
ment campaign in, a few aspects were considered. First and
foremost, as the training process is based on GNSS data in
our setup, the GPS signal had to be preferably unobstructed
throughout the route. To investigate the validity of the pro-
posed ML approach, both LoS and NLoS scenarios were
investigated. Three predefined routes were used as the baseline
for positioning: a square-shaped area of the dense walk for
the training set with a natural random-walk validation and test
dataset, an LoS path training set for positioning in the larger
area along a predictable path, and an NLoS path data nearby
to compare LoS and NLoS effects, as depicted in Fig. 2] Both
the rooftop LoS scenario and the ground-level NLoS scenario,
respectively henceforth referred to as LoS-A and NLoS-A. The
square-shaped area of the dense walk data will be termed LoS-
D. The UE moved at the standardized pedestrian velocity of 3
km/h in all the scenarios. We remark here that our target was
to study pedestrian velocities, velocities higher than pedestrian
ones were not within the direct scope of this study hence
conclusions made here shall not be extrapolated to those.

We collected three distinct datasets for each scenario:
training, validation, and test. These datasets were collected
in different acquisition sessions with identical measurement
setups. In the LoS-D scenario, the training, validation and test
dataset collection happened on the same day; for the LoS-A
scenario the training dataset collection was done a week before
the test and validation dataset collection, which happened
on the same day. For the NLoS-A datasets, the training and
validation datasets were collected on separate days of the same
week, while the test dataset was collected a month later. We
would like to emphasize that the test datasets were not touched
by either the model or the data processing pipeline before
results were evaluated, and were nort factored in during model
selection either. However, manual data analysis and processing
were conducted by the authors on the test data before model
evaluation to examine data validity.

Fig. 2. The pre-defined measurement routes in a SU-MIMO scenario: A 2-
story, 10 m high garage building where the red line on the top of the building
is the LoS route. The blue line is representing the ground-level route where the
surrounding buildings block and reflect the signal from a 20 m high rooftop
antenna causing NLoS propagation. The vivid green square shows the region
for the LoS dense-walk route. The general coverage area is illustrated in light
yellow color whereas yellow-colored narrow beams were generated by the BS
equipped with a 64-antenna element array.
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Fig. 3. The format of a single dataset instance, containing the SRS channel
estimate for a single frequency channel and UE antenna.
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III. DATA PROCESSING PIPELINE
A. SRS Data

With the SRS-derived raw dataset obtained from the base-
band module in BS, the next step was retrieving the Hisxgxs
matrices from the data logs. The SRS-derived channel estimate
dataset is generated per SRS measurement occasion, meaning
per cell, symbol, and UE antenna. It is stored in 1-12 subchan-
nel/UE antenna pair order for all BS antenna directions, down
to millisecond intervals. Channel estimates are represented as
4 hex digits for the real and the imaginary components. A
representation of the dataset format can be seen in Fig. 3] We
consider the System Frame Numbers (SFN) numbers from a
repeating sequence of 0 to 1023 throughout the measurement.
The series of channel matrices Hyaxgxs[SF N] are then stored
in a 4D matrix [H12><8X8]Ndata’ where Nggt. 1s the number of
unique SEN during which at least one sub-channel matrix was
measured. The first step in feature selection is then separating
the phase and amplitude of the complex channel matrices.

1) Phase component: Comparing the phase in the extracted
data to the phase in the raw channel matrix in our experimental
setup, we find that the gNodeB’s built-in beam-domain trans-
formation uses the received signal phase. The ML system then
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Fig. 4. A snapshot of the complex amplitude output of a single direction

hs,5) in a sub-channel matrix H; of the NLoS-Al database. The red curve
shows the amplitude smoothed over 100 samples.
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Fig. 5. The mean complex amplitude of all the outputs in a sub-channel
matrix H; of the NLoS-A2 database. The amplitude of the outputs varies
over 5 periods with the periodicity expected from the path dataset. The blue
curve shows the moving average of the amplitude over 100 samples.

obtains data with the angle of departure from the gNodeB
already utilized. The remaining information in the phase of
the complex numbers in the ML input data is discarded in
this work due to its dynamic nature.

2) Amplitude component: The extracted data amplitude
should contain meter-scale positional information arising from
large-scale fading. An underlying assumption is that in both
LoS and NLoS cases, the amplitude transfer function of a radio
signal depends on environmental geometry, with amplitude
thereby acting as a slowly-varying correlate to a position.
This will then be visible in the extracted data from the BS
- the periodicity of position as the path is walked back-and-
forth on is expected to result in a similar periodicity in the
recorded complex amplitude. On the NLoS-A dataset, for
example, there are 5 back-and-forth cycles on the NLoS path
seen in Fig[2] The expectation is then that certain outputs will
have very visible periodicity, e.g. as confirmed in Fig[d] This
becomes more clear when the amplitude for all the outputs in
a single sub-channel matrix is examined, as per Fig[3]

B. GNSS Data

A commercial UE was used to record GNSS data with an
open-source android app to interface with the Android GNSS
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Fig. 6. Using forward-filling on channel matrices Hi2xgx8 [SFN]. For any
sub-channel matrix H at SRS sample-time 7, if a value is not given by the
current SRS then the most recent known value for that sub-channel matrix is
used instead.

API. The app obtained GNSS-INS (Inertial Navigation System
Position Navigation Timing estimates at a 1 Hz sample rate.
The UE model was running OxygenOS 11 with Dual-band
Multi-Constellation GNSS rated at 3.5 + 0.5 (m) horizontal
accuracy.

C. Combined Data

To use the extracted complex-amplitudes of the sparse chan-
nel matrices [Hioxgxs] Nyora 38 input for position regression
with ML, further processing is required. As not all sub-channel
matrices are updated during SRS transmission, the missing
channel estimate values for any given sample time must be
somehow represented for the DNN.

Filling in the missing channel-matrix values for any given
H|[7| extracted channel matrix at sample-time *7’ is the first
step in our data pre-processing pipeline. The simplest method
for filling in missing data without using future values or known
priors is forward-filling the latest known values. Forward-
filling for the channel matrix H is visualized in Fig. [f
During our measurements, on average 6 of the 12 channel sub-
matrices were refreshed every SRS sample, and we observed
a variable delay between samples of approx. 35-110 ms, with
a higher sample rate in NLoS conditions and a lower sample
rate in ideal LoS conditions. This refresh rate was high-enough
that unless a connection drop is observed, most sub-channel
matrices only persisted for under half a second.

For data normalization in this study, only linear scaling was
utilized, with improvements in this area left for future work.
This was done using min-0 max-1 scaling of the datasets by
simple division. The normalization factor was determined by
obtaining the maximum amplitude present in the training data,
thereby preventing the contamination of the validation and
test datasets. Furthermore, we found that taking the square
root and fourth root of the channel matrices substantially
improved validation positioning results. The exact cause of
this performance improvement is unclear and may be the topic
of future investigation. However, the maximal benefit was
achieved for NLoS scenarios when both square- and fourth
root of the input data was used. For the LoS scenarios, the
fourth root was of unclear benefit.
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Fig. 7. Assigning position to channel matrices H12x gx8[SF N] using shared
UTC timestamps with the GNSS dataset and simple linear interpolation. Also
shown is the GNSS-based navigation position fix deviation from the ’true’
pedestrian trajectory.

The square-root and fourth-root concatenation came at the
cost of doubling the number of input parameters to the
network, to 1524 in total. However, this many parameters as
input for a fully-connected network could lead to overfitting.
From the assumption that location is mostly independent of
UE orientation, reducing the number of input parameters can
be achieved with low performance penalty by only taking one
H, sub-channel-matrix-equivalent as input for every sampled
frequency channel. With an eye for future scalability w.r.t.
different configured UE antenna numbers, this would also
enable ML systems input parameter counts to be independent
of different UE antenna configurations and models.

For this reason, we take the average per direction of the
sub-channel-matrices H; belonging to the same frequency
channel. This enables dimensionality reduction without losing
frequency-channel information: ().

1 Nrx
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To assign positioning ground truths to the channel matrix
data H7'YE, the UTC timestamp of both the SRS Channel
matrix data and the UE position output is used. First, the two
datasets are synchronized. Linear time-interpolation from the
GNSS-position data is used to create interpolated trajectories,
through which the ’ground truth’ Pgy coordinate pairs for
each channel matrix is generated, which can be converted to
local Pxy coordinates. Finally, all channel matrices that fall
outside the bounds of the GPS measurement are discarded.
The position interpolation process is shown in Fig. [/| GNSS
inaccuracy is partially modelled during the training process
by injecting Gaussian noise of similar magnitude as the GNSS
measurement onto the training data P;,.,;, every epoch during
the DNN training process. This also functions as output
regularization.

IV. PROPOSED MACHINE LEARNING FRAMEWORK

In this section, we describe the network architecture used
for learning and discuss some design aspects. The proposed
system architecture is illustrated in Fig. [§] where the fully-
connected Deep Neural Network (DNN) uses features from
the SRS dataset as input to regress for local Pxy position.
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Fig. 8. The 3-block fully connected DNN used in this study along with the
input pipeline and intended output. The per-layer dropout used while training
is also shown.

To demonstrate a real-time POC ML-driven positioning
with minimal computing overhead, only small moderately
deep fully-connected DNNs were tested. Architectures with
up to 15 layers at a maximum of 128 artificial neurons (ANs)
per layer after the input and first hidden layers were non-
comprehensively searched. Of the tested DNNs, the best-
performing architecture on the validation data was selected,
with no tuning or selection done using test data. Network
architecture was unchanged between the ML models for the
different datasets. For the final hyperparameter search, three
discrete blocks of fully-connected layers were defined, each
with the rectified linear unit (ReLLU) activation functions and
varying AN and layer counts within a limited range.

1) Imput block: The input block serves to take the input
data through subsequent shrinking layers into a param-
eter bottleneck, compressing the data.

2) Center block: The expectation is that the process block
takes the reduced dimensions from the input block
and feeds it through identical fully-connected layers,
processing the lower-dimensional representation further.

3) Positioning block: The expectation is that the position-
ing block takes the center block’s output and finally nar-
rows it down to two dimensions to regress for a position.
Note that the last layer has two outputs corresponding
to a position’s local X and Y coordinate pair (Pxy).

This design choice originated from our testing where introduc-
ing a bottleneck of 20-40 fully-connected ANs per layer for all
but the first two layers reduced overfitting while having a wide
input and first hidden layer improved general performance.
The overall number of hidden layers was also kept low,
as increasing layer counts over 7 did not discernibly affect
validation performance.

Finally, the minimized loss for the network is the Mean
Euclidean Distance Loss (MEDL), which can be expressed
as:

1 &
MEDL = ;HPXY[T] —fo H™E[ . )

where fp is the ML model with 6 optimizable parameters,
Pxy|[7] the interpolated GNSS coordinates for sample-time
7, and N, is the number of time-samples in a batch. The loss



was minimized with an ADAM [21]] optimizer using PyTorch
on a CUDA-capable GTX 2060.

V. RESULTS AND DISCUSSION

To summarize our results shown in Table [l we obtain an
approximate mean euclidean distance of 3-9 m as compared
to the GNSS data when evaluated on test data, with accuracy
depending mostly on data conditions. We note again that
model selection or parameter optimization was not done on
test data. During validation, it became apparent that data
character changed between the training datasets in LoS-A and
the validation datasets, potentially explaining the degraded
performance compared to LoS-D, where no domain change
was observed.

TABLE I
MEAN EUCLIDEAN ERROR IN METERS FOR EACH DATASET

dataset name validation dataset | test dataset
LoS-D 2.8 (m) 3.3 (m)
LoS-A 9.2 (m) 9.7 (m)
NLoS-A 7.3 (m) 8.1 (m)

These results compare favourably to results found in the
literature on most outdoor positioning systems using similar
DL/UL-based positioning approaches and density real-world
data. The NLoS data accuracy indicates this method’s viability
for positioning in a real-world environment. We note that the
precise effects on the SRS channel matrices of non-pedestrian
tracking at high velocity and, e.g., users in a vehicle have not
been tested. As an example, forward-filling introduces data
from previous sample times. For scenarios where significant
distance may be travelled between SRS samples, alternatives to
forward-filling might be needed e.g. using only the latest SRS
as a partial data point. As an extension of this work, we show
a proof-of-concept in [22]] where the same datasets and ML
pipeline introduced in this paper are extended with simulating
pedestrian motion through particle filtering, improving mean
accuracy to around 5-6 m for NLoS scenarios.

To summarize, this study demonstrates the practical via-
bility of UL SRS channel estimates in a realistic outdoor
NLoS propagation environment. In contrast to other studies
employing multi-antenna arrays at the receiver side, we use a
commercial-grade, 4-antenna-equipped UE.

VI. CONCLUSIONS AND FUTURE WORK

We have shown some of the potentials of DNNs for outdoor
user positioning in 5G NR systems using UL SRS channel
estimates in a very sparse data sampling regime. The results
presented show sub-10 m of mean accuracy for all test
scenarios, despite an already inherent ground-truth horizontal
positioning inaccuracy of 3.5 + 0.5 m in the GNSS dataset.
A more accurate GNSS positioning setup for training data
should substantially improve results. Similarly, a higher SRS
sampling rate should also improve the positioning results
significantly. For future research, the phase of the SRS channel
estimates could be a possible feature source to explore. Finally,
considering the simplicity of the DNN model we used could
also be interesting, as more sophisticated models may further
improve accuracy.
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