
Towards Optimal Serverless Function Scaling
in Edge Computing Network

Mounir Bensalem∗, Francisco Carpio∗ and Admela Jukan∗
∗Technische Universität Braunschweig, Germany; {mounir.bensalem, f.carpio, a.jukan}@tu-bs.de

Abstract—Serverless computing has emerged as a new execu-
tion model which gained a lot of attention in cloud computing
thanks to the latest advances in containerization technologies.
Recently, serverless has been adopted at the edge, where it
can help overcome heterogeneity issues, constrained nature and
dynamicity of edge devices. Due to the distributed nature of
edge devices, however, the scaling of serverless functions presents
a major challenge. We address this challenge by studying the
optimality of serverless function scaling. To this end, we propose
Semi-Markov Decision Process-based (SMDP) theoretical model,
which yields optimal solutions by solving the serverless function
scaling problem as a decision making problem. We compare
the SMDP solution with practical, monitoring-based heuristics.
We show that SMDP can be effectively used in edge computing
networks, and in combination with monitoring-based approaches
also in real-world implementations.

Index Terms—SMDP, scaling, edge computing, serverless.

I. INTRODUCTION

In the cloud, Function-as-a-Service (FaaS) computing model
provides for fast autoscaling, by removing decision-making on
scaling thresholds; reduces starting times, by using container-
ization as underlying technology; and provides easy capacity
planning, by only charging when resources are used; albeit at
costs of losing control on the deployment environment by the
developers. In edge computing, however, such scaling of ser-
vices is challenged by the distributed nature and heterogeneity
of devices in edge network nodes as well as the resulting
performance variability. To overcome these limitations, the
serverless execution model with scaling features is envisioned
as a prime mechanism in edge computing networks.

Studies adapting and further developing the well-known
cloud computing scaling mechanisms are few and far between
in the edge context. Since function provider mechanism can
scale based on different parameters, such as by the number
of requests per second, CPU or memory resource utilization
among others, determining which mechanism is more appro-
priate in the edge is an open challenge. Considering that edge
nodes are distributed, constrained computing and networked
units, heterogeneous and volatile, optimal scaling methods are
non-trivial on these type of dynamic networked systems.

In this paper, we address the optimality of serverless scaling
in edge computing network. We propose Semi-Markov Deci-
sion Process-based (SMDP) model for the scaling problem
of serverless functions as a decision making problem, with
actions of scaling the functions up or down, the reward de-
pending on processing and queueing costs. The SMDP model

maximizes the long-term expected reward of the system,
considering the system gains, costs of queueing and resource
utilization. SMDP enables us to obtain the optimal solution
where it can be also decided on the next action at each system
state. From the practical perspective, our model does not
need to know which function is running in which node, thus
making the telemetry in edge network rather practical. The
theoretical results are compared with practical, monitoring-
based algorithms. We show that this novel application of
SMDP can be effectively used for function scaling, and in
combination with monitoring-based approaches also in real-
world edge network implementations, e.g. with OpenFaaS.

The rest of the paper is organized as follows. Section II
describes the related work. Section III introduces the SMDP
model. Section IV evaluates the performance. Section V
concludes the paper.

II. RELATED WORK

Function scaling, - a process of increasing or decreasing
a number of function replicas, - is solved in a centralized
manner both commercially, such as in Amazon AWS Lambda
or Google Cloud Functions, and in open source serverless
platforms, such as OpenFaaS or Apache OpenWhisk. While
previous work adopts these platforms to the edge context,
including [1], [2], there is lack of specific scaling mechanisms
designed to work for this type of systems. Related theoretical
works studying aspects such as job scheduling [3], resource
provisioning [4] and placement of resources [5] have been
proposed in this context. These solutions, however, assume
periodic collection of telemetry data to provide optimal solu-
tions, such as resources state and users’ demand of functions.
This requires linear programing models, which are known
to be computationally demanding. From the practical per-
spective, computationally complex optimization models cannot
adequately consider software limitations in terms of decision
times, complexity of the related telemetry, etc. In addition,
joint solutions for functions of scaling, edge node allocation
and scheduling are complex to implement, as they use multiple
and diverse multiple tools when orchestrating services.

To the best of our knowledge, this paper is the first to study
optimal scaling serverless functions problem theoretically by
using SMDP modeling. We found inspiration to using SMDP
model from a few related works, that used this method
in different context. In [6] and [7], SMDP-based resource
allocation schemes were used in vehicular networks for quality

ar
X

iv
:2

30
5.

13
89

6v
1

 [
cs

.N
I]

 2
3

M
ay

 2
02

3

L2

N1

L1
N2

L3

N3

Serverless Platform

W1

event queue
Rf2

f1
f2

Rf1

Rf2

f1

telemetry

AP
I

ga
te

w
ay

di
sp

at
ch

er

f2
Rf2Rf2

Rf1

W3

f2

W2

f2

Container Orchestrator

Figure 1: Serverless system at the edge

of experience. The paper considers the service requests from
vehicles and decides whether to process it locally or to transfer
to other nodes, considering the reward and constraints of each
possible action. The reward consists of the income and costs of
power consumption and processing time. In [8], SMDP was
used for coordinated virtual machine (VM) allocation for a
cloud-fog computing system, considering the balance between
the high cost of communication to the cloud and and the
limited fog capacity.

III. SMDP-BASED SCALING MODEL

Our system model is illustrated in Fig. 1. It consists of a set
of edge computing nodes (i.e., W1, W2 and W3), serverless
platform and container orchestrator (e.g., Kubernetes), all gen-
erally located in different parts of the network. The serverless
platform (e.g., OpenFaaS) is instantiated on the cluster with
access to all the resources and bundles the API gateway, event
queue, dispatcher and telemetry components. The API gateway
handles HTTP requests from the users requesting functions
and creates events. The event queues allocates different queues
per type of function requests where they wait to be served.
The dispatcher is responsible for scaling decisions to be made
per type of function based on the number of requests and
on the resource utilization. For instance, in openFaaS, we
monitor the arrival rate (or load) and whenever it exceeds
a threshold for a specific function, new replicas are created;
whenever the queue is empty it removes the replicas. The
information about arrival event and the queue information is
collected by the telemetry component through an API exposed
by the container orchestrator. The scaling decisions are sent to
the container orchestrator which actually creates or removes
replicas of functions from the nodes, depending on whether

the system is scaling up or down. The container orchestrator
is responsible for placing the function replicas on edge nodes.

A. Problem Formulation

We assume a single master deployment and a set of edge
nodes denoted as E = {E1, .., En, ..., EN}, where En repre-
sents the nth edge node. Each edge node has a certain amount
of capacity which we refer to as a number of CPU units Cn.
Every specific function requires a certain amount of resources.
Thus, we categorize all function requests into K classes based
on their resource needs. A function request of class k, where
1 ≤ k ≤ K, is denoted as fk, and requires bk CPU units,
whereby bk ≤ max∀n:n∈[1,N]{Cn}, i.e., for any function fk,
there exist at least one edge node En with enough capacity
Cn to satisfy the request. We model the arrival and service
processes of function requests of class k as a Poisson process
with rates λk, and µk, respectively. We assume that all function
requests are queued in a buffer with infinite capacity. The
proposed SMDP model is described by the components {S,
A(s), p(s′|s, a), r(s|a)}, where S is the state space, A(s) is
the set of feasible actions at the state s ∈ S, p(s′|s, a) is the
transition probability from the state s to the state s′ when an
action a is chosen, and r(s|a) is the reward of the system at
the state s when choosing the action a.

B. System States

The system state s represents the number of replicas of each
function k in all nodes En, the number of function requests
of each service class k in the queue, and the a set of events
that can happen in the system:

S = {s|s =(∆, Q, e)}, (1)

where a set ∆ = δ1, ..., δk, ..., δK indicates a number of
functions, where the variable δk denotes the number of func-
tions of class k replicated in all nodes. Q = {Q1, ..., QK}
denotes the function request queue length vector. The variable
e describes an event that occurs in the system, such as
e = {Ar,D}, where a set Ar = {Ar1, ..., Ark, ..., ArK}
contains the arrival events of any function request of the
class k, a set D = {D1, ..., Dk, ..., DK}, and a subset
Dk = {Dn

1 , ..., D
n
k , ..., D

n
K} collects the set of departure

events of a function of class k, and Dn
k defines the departure

event of a function of class k from node En.
The resource allocation has the capacity constraints, i.e.,

∀n ∈ [1, N] :

K∑
k=1

bkδk(n) ≤ Cn, (2)

The dispatcher (scaler) has three possibilities of actions a to
take for every new event (arrival or departure): to scale up,
to scale down or to do nothing. The action space A(s) is
described as follows:

A(s) =

{
{0, 1}, e ∈ Ar
{−1, 0}, e ∈ D

(3)

where a(s) = 1,∀k ∈ {1, ...,K} when a function of class
k is replicated, a(s) = −1,∀k ∈ {1, ...,K} when a function

of class k is removed from the system, a(s) = 0 denotes
the action of queuing a function request of any class k,
without replication in the case of a function arrival, and the
queue update without removing function replica in the case of
function request departure.

C. Transition Probabilities

At time slot ti+1, the fk request queue length can be
expressed as:

Qk(ti+1) = Qk(ti) + 1(a(s) = 0||e = Ak)

−1(a(s) = 0||e ∈ Dk)
(4)

where Qk(ti) describes the previous fk request queue length
when the ith event occurs, 1(.) describes the identity operator.
The number of functions of class k replicated in all edge nodes
can be expressed as follows:

δk(ti+1) = δk(ti) + 1(a(s) = 1||e = Ak)

−1(a(s) = −1||e ∈ Dn
k)

(5)

We assume that the time period between two continuous de-
cision epochs follows an exponential distribution and denoted
as τ(s, a), given the current state s and action a. Thus the
mean rate of events for a specific state s and action a denoted
as γ(s, a), is the sum of the rates of all events in the system,
which is expressed as follows:

∀n ∈ {1, ..., N},∀k ∈ {1, ...,K} :
τ(s, a) = γ(s, a)−1 =
Λ +Θ+ µk, e = Ark, a = 1,

Λ +Θ, e = Ark, a = 0,

Λ +Θ− µk, e = Dn
k , a = −1,

Λ +Θ, e = Dn
k , a = 0

(6)

where Λ =
∑K

k=1 λk is the total arrival rate of function
requests of all K function classes. When a function request
arrives and the dispatcher decides not to replicate, or a function
request leaves an edge node and the dispatcher decides not to
remove a function from the nodes, the total number of existing
functions in the system is

∑K
k=1 δk, so the departure rate of a

function in the edge computing is Θ =
∑K

k=1 δkµk. When a
function request of class k is replicated, one function of class
k is added to the system, thus the departure rate becomes
Θ+µk. When a departure of a function of class k occurs and
the dispatcher removes a replica from the system, the departure
rate becomes Θ− µk.

The transition probability in our markov decision model
from state s to state s′ when an action a is selected is denotes
as p(s′|s, a), which can be determined under different events:

i) State s = (∆, Q,Ark), and a = 0: This state describes
the system in terms of number of functions allocated in all
nodes, the number of function requests in the queue, and the
next event, which is in this case a function request arrival
of class k. The function arrival event can have two types of
actions replicate or not to replicate. The following equation
shows the transition probability when the function is queued

without replication, where the number of functions allocated in
all nodes remains the same, and function request queue length
Q̂ is updated using eq. (4), and possible events can occur in
the future.

p(s′|s, a) =

{
λk′

τ(s,a) s′ = (∆, Q̂, Ark′)
δk′µk′
τ(s,a) s′ = (∆, Q̂,Dn

k′)
(7)

ii) State s = (∆, Q,Ark), a = 1: This state is defined
similar to the previous state, considering creating a new
replica.

p(s′|s, a) =

λk′

τ(s,a) s′ = (∆̂, Q,Ark′),
δk′µk′
τ(s,a) k′ ̸= k,

s′ = (∆̂, Q,Dn
k′)

(δk+1)µk

τ(s,a) s′ = (∆̂, Q,Dn
k)

(8)

where ∆̂ = {δ1, ..., δk + 1, ..., δK}.
iii) State s = (∆, Q,Dn

k), and a = 0: The next event in
this state is a function request departure of class k from edge
node En. The function departure event can have two types of
actions remove or not remove a function replica. The following
equation shows the transition probability when the function
leaves the system without removing a function replica, where
the number of functions allocated in all edge nodes remains the
same, and function request queue length Q̂ is updated using
eq. (4), and possible events can occur in the future.

p(s′|s, a) =

{
λk′

τ(s,a) s′ = (∆, Q̂, Ark′)
δk′µk′
τ(s,a) s′ = (∆, Q̂,Dn

k′)
(9)

iv) State s = (∆′, Q,Dn
k), a = −1: This state is defined

similar to the previous state, considering removing a replica.

p(s′|s, a) =

λk′

τ(s,a) s′ = (∆̂, Q,Ark′),
δk′µk′
τ(s,a) k′ ̸= k

s′ = (∆̂, Q,Dn
k′)

(δk−1)µk

τ(s,a) s′ = (∆̂, Q,Dn
k)

(10)

where ∆̂ = {δ1, ..., δk − 1, ..., δK}.

D. Rewards

Given the system state s and the corresponding action a,
the system reward of the function provider is denoted by

r(s, a) = w(s, a)− g(s, a) (11)

where w(s, a) is the net lump sum incomes of the system at
the state s when action a is taken and an event e occurs, and
g(s, a) is the expected system costs.

w(s, a) =

{
wk e = Ark, a ∈ {0, 1}
0 e = Dn

k , a = {0,−1}
(12)

where the variable wk denotes the reward of the system for
accepting of a function request of class k. The expected system
cost g(s, a) is defined as:

g(s, a) = c(s, a) · τ(s, a) (13)

where τ(s, a) is the expected service time defined by eq. (6)
from the state s to the next state in case that action a is chosen
and c(s, a) is the service holding cost rate when the system
is in state s in case that action a is selected, which depends
on the queuing. Furthermore, c(s, a) can be described by the
number of occupied resources in the system, the queue length
using Little’s Law, as follows:

c(s, a) =

K∑
k=1

c · bk · δk︸ ︷︷ ︸
Processing

+

K∑
k=1

Qk

λk︸ ︷︷ ︸
Queuing

(14)

where c represents the utilization cost of a resource unit. In
order to only optimize the delay, the processing cost can be
ignored by setting c to 0.

E. SMDP-based Scaling Model

We develop an SMDP-based Scaling Model (SM) to study
the performance of a serverless platform considering the
queuing and processing delay of function requests. We aim
at taking the optimal decisions at every decision event (arrival
of new function request, and departure of a function request)
where our goal is to maximize the long-term expected system
rewards. The expected discounted reward is given based on
the model in [9] as follows:

r(s, a) =w(s, a)− c(s, a) · Ea
s {

∫ τ

0

e−αtdt}

=w(s, a)− c(s, a) · Ea
s {

1− e−ατ

α
}

=w(s, a)− c(s, a)

α+ τ(s, a)

(15)

where α is a continuous-time discount factor.
Using the defined transition probabilities eq. (7), (8), (9),

(10), we can obtain the maximum long-term discounted reward
using a discounted reward model defined in [9] as

ν(s) = max
a∈A(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)ν(s′)

}
(16)

where λ = τ(s, a)/(α + τ(s, a)). In the SMDP model, the
value of ν(s) in a strategy ψ is computed based on the value
ν(s′) obtained in the strategy ψ − 1, and as an initial value,
the discounted reward can be set to zero for all states to
initialize the computation, which converges afterwards towards
the optimal solution.

To simplify the computation of the reward, let ρ be a finite
constant, where ρ =

∑K
i=1 λi +

∑N
n=1

∑K
k=1 Cnµk < ∞.

We define p(s′|s, a), ν(s), and r(s, a) as the uniformed
transition probability, long-term reward, and reward function,
respectively, and given by:

r(s, a) = r(s, a)
τ(s, a) + α

ρ+ α
, λ =

ρ

ρ+ α
(17)

p(s′|s, a) =

{
1− [1−p(s′|s,a)]τ(s,a)

ρ s′ = s
p(s′|s,a)τ(s,a)

ρ s′ ̸= s
(18)

After uniformization, the optimal reward is given by:

ν(s) = max
a∈A(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)ν(s′)

}
(19)

In order to solve our SMDP-SM, we use the iterative algorithm
described as follows:

Algorithm 1 Iterative SMDP-SM Algorithm

1: Step 1 (Initialization): ν0(s) = 0, for all s ∈ S. Set the
value of ϵ > 0, and iteration t = 0.

2: Step 2: Using eq. 19, compute the discounted reward for
each state s:

νt+1(s) = max
a∈A(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)νt(s′)

}
3: Step 3:
4: if ∥νt+1 − νt∥ > ϵ then t←− t+ 1, go to Step 2
5: else go to Step 4
6: end if
7: Step 4: Compute the optimal scaling policy for all s ∈ S

d∗ϵ (s) ∈ arg max
a∈A(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)νt+1(s′)

}

After obtaining the optimal policy from Algorithm 1, the
steady states probabilities are computed as, i.e.,

π(P − J) = 0,
∑
s∈S

π(s) = 1 (20)

where π(s) represents the steady state probability at state s, P
is the transition probabilities matrix, considering the optimal
policy d∗ϵ , and J denotes the all-ones matrix.

The Algorithm 1 is executed offline after defining the
network topology in order to find the optimal scaling policies
for every possible system state. Afterward the optimal policies
are used online as a look-up table to make scaling decision
with a time complexity of O(1).

F. Complexity Analysis

Consider the case with N nodes, K functions, the time
complexity of Algorithm 1, which is based on Policy Iter-
ation algorithm depends on the number of states |S|, num-
ber of actions |A| and the discount factor γ. Scherrer [10]
has proven that Policy Iteration terminates after at most
O
(

|S|·|A|
1−γ log

(
1

1−γ

))
. The number of states can be repre-

sented in terms of the network configuration parameters using
eq. (1), as combination of possible number of replicas of
each function, the state of the queues, and the number of
possible next events (arrival or departure). Assuming that
the system can have a maximum number of replicas per
function denoted as M , and a maximum queue length Qm,
|S| = MK · QK

m · (K + K · N). The number of actions

in our proposal is equal to 3. Thus the time complexity of
Algorithm.1 is given by:

O

(
MK ·QK

m ·K · (N + 1)

1− γ
log

(
1

1− γ

))
(21)

Space complexity of the algorithm is mainly driven by the
storage of the states information generated at the initialization
phase and given by:

O
(
MK ·QK

m ·K · (N + 1)
)

(22)

IV. NUMERICAL RESULTS

We now evaluate the performance of the SMDP scaling
methods, by comparing it to the monitoring-based heuristics,
and for the sake of verification, by comparing it to a random-
fit model. The monitoring-based methods are relevant to
evaluation, since they are used today, e.g., in OpenFaaS. In
OpenFaaS, for instance, the scaling decisions consider arrival
rates by default. In practice, the theoretical time complexity
is in fact O(1). As shown in Fig. 1, the serverless platform
includes the monitoring-based scaling, where the telemetry
collects information about the load. Whenever the load exceeds
a certain threshold, the monitoring algorithm triggers the sys-
tem to create new replicas, and whenever the queue becomes
empty, the algorithm decides to remove replicas, otherwise it
keeps the same system state. The monitoring-based algorithm
is thus described as follows:

Algorithm 2 Monitoring-based scaling algorithm

1: Input: event, queue, capacity, load, threshold
2: if event is an arrival then
3: if capacity is available then
4: if load > threshold then return 1
5: else return 0
6: end if
7: else return 0
8: end if
9: end if

10: if event is a departure then
11: if the queue is empty then return -1
12: else return 0
13: end if
14: end if

For comparison purposes, we also show random-fit scaling
(theoretical time complexity O(1)), that decides randomly
either to scale or not, if there are available resources. The
algorithm follows the same structure as in the monitoring
based approach with the only difference that in line 4, instead
of checking the threshold, we just return a random node.

We evaluate the performance of the three scaling methods
using: i) SMDP model, ii) monitoring-based (MNT) and iii)
random-fit (RF). Since scaling decisions do not determine
function allocations, we assume two simple allocation ap-
proaches: First-Fit allocation (FFa) and Random-Fit allocation
(RFa). In FFa, functions are allocated in the closest available

node, considering a network with a single master and multiple
workers. In RFa, functions are allocated randomly in any
available node with enough available resources. All three
scaling methods are then evaluated considering both FFa and
RFa. We evaluate two networks, a small one with 3 edge
nodes and a big one with 10 nodes. We use the small one for
comparing all methods, with threshold numbers 0.1 and 0.05.
And, we use the large network to compare the performance of
only heuristics, with threshold numbers 0.01, 0.005 and 0.001.
For generating the results, we use an event based simulator
running up to 1 million events with severals seeds to validate
our results. The rest of the parameters are shown in Table I.

Table I: Simulation Parameters.

Parameters N K bk Cn c wk λk µk

Small network 3 5 k 16 1 1 2-11 1-11
Large network 10 10 k 100 1 1 4-12 10-102

Fig. 2 shows the average service delay of all functions for
arrival rates of requests for each scaling algorithm in the small
network. The results shows that SMDP overperforms all other
approaches for any value of arrival rate. The delay obtained by
monitoring based approach decreases with the decrease of the
threshold value and outperforms the random approach until a
certain value of arrival rate λ, after which the delay starts to
increase exponentially, at λ = 9.6 in Figure 2. This behavior is
created by the accumulation of function requests in the queue
when the load becomes constantly lower than the threshold,
resulting a cumulative queueing delay. The delay results using
First-Fit allocation is slightly better than the results obtained
with a Random-Fit allocation, which can be explained by the
fact that the average delay is mostly affected by the queueing
and less by the transmission delay.

Figure 3 shows the average number of replicas of all
functions with different arrival rates of function requests for
each scaling and allocation algorithm. The results shows that
the chosen algorithm does not affect the number of replicas
of each function, where both curves coincide. The highest
average number of replicas is obtained with SMDP, which
explains its performance in terms of delay. As expected, the
lowest number of replicas is obtained by the RF approach.

Figure 4 illustrates the average service delay of all func-
tions with different arrival rates of function requests. The
monitoring-based approach with a very low threshold value
0.001 outperforms the random approach, where its perfor-
mance improves while decreasing the threshold value. A
similar behavior is found in the small network for high thresh-
old values, where monitoring-based approach outperforms the
random approach until a certain value of arrival rate λ, after
which the delay starts to increase exponentially. Finally, we
illustrate in Figure 5 the average number of replicas for the
large network. Similar to the small network, the allocation
algorithm choice does not affect the number of replicas and
Monitoring-based approach with the lowest threshold value
creates larger number of replicas.

3 4 5 6 7 8 9 10
arrival rate

20

40

60

80

av
er

ag
e

de
la

y
(m

s)
RF_FFa
RF_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_RFa
MNT(th=0.05)_FFa
MNT(th=0.05)_RFa
SMDP_FFa
SMDP_RFa

Figure 2: Average service delay per scaling model (small network).

3 4 5 6 7 8 9 10
arrival rate

4

6

8

10

12

14

av
er

ag
e

nu
m

be
r o

f r
ep

lic
as

RF_FFa
RF_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_RFa
MNT(th=0.05)_FFa
MNT(th=0.05)_RFa
SMDP_FFa
SMDP_RFa

Figure 3: Average number of replicas per scaling model (small network).

V. CONCLUSION

In this paper, we addressed the optimality of serverless
scaling in edge computing network and proposed to use Semi-
Markov Decision Process-based (SMDP) model for the scaling
problem of serverless functions as a decision making problem,
with actions of scaling the functions up or down. The theo-
retical results were compared with practical, monitoring-based
algorithms based on current approaches.The results confirmed
that SMDP gave best results in terms of queuing delay, and
outperformed monitoring-based approaches. The monitoring-
based approach however achieved performance comparable
to the optimal SMDP solution in terms of delay when the
scaling activation threshold was set to comparably lower
values.In our future work, we will study the joint scaling
and resource allocation problem considering various system
parameters. SMDP can be used to analyse the optimal policy
for a specific setting. Monitoring based is what is used in
real implementations now, which can be more optimized using
smarter algorithms such as SMDP. The issue of SMDP is its
exponential expansion, so a heuristic based on SMDP can be
a very good approach for future.

ACKNOWLEDGMENT

This work was partially supported by EU HORIZON re-
search and innovation program, project ICOS (Towards a func-
tional continuum operating system), Grant Nr. 101070177.

5 6 7 8 9 10 11
arrival rate

75

100

125

150

175

200

225

av
er

ag
e

de
la

y
(m

s)

RF_FFa
RF_RFa
MNT(th=0.01)_FFa
MNT(th=0.01)_RFa
MNT(th=0.005)_FFa
MNT(th=0.005)_RFa
MNT(th=0.001)_FFa
MNT(th=0.001)_RFa

Figure 4: Average service delay per scaling model (large network).

5 6 7 8 9 10 11
arrival rate

60

80

100

120

140

av
er

ag
e

nu
m

be
r o

f r
ep

lic
as

RF_FFa
RF_RFa
MNT(th=0.01)_FFa
MNT(th=0.01)_RFa
MNT(th=0.005)_FFa
MNT(th=0.005)_RFa
MNT(th=0.001)_FFa
MNT(th=0.001)_RFa

Figure 5: Average number of replicas per scaling model (large network).

REFERENCES

[1] F. Carpio, M. Michalke, and A. Jukan, “Benchfaas: Benchmarking
serverless functions in an edge computing network testbed,” IEEE
Network, pp. 1–8, 2022.

[2] L. Baresi and D. F. Mendonça, “Towards a serverless platform for edge
computing,” in 2019 IEEE International Conference on Fog Computing
(ICFC). IEEE, 2019, pp. 1–10.

[3] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. IEEE, 2017, pp. 1–9.

[4] O. Ascigil, A. Tasiopoulos, T. K. Phan, V. Sourlas, I. Psaras, and
G. Pavlou, “Resource provisioning and allocation in function-as-a-
service edge-clouds,” IEEE Transactions on Services Computing, 2021.

[5] M. Bensalem, J. Dizdarević, and A. Jukan, “Modeling of deep neural
network (dnn) placement and inference in edge computing,” in 2020
IEEE International Conference on Communications Workshops (ICC
Workshops), 2020, pp. 1–6.

[6] H. Liang, X. Zhang, X. Hong, Z. Zhang, M. Li, G. Hu, and F. Hou,
“Reinforcement learning enabled dynamic resource allocation in the
internet of vehicles,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 4957–4967, 2020.

[7] K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen, “An smdp-
based resource allocation in vehicular cloud computing systems,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 12, 2015.

[8] Q. Li, L. Zhao, J. Gao, H. Liang, L. Zhao, and X. Tang, “Smdp-
based coordinated virtual machine allocations in cloud-fog computing
systems,” IEEE Internet of Things Journal, vol. 5, no. 3, 2018.

[9] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[10] B. Scherrer, “Improved and generalized upper bounds on the complexity
of policy iteration,” Advances in Neural Information Processing Systems,
vol. 26, 2013.

	Introduction
	Related Work
	SMDP-based Scaling model
	Problem Formulation
	System States
	Transition Probabilities
	Rewards
	SMDP-based Scaling Model
	Complexity Analysis

	Numerical results
	Conclusion
	References

