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Abstract—In this paper, we propose a digital twin (DT)-assisted
cloud-edge collaborative transcoding scheme to enhance user
satisfaction in live streaming. We first present a DT-assisted
transcoding workload estimation (TWE) model for the cloud-edge
collaborative transcoding. Particularly, two DTs are constructed
for emulating the cloud-edge collaborative transcoding process by
analyzing spatial-temporal information of individual videos and
transcoding configurations of transcoding queues, respectively.
Two light-weight Bayesian neural networks are adopted to fit
the TWE models in DTs, respectively. We then formulate a
transcoding-path selection problem to maximize long-term user
satisfaction within an average service delay threshold, taking
into account the dynamics of video arrivals and video requests.
The problem is transformed into a standard Markov decision
process by using the Lyapunov optimization and solved by a deep
reinforcement learning algorithm. Simulation results based on the
real-world dataset demonstrate that the proposed scheme can
effectively enhance user satisfaction compared with benchmark
schemes.

I. INTRODUCTION

With the prevalence of smart mobile equipment and ubiq-
uitous Internet access, an increasing number of amateur or
professional broadcasters start to utilize online video plat-
forms, such as Youtube Live, Facebook Live, Twitch TV, etc.,
to produce live streams and interact with users anytime and
anywhere. According to a recent Grand View Research report,
the live streaming market is expected to increase from $70
billion in 2021 to about $224 billion in 2028 [1]. As a critical
technology to guarantee continuous and high-definition video
playback, video transcoding encodes video streams pipelined
at online video platforms into multiple video versions in real
time [2]. Since a user’s device has a small buffer size for live
streaming playback, the performance of video transcoding can
directly affect user satisfaction. Video transcoding can be con-
ducted in a cloud server, i.e., cloud-transcoding, and an edge
server, i.e., edge-transcoding [3]. However, video transcoding
is a computation-intensive process, and the transcoding delay
dominates the service delay, almost 70% [4]. Relying solely
on cloud-transcoding or edge-transcoding can incur a large
transmission delay and heavy computation overhead, respec-
tively [5], [6]. Therefore, efficient cloud-edge collaborative
transcoding has attracted considerable research attention.

In the literature, significant efforts have been devoted to im-
prove the cloud-edge collaborative transcoding performance.
Pang et al. proposed to dispatch newly generated video streams

to appropriate transcoding queues (TQs) in cloud and edge
servers based on predicted interaction intensities in different
streaming channels, which can satisfy users’ heterogeneous
quality of experience (QoE) requirements [7]. To reduce
collaborative transcoding cost, Erfanian et al. constructed a
transcoding-cost-based multicast tree for each cloud and edge
computing server to determine where and how many TQs
should be deployed [8]. Zhu et al. proposed an auction-
based approach for TQ selection to further reduce transcoding
cost within a prescribed transcoding delay threshold [5]. The
above works utilize a general transcoding workload estimation
(TWE) model for different kinds of video streams in differ-
ent TQs. However, the TWE model ignores videos’ spatial-
temporal information and servers’ transcoding configurations,
thus bringing TQs’ length estimation errors. Such estimation
errors can result in improper transcoding-path selections for
video streams, thereby rendering user satisfaction degradation.
Hence, it is paramount to construct an accurate TWE model.

The digital twin (DT) technology is a potential solution
since it is a digital representation of a physical entity (PE)
that can accurately reflect its status and feature via real-
time synchronization between the DT and PE [9]. The DT
technology can be utilized to store and analyze users’ data to
construct user-specific and real-time personalized QoE models
for tailored network resource management [10]. We leverage
the DT technology to construct virtual TQs based on esti-
mated transcoding workloads and transcoding-path selections,
which can reflect the dynamics of physical TQs and emulate
transcoding performance of physical TQs in real time.

In this paper, we present a DT-assisted cloud-edge col-
laborative transcoding scheme for live streaming services to
enhance long-term user satisfaction given an average service
delay threshold. Specifically, we first propose a DT-assisted
collaborative transcoding model to capture the dynamics of
physical TQs in cloud and edge servers. The cloud and edge
transcoding DTs are established at the network controller,
consisting of historical transcoding data, a TWE model and
virtual TQs. The TWE model adopts a Bayesian neural
network (BNN) to fit historical transcoding data in order to
reduce estimation errors. Based on the TWE model, the virtual
TQs are constructed to reflect the dynamics of physical TQs.
Secondly, we design a tailored deep reinforcement learning
(DRL) algorithm for making transcoding-path selections. The
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Fig. 1: DT-assisted collaborative transcoding scenario.

objective is to maximize long-term user satisfaction within
an average service delay threshold by optimizing transcoding-
path selections. Since the formulated transcoding-path se-
lection problem is a constrained Markov decision process
(CMDP), we leverage the Lyapunov optimization technique
to transform it into a standard MDP. Extensive experiments
conducted on the real-world dataset demonstrate that the
proposed DT-assisted collaborative transcoding scheme can
effectively enhance user satisfaction within an service delay
threshold compared with benchmarks. The main contributions
of this paper are summarized as follows:
• We propose a DT-assisted collaborative transcoding

model, which can reduce the TQ length estimation error
and capture its dynamics.

• We develop a cloud-edge collaborative transcoding al-
gorithm based on DRL, which can realize an online
transcoding-path selection.

The remainder of this paper is organized as follows. The
DT-assisted collaborative transcoding scheme is presented in
Section II. The DRL-based transcoding scheduling algorithm
is proposed in Section III. Simulation results are provided in
Section IV, followed by the conclusion in Section V.

II. DT-ASSISTED COLLABORATIVE TRANSCODING
SCHEME

A. System Model

As shown in Fig. 1, we consider a DT-assisted collaborative
transcoding scenario, which mainly consists of a cloud server,
an edge server, and DTs.

Users’ devices generate video requests to the network
controller for requesting live streams to be played soon with
different video qualities every 0.5 s. The cloud and edge
servers collaboratively transcode requested live streams and
deliver them to users’ devices. Specifically, the cloud server is
deployed with three kinds of TQs1 for video transcoding based
on different encoding presets2, i.e., slow TQ, medium TQ, and
fast TQ. From the fast to slow TQs, the transcoding speed
gradually decreases but the transcoded video quality gradually
rises. A higher video quality usually corresponds to a larger
video bit rate. The edge server is deployed with two kinds
of TQs, i.e., medium TQ and fast TQ, considering that the
edge server with limited computing resources hardly supports

1Our proposed scheme can also be applied to the scenario where the number
of TQs in the cloud or edge server is more than three.

2https://trac.ffmpeg.org/wiki/Encode/H.264
https://trac.ffmpeg.org/wiki/Encode/H.265

a slow TQ that requires plenty of computing resources. As
the minimal transcoding unit of video streams, a group of
pictures (GoP) is dispatched to different TQs in the cloud and
edge servers to generate multiple video versions of different
qualities. When a GoP is delivered from the cloud server to
a user’s device, there exist two kinds of transcoding paths,
i.e., one-step transcoding path and two-step transcoding path,
according to the queues that the GoP goes through. The
former path refers to the original GoP being transcoded in
any cloud TQ and then directly sent to users. The latter path
indicates that the original GoP is first transcoded in the high
or medium cloud TQ, and then dispatched to any edge TQ
for further transcoding. By transcoding the GoP into multiple
video versions, users’ differentiated requests can be satisfied.

To properly select the video transcoding path, two kinds
of DTs are constructed, i.e., cloud transcoding DT (CTDT)
and edge transcoding DT (ETDT), and located at the network
controller. Both CTDT and ETDT consist of three components:
historical transcoding data on GoPs’ spatial-temporal informa-
tion and servers’ transcoding configurations, a unique TWE
model and multiple virtual TQs. The TWE model and virtual
TQs are used to characterize the transcoding workload of each
GoP and the dynamics of physical TQs, respectively. Specifi-
cally, the TWE model adopts a BNN to analyze the historical
transcoding data, which can estimate the specific transcoding
workload for each GoP in different TQs. To ensure the
estimation accuracy of TWE models, actual transcoding data
are recorded in the cloud and edge servers if the transcoding
workload bias exceeds a prescribed threshold. The recorded
transcoding data are periodically uploaded to the network
controller for the BNN model update. In addition, the virtual
TQs in both CTDT and ETDT are digital representations of
physical TQs in the cloud and edge servers, which are updated
based on selected transcoding paths and estimated transcoding
workloads of GoPs. The cloud and edge servers also send the
queue synchronization message if the TQ length bias exceeds
a prescribed threshold.

When users send GoP requests consisting of GoP indexes
and corresponding video bit rates to the network controller,
CTDT and ETDT collect GoPs’ transcoding data, and use
respective TWE models to estimate corresponding transcoding
workloads in different TQs. Then, the network controller
makes the transcoding-path selection for each GoP by taking
GoP requests, estimated transcoding workloads, and virtual
TQ lengths into account. TWE models and virtual TQs are up-
dated based on the recorded transcoding data and determined
transcoding paths of GoPs, respectively.

B. DT-Assisted GoP’s TWE

CTDT and ETDT can emulate the dynamics of physical
TQs for newly arrived GoPs by analyzing the GoP’s spatial-
temporal information, the servers’ transcoding configurations,
and the computing capability of each TQ.

Spatial and temporal information: The spatial information
(SI) and temporal information (TI) are critical factors that
can affect the transcoding workload [11]. The SI indicates



TABLE I: The input vector of the BNN-based DT model

Index Name Index Name
1 Encoding Preset 5 Computing Processor
2 Number of Frames 6 Computing Density
3 Resolution 7 Computing Capability
4 SI 8 TI

the amount of spatial details in a video frame. Specifically,
each video frame in a GoP is first filtered by the Sobel filter,
and then the standard deviation over the pixels in each filtered
frame is calculated. The maximum standard deviation among
filtered frames represents the GoP’s SI. Therefore, the SI of
GoP k can be calculated by

ςk = max
l∈L

{
σ
[
Θ(F lk)

]}
, (1)

where F lk is video frame l of GoP k, and Θ(·) is the Sobel
filter operation. In addition, σ is the standard deviation of a
filtered frame, and L is the set of GoP frames.

The TI indicates the amount of temporal changes of a
video frame sequence. Specifically, the pixel difference of each
adjacent frames is first calculated. Then, the standard deviation
of each pixel difference is calculated. The maximum standard
deviation is chosen to represent the GoP’s TI. Therefore, the
TI of GoP k can be calculated by

ξk = max
l∈L\{L}

{
σ
[
F l+1
k − F lk

]}
. (2)

TWE: To emulate the transcoding performance of each TQ
for newly arrived GoPs, we select the BNN to construct TWE
models in both CTDT and ETDT. The BNN is a widely
used tool to fit the function by finding the distribution of
the weighting vector and uses the regularization technology
to avoid overfitting [12].

The input of the BNN-based model is a multi-dimension
vector, denoted by V , which mainly abstracts a GoP’s spatial-
temporal information, servers’ transcoding configurations, and
TQs’ computing capabilities, as presented in Table I.

The output of the BNN-based model is the estimated
transcoding workload for a GoP in TQ i, which can be
expressed as Ωi (V ). The function Ωi(·) is fitted based on
the BNN regularization algorithm and updated periodically to
decrease the estimation error. The recorded actual transcoding
workloads are selected as ground truths to calculate the mean
squared error (MSE) for model training and update.

C. DT-Assisted Collaborative Transcoding Model

After estimating transcoding workloads of GoPs in different
TQs in the cloud server and edge server, the network controller
will select the appropriate transcoding path for each GoP
based on GoP requests, estimated transcoding workloads,
and virtual TQ lengths. A simplified procedure is shown in
Fig. 2. There exist six transcoding paths, including three one-
step transcoding paths, i.e., path 1: slow cloud-transcoding,
path 3: medium cloud-transcoding, and path 6: fast cloud-
transcoding, and three two-step transcoding paths, i.e., path
2: slow-medium cloud-edge transcoding, path 4: medium-
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Fig. 2: Collaborative transcoding procedure.

fast cloud-edge transcoding, and path 5: slow-fast cloud-edge
transcoding.

The collaborative transcoding decision is made in each
scheduling slot, indexed by t. We consider that there are K
GoPs arriving at the cloud server at scheduling slot t, and the
corresponding set of GoPs is K. The sets of cloud TQs and
edge TQs are denoted by Λ1 = {1, 2, 3} and Λ2 = {4, 5},
respectively, which correspond to the sets of CTDT queues
and ETDT queues. To determine the transcoding path for each
GoP, we define a binary transcoding position variable xit,k,
where xit,k = 1 indicates that GoP k is dispatched to TQ i
for transcoding at scheduling slot t; Otherwise, xit,k = 0. The
set of index i ranges from 1 to 5, which refers to the slow,
medium, and fast CTDT queues, and the medium and fast
ETDT queues, respectively.

CTDT queue dynamics: In scheduling slot t, the queue
length of TQ i in CTDT, denoted by, Lit, is updated via

Lit+1 =

[
Lit +

K∑
k=1

xit,k
Ω1

(
V kt
)
bkt

fiκi
− d

]+

,∀i ∈ Λ1, (3)

where Ω1

(
V kt
)

is the estimated transcoding workload for GoP
k in TQ 1, and bkt is the original bit rate of GoP k at scheduling
slot t. Parameters fi and κi represent the computing capability
of TQ i and the corresponding computing density, respectively.
Parameter d is the scheduling slot length.

ETDT queue dynamics: To reflect the queue dynamics of
ETDT queues, we count how many GoPs are dequeued in
each CTDT queue and sent to each ETDT queue based on
two-step transcoding paths in each scheduling slot. For the
medium ETDT queue, i.e., TQ 4, enqueued GoPs origin from
path 2, and the corresponding queue length is updated via

L4
t+1 =

[
L4
t +

α1
t min

{
L1
t , T

}
Ω

1→4

t f1κ1

Ω
1

tf4κ4

− d

]+

, (4)

where Ω
1

t is the average transcoding workload of GoPs in the
slow CTDT queue at scheduling slot t. Here, α1

t indicates the
ratio of GoPs of path 2 in the slow CTDT queue, i.e., TQ 1,
which is updated via

α1
t+1 =

α1
tL

1
t +

∑K
k=1 x

4
t,k

Ω1(V k
t )bkt

f1κ1

L1
t +

∑K
k=1 x

1
t,k

Ω1(V k
t )bkt

f1κ1

. (5)

In addition, Ω
1→4

t is the average transcoding workload of GoPs



of path 2 in TQ 1, which is updated via

Ω
1→4

t+1 =

∑K
k=1 x

1
t,kx

4
t,kΩ4(V kt )bkt + Ω

1→4

t B1→4
t∑K

k=1 x
1
t,kx

4
t,ks

k
t +B1→4

t

, (6)

where B1→4
t is the bit rate of all GoPs belonging to path 2 at

scheduling slot t.

For the fast ETDT queue, the enqueued GoPs can be sent
from path 4 and path 5. Therefore, the fast ETDT queue, i.e.,
TQ 5, is updated via

L5
t+1 =

[
L5
t +

α2
t min

{
L1
t , T

}
Ω

1→5

t f1κ1

Ω
1

tf5κ5

+
α3
t min

{
L2
t , T

}
Ω

2→5

t f2κ2

Ω
2

tf5κ5

− d

]+

,

(7)

where Ω
2

t is the average transcoding workload of GoPs in the
medium CTDT queue, i.e., TQ 2, at scheduling slot t. Here,
α2
t and α3

t refer to the ratio of GoPs of path 4 and 5 in TQ 1
and TQ 2, respectively, which are updated via

αit+1 =
αitL

i
t +
∑K
k=1 x

5
t,k

Ωi−1(V k
t )bt,k

fi−1κi−1

Li−1
t +

∑K
k=1 x

i−1
t,k

Ωi−1(V k
t )bt,k

fi−1κi−1

,∀i ∈ {2, 3} . (8)

In addition, Ω
1→5

t and Ω
2→5

t indicate the average transcoding
workloads of GoPs of path 4 and path 5 in TQ 1 and TQ 2,
respectively, which are updated by

Ω
i→5

t+1 =

∑K
k=1 x

i
t,kx

5
t,kΩ5

(
V kt
)
bt,k + Ω

i→5

t Bi→5
t∑K

k=1 x
i
t,kx

5
t,kbt,k +Bi→5

t

,∀i∈{1, 2} .

(9)

Service delay: Based on the analysis of queuing dynamics
in CTDT and ETDT, we can estimate the service delay,
Dt(Xt), in this cloud-edge collaborative transcoding system,
which is given by

Dt(Xt) =
1

3

∑
i∈Λ1

Lit + It +
1

2

∑
i∈Λ2

Lit, (10)

where Xt is the decision variable set, and Xt ={
xit,k

}
i∈I,k∈K

. Here, It is the transmission delay between the

cloud server and the edge server at scheduling slot t, which
can be estimated based on the round-trip time (RTT).

User satisfaction: In addition to the service delay, we
also introduce user satisfaction to evaluate transcoding per-
formance. The user satisfaction, Wt, refers to the ratio of
users’ video requests that can be satisfied through transcoding
operations in scheduling slot t, which is depicted as

Wt =

∑K
k=1 x

1
t,kw

1
t,k +

(
x2
t,k + x1

t,kx
4
t,k

)
w2
t,k +Mt,k∑K

k=1 w
1
t,k + w2

t,k + w3
t,k

,

(11)
where w1

t,k, w
2
t,k, w

3
t,k represent the number of GoP requests

of high, medium, and low quality, respectively. Here, Mt,k =(
x3
t,k + x1

t,kx
5
t,k + x2

t,kx
5
t,k

)
w3
t,k.

D. Problem Formulation

Our objective is to maximize long-term user satisfaction
within an average service delay threshold over T scheduling
slots. Correspondingly, the optimization problem is formulated
as

P0 : max
Xt

lim
T→∞

1

T

T∑
t=1

Wt(Xt), (12)

s.t. lim
T→∞

1

T

T∑
t=1

Dt(Xt) ≤ D, (12a)

x2
t,k + x4

t,k ≤ 1, (12b)

x3
t,k + x5

t,k ≤ 1, (12c)

x1
t,k − x4

t,k ≥ 0, (12d)

x1
t,k + x2

t,k − x5
t,k ≥ 0, (12e)

xit,k ∈ {0, 1} ,∀i ∈ I, (12f)

where D is the average service delay threshold. Con-
straint (12a) represents the average service delay requirement.
Constraints (12b,12c) avoid the repeated transcoding operation
for a GoP between cloud TQs and edge TQs. Constraint (12d)
guarantees that a GoP is transcoded from the high-quality
version to the medium-quality version. Constraint (12e) guar-
antees that a GoP is transcoded from the high-quality and
medium-quality versions to the low-quality version.

The formulated problem is a CMDP since the state transition
is Markovian with the long-term constraint. However, the
CMDP cannot be directly solved by general DRL algorithms
due to the intractable long-term constraint [13]. Therefore, we
first transform it into a standard MDP and then develop a DRL
algorithm to solve it.

III. DRL-BASED TRANSCODING SCHEDULING
ALGORITHM

A. Problem Transformation

The Lyapunov optimization technique is an effective way to
handle a long-term constraint [14] in an optimization problem.
The main idea is to establish a deficit queue of service delay to
characterize the satisfaction status of the long-term constraint,
which can transform the time average constraint problem into
a queue stability problem.

First, we establish the deficit queue of service delay, as
follows:

Zt+1 =
[
Dt (Xt)−D + Zt

]+
, (13)

where Zt represents the deviation of achieved instantaneous
values from the long-term constraint, whose initial state is
set to 0. To characterize the satisfaction status of the long-
term constraint, the Lyapunov function is defined as L(Zt) =
1
2 (Zt)

2 [14]. A smaller Lyapunov function value indicates a
better satisfaction of the long-term constraint.

Second, to guarantee that the Lyapunov function can be
consistently preserved within a small value, the one-shot Lya-
punov drift is introduced to capture the variation of Lyapunov
function values across two subsequent time slots. Therefore,



the one-shot Lyapunov drift is defined as ∆(Zt) = L(Zt+1)−
L(Zt). The upper bound of ∆(Zt) can be derived as

∆(Zt) =
1

2
(Zt+1)2 − 1

2
(Zt)

2

≤ 1

2

(
Zt + Dt (Xt) −D

)2 − 1

2
(Zt)

2

= Zt

(
Dt (Xt) −D

)
+

1

2

(
Dt (Xt) −D

)2
= Zt

(
Dt (Xt) −D

)
+

1

2

(
1

3

3∑
i=1

Li
t + It +

1

2

5∑
i=4

Li
t −D

)2

≤ Zt

(
Dt (Xt) −D

)
+ Γ,

(14)

where Γ = 1
2

(
1
3

3∑
i=1

Lmax
i + Imax + 1

2

5∑
i=4

Lmax
i −D

)2

and it

is a constant. Here, Lmax
i and Imax are the maximum length

of TQ i and the maximum RTT, respectively.
Third, the original optimization problem of maximizing

long-term user satisfaction within an average service delay
threshold can be transformed to minimize a drift-plus-cost.
Problem P0 is reformulated as

P1 : min
Xt

Zt
(
D (Xt)−D

)
− VWt(Xt),

s.t. (12b), (12c), (12d), (12e),

xit,k ∈ {0, 1} ,∀i ∈ I.

(15)

B. Proposed Algorithm

The transformed problem is a nonlinear integer program-
ming problem, which is hard to be directly solved. Since
the state transition is Markovian, we adopt the dueling DQN
(DDQN) algorithm [15] to obtain the transcoding-path selec-
tion for each GoP in each scheduling slot. Specifically, the
dueling architecture constructs two streams of fully connected
layers to provide separate estimations of value and advantage
functions, which can learn which TQ lengths are valuable
without having to learn the effect of transcoding-path selection
of each GoP.

The state includes TQs’ lengths, the deficit queue length,
estimated transcoding workloads, and bit rates of GoPs,
i.e., st =

{{
Lit
}
i∈I , Zt,

{
Ωi
(
V kt
)}
i∈I,k∈K, {bt,k}k∈K

}
. The

action includes all transcoding decisions in Eq. (15), i.e.,
at =

{
xit,k

}
i∈I,k∈K

. The reward at step t is the opposite value

of drift-plus-cost, i.e., rt = VWt(Xt)− Zt
(
D (Xt)−D

)
.

In the DDQN algorithm, the target value at step t, denoted
by yTt , is calculated as follows

yTt = rt+1 + γmaxatQ
(
st+1, at; θ

T
)
, (16)

where γ is the discount factor, and θT is the network param-
eters of the target network. Function Q (·) is calculated based
on value function U (·) and advantage function A (·), which
can be expressed as

Q (st, at; θ1, θ2, θ3) = U (st; θ1, θ2) +A (st, at; θ1, θ3)

− 1

|A|
∑

a
′
t∈A

A
(
st, a

′

t; θ1, θ3

)
,

(17)

Algorithm 1: DT-DDQN

1 Initialize the primary network, the target network and
the replay memory.

2 for each episode do
3 Reset GoP requests, and CTDT and ETDT queues;
4 for each step t ∈ {1, ..., tmax} do
5 Estimate the transcoding workload for each

GoP in CTDT and ETDT queues;
6 Update ETDT and CTDT queue lengths based

on action, where
at = arg maxat∈AQ (st, at; θ);

7 Obtain the reward rt and update the state st+1;
8 Store {st, at, rt, st+1} into the replay memory,

and sample a random mini-batch;
9 Calculate the target value by Eq. (16);

10 Calculate the loss value by L (θ) =

E
[(
rt+γmaxaQ

(
st+1, at+1; θT

)
−Q (st, at; θ)

)2]
;

11 Update the parameters with Adam optimizer;
12 end
13 end

TABLE II: Simulation Parameters

Parameter Value Parameter Value
Primary DQN learning rate 10−4 γ 0.99
Target DQN learning rate 10−3 R 5000

Number of episodes 1000 D 1.8 s
Number of steps 100 κ [1, 10] MFlops
Lmax
i , Imax 1.5, 0.5 s f [5, 20] GHz

where θ1 indicates the parameters of convolutional layers.
Here, θ2 and θ3 refer to the parameters of fully-connected
layers for the advantage function and the value function,
respectively. Here, A is the set of actions. The proposed DT-
DDQN algorithm is presented in Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, simulation results are presented to evaluate
the performance of the proposed DT-DDQN algorithm. We
adopt a video dataset including twenty 1080p videos and
eight 720p videos.3 The Matlab neural fitting toolbox with
Bayesian regularization4 is utilized to generate the BNN-based
DT model for transcoding workload estimation. All input
variables in Table I are normalized to values with a mean
of 0 and a standard deviation of 1. In addition, users’ request
statistics are sampled from the public dataset [16]. The main
simulation parameters are presented in Table II.

We compare the proposed DT-DDQN algorithm with the
following benchmark schemes.
• Round Robin (RR): GoPs are placed to TQs in equal

portions and in a circular order.
• Proportional Fair (PF): GoPs are sequentially placed

in TQs based on scheduling priority considering GoP
requests and transcoding workloads.

3https://media.xiph.org/video/derf/
4https://www.mathworks.com/help/deeplearning/gs/fit-data-with-a-neural-
network.html
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Fig. 3: BNN-based DT TWE model performance: (a) error
histogram, and (b) MSE.

 

(a)
 

(b)

Fig. 4: Transcoding performance comparison: (a) cloud and
edge TQ lengths, and (b) user satisfaction.

• Utility-based Multi-dimensional and Multi-choice
KnaPsack (UMMKP) [17]: Each TQ is seen as a
knapsack, while each GoP is viewed as a good. Each
GoP is sequentially placed to TQs based on the user
satisfaction-based utility value.

• DDQN: Only DDQN is adopted for the transcoding-path
selection. The TWE model is a universal one without DT.

In Figure 3(a), 7976 and 1994 instances (samples) are
utilized for training and testing the BNN-based TWE models
in DTs, respectively. It can be observed that the estimation
errors are concentrated in [-0.0163, 0.02057], and more than
half instances have fairly small errors. In Fig. 3(b), the MSE
can achieve a fast degradation in the initial stage and gradually
converges to 10−4 when up to 1000 episodes. Therefore, the
BNN-based TWE model can well extract historical transcod-
ing data for accurate TWE.

Figure 4(a) shows the average lengths and variance of five
TQs in the cloud and edge servers. The TQ lengths under the
proposed DT-DDQN algorithm are relatively balanced with
smaller fluctuations compared with the DDQN algorithm, and
the length of TQ 2 is higher. This is because the proposed
DT-DDQN algorithm can accurately estimate the transcoding
workload of each GoP to help the network controller balance
transcoding workloads among TQs, and TQ 2 relieves a part of
transcoding workloads of TQ 4. Fig. 4(b) shows the proposed
DT-DDQN algorithm can achieve the highest user satisfaction
in the most of time. Around 500 s, the user satisfaction of
all algorithms suffers a distinct degradation since the GoP
requests of high-quality version dramatically increase, and the
slow TQ cannot support soaring trancoding operations of GoPs

and have to transfer a part of GoPs to medium TQ and fast
TQ to satisfy the service delay requirement.

V. CONCLUSION

In this paper, we have studied a collaborative transcoding
problem for better user satisfaction in live streaming. We have
proposed a DT-assisted collaborative transcoding model to
capture the dynamics of cloud and edge TQs and developed a
DRL-based transcoding scheduling algorithm to enhance long-
term user satisfaction within an average service delay thresh-
old. The proposed DT-assisted collaborative transcoding model
can also be applied to distributed computation offloading to
improve the efficiency of cooperative computation. For the
future work, we will investigate how to efficiently coordinate
the DT-assisted cloud-edge collaborative transcoding process
and wireless transmission to further enhance user satisfaction.
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