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Abstract—Artificial intelligence (AI) has enabled a new

paradigm of smart applications – changing our way of living
entirely. Many of these AI-enabled applications have very stringent
latency requirements, especially for applications on mobile devices
(e.g., smartphones, wearable devices, and vehicles). Hence, smaller
and quantized deep neural network (DNN) models are developed
for mobile devices, which provide faster and more energy-efficient
computation for mobile AI applications. However, how AI models
consume energy in a mobile device is still unexplored. Predicting
the energy consumption of these models, along with their different
applications, such as vision and non-vision, requires a thorough
investigation of their behavior using various processing sources.
In this paper, we introduce a comprehensive study of mobile AI
applications considering different DNN models and processing
sources, focusing on computational resource utilization, delay, and
energy consumption. We measure the latency, energy consumption,
and memory usage of all the models using four processing sources
through extensive experiments. We explain the challenges in such
investigations and how we propose to overcome them. Our study
highlights important insights, such as how mobile AI behaves in
different applications (vision and non-vision) using CPU, GPU, and
NNAPI. Finally, we propose a novel Gaussian process regression-
based general predictive energy model based on DNN structures,
computation resources, and processors, which can predict the
energy for each complete application cycle irrespective of device
configuration and application. This study provides crucial facts
and an energy prediction mechanism to the AI research commu-
nity to help bring energy efficiency to mobile AI applications.

Index Terms—mobile AI, predictive energy model, energy im-
provement, latency reduction, DNN

I. INTRODUCTION

Artificial intelligence (AI) is shaping every aspect of human

lives nowadays. Furthermore, mobile devices, i.e., smartphones,

tablets, wearable devices, and autonomous and unmanned aerial

vehicles, are heavily invested in AI applications, having cellular

networks, edge, and cloud computing in the backbone. AI

applications consume considerably high energy and memory of

these devices. How AI uses these resources defines a device’s

potential to interact with wireless networks. Therefore, it is

crucial to understand the characteristics of AI applications

running on a mobile device, which pushes back to the question

— how can we accurately predict the energy consumption of

mobile AI irrespective of device configurations to ensure better

service and user experience?

AI applications’ energy consumption may depend on various

properties of a system. First, the AI models that are crafted in

specific ways to fit mobile devices due to the models’ high

computation and energy requirements, impact the applications’

behaviors. Research works suggest accelerating the processing

time of deep neural networks (DNNs) by quantizing [1], which

is a compression technique run on DNN models that can reduce

This work was supported by funds from Toyota Motor North America and by
the US National Science Foundation (NSF) under Grant No. 1910667, 1910891,
and 2025284.

the model size by converting some tensor operations to integers

from floating points or reducing the weights or parameters in

a model, but at the cost of degraded accuracy. Quantized DNN

(Q-DNN) models are generally investigated for vision-based

applications, the most thriving areas of AI. Second, mobile AI

is not limited to vision applications only. Modern-day mobile

devices are rigged with non-vision applications as well, such

as intelligent recommendations, natural language processing

(NLP), smart reply, speech recognition, and speech-to-text

conversion. While most of the research focuses on applications

based on computer vision, acquiring a thorough knowledge of

mobile AI is only possible by including non-vision applications.

Third, the processing source used to run the AI models affects

their performance. Besides central processing units (CPUs) with

high processing speeds, some devices are now equipped with

graphics processing units (GPUs), which enables DNN models

to run faster than ever, especially for vision applications [2].

In addition, neural network application programming interfaces

(NNAPI) are also developed to make the processing of DNN

models faster using CPUs, GPUs, or neural processing units

(NPUs) [3]. These state-of-the-art technologies are researched

for mobile AI only to improve inference latency. Lastly, the

hardware configuration of mobile devices is distinctive and

contributes to energy consumption with a unique signature.

The system-on-chip (SoC), CPU/GPU parameters, and memory

dictate how an AI application runs on a specific device.
In this paper, we argue that a predictive energy model

for a mobile AI application requires considering all of the

parameters mentioned above. Without collecting accurate and

precise latency, energy, and memory consumption data, it is not

possible to design a predictive energy model which is applicable

to all AI applications with different model sizes and device

configurations. This paper presents the measurement data of

AI applications collected through experiments and proposes a

novel model of Energy Prediction for AI in Mobile devices

(EPAM), which can provide a highly accurate prediction of

the energy consumption of a mobile AI application irrespective

of device configuration and AI models, and thus contribute to

improving the overall performance.
Motivations: While mobile AI is often concluded as “no

one-size-fits-all solution” [4], it is the responsibility of the

research community to provide the developers with precise

measurement data and a way to predict energy consumption.

Our research shows that the power varies for the same de-

vice with the change in processing sources (Fig. 1(a)). The

granularity of power consumption over a unit period of time

needs to be measured to develop a predictive energy model,

which is not provided by the current works. Battery profilers

provided by third-party applications do not support precise

energy data collection [5]. Hence, the use of an external power

http://arxiv.org/abs/2303.01509v1
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Fig. 1. (a) Power consumption by different processors for the same time
interval for MobileNet Float and (b) mean inference latency, energy, and
memory usage for float and quantized DNN models on Huawei Mate40Pro.

measurement tool becomes necessary [6]. Moreover, DNN

models with different sizes and layers do not have a similar

impact on the latency, energy, and memory usage, which is

presented in Fig. 1(b), where it is evident that the correlation

among latency, energy, and memory is not linear at all. An

interesting observation here is that the Quantized EfficientNet

model causes high latency and energy despite using the lowest

memory, due to its compatibility issues with NNAPI, which is

described in detail in section V-A. This motivates us to collect

data from a physical testbed to validate this correlation before

proposing a predictive energy model.

Challenges: Designing a predictive energy consumption

model for mobile AI is not straightforward. First, a general

energy prediction model is challenging to develop due to

different categorical and numerical variables involved in the

non-parametric behavior of the energy consumption of AI

applications. The regression model cannot be linear since all

the parameters do not have the same weight in all applications

and configurations. Second, measuring mobile AI parameters

is challenging due to complicated power terminal design in the

latest mobile devices. Synchronizing the timestamps of latency

and energy data brings further difficulties as the retrieved log

files have different formats. However, these parameters must

be measured since they are required for training the regression

model. Finally, the experiments should be controllable and

repeatable for enthusiastic researchers. Therefore, the environ-

ment must be chosen wisely so that all the experiments can be

carried out in a similar condition.

Our contributions: Our contributions in this paper are

summarized as follows:

• Experimental research and analysis of different mobile

AI applications: We set up an experimental testbed with

four different smartphones (Table I) and use a vision

application (image classification) and two non-vision ap-

plications (NLP and speech recognition) with seven dif-

ferent DNN models (Table II). The testbed is described

in detail in Section IV. We investigate different mobile AI

parameters through an extensive experimental study. The

latency, power consumption, and memory usage of indi-

vidual segments of the pipelines of three AI applications

are measured for different applications using single- and

multi-threads CPU, GPU, and NNAPI and for different

DNN models. Our experiment shows that the total energy

consumption of a mobile AI application is related to the

device configuration, AI model, latency, and memory.

• Predictive energy model for mobile AI: We propose

a novel Gaussian process regression-based general pre-

dictive energy model for mobile AI (EPAM) based on

DNN structure, memory usage, and processing sources to

predict the energy consumption of mobile AI applications

irrespective of device configurations (Section III). EPAM

requires offline training with past datasets. The trained

model can be used to predict the overall energy con-

sumption which reduces the necessity for further energy

measurement and helps the developers design energy-

efficient mobile AI applications. Finally, we evaluate the

performance of our proposed predictive energy model

EPAM with our experimental data (Section V-D). The

evaluation shows that EPAM provides highly accurate

energy prediction of vision and non-vision AI applications

for different DNN models on unique mobile devices.
II. RELATED WORK

Vision and non-vision mobile AI with float and quantized

models: Floating point and quantized models are investigated

for vision applications, e.g., image classification, segmentation,

super-resolution, and object detection, to create benchmarks

using inference latency for mobile devices [7]. Quantized

models are introduced in [8] to lower the energy consumption as

well. In addition, non-vision AI applications are also researched

to achieve high accuracy and low latency [9]. Nevertheless,

a predictive energy model for mobile AI requires analysis

of complete behaviors of vision and non-vision mobile AI

applications using floating point and quantized models, which

are not yet explored.

Latency and energy in different processors: Mobile AI

applications behave differently in terms of latency and accuracy

based on the processing sources [4], [7]. Research works are

done on maximizing CPU threads [10] and hardware accel-

eration for DNN models. The use of GPU is also studied

for improving the training and inference time for mobile AI

[2]. NPU architectures are explored as well to expedite neural

network operations [3], [11]. However, there is no fundamental

framework to describe the impact of individual processing

sources on energy consumption for different mobile AI appli-

cations with disparate DNN models.

Energy modeling for mobile AI and prediction: Energy

measurement is necessary to describe mobile AI applications’

detailed behaviors. Eprof [12] and E-Tester [13] are proposed to

measure and test the battery drain of mobile devices, which use

a finite state machine to measure the energy. However, these

methods lack in providing granular and precise energy data

since they only act on system call traces. Researchers have

proposed different energy models for vision [14] and non-vision

[15] applications. Furthermore, predictive energy models are

developed for devices, and sensors [16]. Nonetheless, devel-

oping accurate predictive energy models general to all mobile

AI applications requires knowledge of all the environmental

parameters such as network and model size, memory usage,

and the hardware accessed to run the AI application.



III. EPAM: OVERVIEW OF THE PREDICTIVE MODEL

The energy prediction of mobile AI involves a high dimen-
sion of influencing variables, making it a non-parametric model.
Let us assume that the set of input data points is X1:D, where
D is the total number of dimensions. If we consider this a noisy
observation, then we find the posterior distribution as

P (E(X) ∝ P (E(X)|Λ1:D)/P (Λ1:D|E(X)), (1)

where E(X) is the observed energy at data points X1:D and

Λ1:D = {X1:D, E} is observation points. Using Gaussian

process [17], E(X) can be described as E(X) ∼ N (µ,K),
where µ = [mean(X1), . . . ,mean(XD)] is the mean and

Kij = k(xi, xj) is the covariance or Kernel function, where

xi and xj are distinct data points.
As new data points X∗ are provided, the posterior distribu-

tion of predicted energy E(X∗) can be modeled as

P (E(X∗)|Λ
1:D) ∼ N (µ(X∗),K(X∗)) (2)

The kernel must be chosen carefully as there exists a clear
link between kernel functions and predictions [18], which
contribute to the hyper-parameter optimization. From our ex-
perimental data, we observe the influencing parameters on total
energy consumption are sparse and vary over a broad range
including both numerical and categorical variables. Hence, we
choose the automatic relevance determination (ARD) exponen-
tial squared kernel for our predictive model, which automati-
cally puts different weights on the parameters with differential
scales assessing their significance to the model. Hence, our
kernel equation becomes:

K(xi, xj) = σ2

f exp[(−
1

2
)

D∑

m=1

(xim − xjm)2

σ2
m

], (3)

where σ2

f is the hyper-parameter to be optimized and σ2

m is the

covariance of the mth dimension. Finally, the log-likelihood of
the trained model can be expressed as

logP (E(X)|X1:D) = −
1

2
E(X)T (K + σ2

DI)−1E(X)

−
1

2
log det(K + σ2

DI)−
D

2
log 2π,

(4)

where I is an identity matrix. EPAM is first trained offline with

the observation data points, then is run with an application

alongside. The prediction is done either simultaneously or at

the end of an application. In this research, we train the model

with a dataset containing 85, 500 data, validate with 19, 496,

and test with 10, 000 data.
IV. EXPERIMENTAL SETUP

a) AI applications: Three mobile AI applications are used in

this research: image classification, NLP, and speech recognition.

In image classification, as shown in Fig. 2(a), first, the image

is captured by the camera sensor, which then goes through a

Bayer filter and image signal processor, and, then is stored

in an image buffer. The image frame is then scaled and

cropped to be previewed while simultaneously going to an

image reader, converted from YUV color format to RGB, and

cropped according to the input size of the DNN model. Then

the converted and cropped frame is taken as the DNN input,

generating the classification results to display.

The NLP question-answer application takes both the para-

graph input and the question input from the keyboard (Fig.

2(b). The paragraph is then represented with token, segment,

Camera 

sensor

Bayer filter
Scale and 

crop

Image signal 

processing
Image buffer

Preview

Image reader

YUV to RGB

and Crop

Classification 

results

DNN

Image generation Image conversion

Android 

82%

Inference

Image 

input

(a) Image classification

Paragraph 

input

Token 

embedding

The quick brown 

fox jumps over 

the lazy dog.

ququ

jujumpmps over 

the lazy dog.

The quick brown fox 

jumps over the lazy 

dog.

The quick brown 

fox juju

`

Who did jump over 

the lazy dog?

Keyboard 

input

Position 

embedding

Segment 

embedding

Character 

tokenizer

Basic 

tokenizer

Word piece 

tokenizer

Feature 

converter

Find and 

Highlight 

answer

Text pre-processing Inference

DNN

(b) Natural language processing (QA)

“Go”

74%

Speech 

record

Convert to 

WAV

STFT

Convert to 

spectrogram

Calculate 

MFCC
Display Text

Speech 

decode

“Go”

7474%DNN

Speech pre-processing Inference

Audio 

input

(c) Speech recognition

Fig. 2. Pipelines of the mobile AI applications studied in this research.

and position embeddings. The keyboard input goes through

character, basic, and word piece tokenizer. These embeddings

and tokens are passed to a feature converter providing input to

the DNN model. The model finds the answer to the question

input and highlights it in the paragraph.

Speech recognition application records, converts, and de-

codes the audio input. The decoded audio signal is converted

to a spectrogram by running a short-time Fourier transform

(STFT) along with the calculation of the Mel frequency cepstral

coefficients (MFCCs). The spectrogram and MFCC are passed

to the DNN model. The predicted word is then displayed on

the phone as depicted in Fig. 2(c).

b) Testbed: We implement the applications mentioned above

on four Android OS-based smartphones from different manu-

facturers with distinct configurations to make the measurement

study robust with a wide range of parameters. Table I shows

the specifications of the smartphones used in the experiment.

However, the intended thorough investigation of mobile AI

brings several challenges during the experiment.

Android Studio, along with other third-party contributors,

provides developers with memory and battery profilers, which

cannot generate the data necessary to measure memory usage

and power consumption precisely. In this experiment, we collect

latency timestamp data of each segment of a mobile AI pipeline

along with their corresponding memory usage. To measure the

energy consumption, we use an external power measurement

tool “Monsoon Power Monitor” that provides data sampled at

every 0.2 ms interval. However, due to the delicate design of

power input terminals, the latest smartphones need to be heated

and opened to remove the battery, and then are connected to

the power monitor. After careful measurement of power data,



TABLE I
BRIEF SPECIFICATIONS OF THE DEVICES USED IN THE EXPERIMENTS

Denotation Model SoC CPU GPU Dedicated AI RAM OS NNAPI Release

accelerator support Date

Device-1 Huawei Kirin 9000 8-core (1x3.13GHz A77 Mali G78 Ascend Lite+ 8GB Android 10 Yes October,
Mate (5 nm) 3x2.54GHz A77 Tiny NPU LPDDR5 2020

40 Pro 4x2.05GHz A55) Da Vinci 2.0
Device-2 OnePlus Snapdragon 8-core (1x2.84GHz Adreno 650 Hexagon 8GB Android 10 Yes April,

8 Pro 865 (7 nm) 3x2.42GHz 698 DSP LPDDR5 2020
4x1.8GHz Kryo 585)

Device-3 Motorola Helio P70 8-core (4x2.0GHz A73 Mali G72 MediaTek 4GB Android 9 Yes October,
One Macro (12 nm) 4x2.0GHz A53) APU LPDDR4X 2019

Device-4 Xiaomi Snapdragon 8-core (4x2GHz Gold Adreno 610 Hexagon 4GB Android 10 Yes August,
Redmi 665 (11 nm) 4x1.8GHz Silver 686 DSP LPDDR4X 2020
Note8 Kryo260)

TABLE II
DNN MODELS USED IN THIS RESEARCH

Denotation Model Name Application Input size No. of layers Model Size

Model 1 MobileNetV1 (Float) Image classification 224x224x3 31 16.9 MB
Model 2 MobileNetV1 (Quantized) Image classification 224x224x3 31 4.3 MB
Model 3 EfficientNet-lite (Float) Image classification 224x224x3 62 18.6 MB
Model 4 EfficientNet-lite (Quantized) Image classification 224x224x3 65 5.4 MB
Model 5 NASNet Mobile (Float) Image classification 224x224x3 663 21.4 MB
Model 6 Mobile BERT QA Natural language processing int32 [1, 384] 2541 100.7 MB
Model 7 Tensorflow ASR Speech recognition [20 Hz, 4 kHz] 8 3.8 MB

they are matched with the corresponding latency timestamps.

To make the experiment environment controllable, we carry

out all the experiments in a similar condition, e.g., brightness,

camera focus, image resolution, background applications, pro-

cessing sources, and test dataset. We use 640 × 480 pixels as

the image resolution, and TensorFlow Lite Delegate

to control the processing sources. The 2017 COCO test dataset,

WH-questions, and fixed single words are used for testing

the classification, NLP, and speech recognition, respectively.

In addition, even without any applications running in the

background, there is always a minimal power consumption –

which we call the base power. To distinguish the mobile AI

power from the base power, an additional layer is used before

the actual AI application.

c) AI models: In this research, we use seven DNN models

for three different applications. In Table II, the details of each

model, including the input size, number of layers, and the

trained model size (occupied storage space) are shown.

d) Performance metric: We evaluate all the AI applications’

performances in terms of their latency, energy consumption,

and memory usage. The total energy consumption is controlled

by latency and memory usage, as well as the category of

AI applications, processing sources, model types (float and

quantized), and DNN structure and model size.

V. RESULTS AND DISCUSSION

We conduct experiments with all the devices listed in Table

I and models listed in Table II by switching to different

processing sources, such as CPU thread 1 and thread 4, GPU,

and NNAPI. Models 1 to 5 are for vision-based AI, and models

6 and 7 are for non-vision-based AI applications. It is to be

noted that models 2, 4, 6, and 7 do not support GPU processing

due to a lack of TensorFlow Lite optimization. In general,

the applications have input data processing (combining image

generation and conversion in classification) and inference tasks.

In this paper, we show some of the interesting findings due to

space constraints.

A. Latency and energy consumption of mobile AI
The end-to-end latency and energy consumption per cycle

for all the models with different processing sources are shown

in Fig. 3. First, we can see that quantized models decrease the

inference latency (13%) and energy consumption (25%) from

their respective float models. Additionally, there is a reduction

in the overall latency of 4% when switching to a 4-thread

from a single-thread CPU. However, in quantized models, the

multi-thread CPU processing slightly increases the total energy

consumption (3% on average). The use of GPU even lowers

the end-to-end latency and energy consumption compared to the

use of single-thread CPU (8% and 27% respectively on average)

and 4-thread CPU (7% and 25% respectively on average). On

the contrary, NNAPI behaves differently than the other three

processing sources on different devices. For models 4 and 5,

NNAPI increases latency and energy considerably. Our insight

here is that NNAPI can perform better with sufficient hardware

support from the manufacturers.
An interesting fact about the NLP application is that the text

processing step shows an entirely different latency pattern. This

segment takes user input which does not take uniform time, i.e.,

it varies with user habits of typing and thinking of the question.

Hence, the processing stage here is completely unpredictable

for different users. In NLP, each input consumes around 5.7
J, whereas, another non-vision application, speech recognition

takes around 161.85 mJ to process one speech input sampled at

a rate of 16 kHz using a single-thread CPU. NNAPI consumes

the least latency and energy for speech recognition.

In addition, we examine the power consumption charts of dif-

ferent applications and processing sources (Fig. 4). We observe

a slight initiation delay for every application (marked with red

arrows in Fig. 4), which varies with using different processors

and applications. This delay occurs during the time when the

application interface initiates till the activity-start point, which

is mainly originated by different hardware components being

accessed at the beginning of an AI application, such as the
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Fig. 3. End-to-end mean latency and energy consumption per cycle of vision-
based models 1–5 for (a) single- and (b) multi-thread CPU, (c) GPU, and (d)
NNAPI, and non-vision-based (e) model 6 and (f) model 7.

camera, keyboard, speaker, and microphone. Besides, different

processor delegations (e.g., GPU and NNAPI) are also done

during this period.

Highlights: Non-vision applications cannot be generalized

for latency and energy like vision-based ones. GPU processing

is not supported by non-vision applications, which should be

explored widely. The initiation delay (i.e., the delay between the

activity trigger and start point) varies along AI models, pro-

cessing sources, and applications, which is caused by accessing

different hardware components by mobile AI applications.

B. DNN structures and their inference latency and energy

DNN structures define the way inference activities work

in a mobile AI application. The behavior of DNN structures

varies across different kinds of applications as well, e.g., vision

and non-vision AI. For instance, a smaller DNN structure for

vision applications can incur higher latency and energy than a

larger non-vision DNN structure. Inference latency and energy

consumption per cycle are shown in Fig. 5 for DNN models

with single-thread CPU processing. We observe that model 5
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Fig. 4. Power consumption pattern for (a) classification, (b) NLP, and (c)
speech recognition.

takes longer inference time and energy due to its larger structure

than the other vision-based AI models. The longest latency and

highest energy are evident in model 6 (a complex structure

comprising 2541 layers).
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Fig. 5. Inference latency and energy consumption per cycle by DNN models.

Highlights: DNN structures influence inference latency and

energy significantly, but the relationship is not linear at all.

Generally, larger DNN structures are responsible for higher

latency and energy for a mobile AI application.

C. DNN model size, memory usage, and inference energy

DNN model size (i.e., the storage space occupied by the

model) impacts memory usage and energy consumption during

inference. From our experiment, we observe that model 7 has

the lowest model size, hence causing the lowest memory and

energy consumption, whereas model 6 has the highest size,

memory, and energy consumption. This is more evident from

Fig. 6, which shows a comparison among all the models’ sizes,

inference memory, and energy consumption for single-thread

CPU processing.
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Fig. 6. Comparison of DNN model size, inference memory usage, and
inference energy consumption.

Highlights: Lower memory used by mobile AI applications

ensures computation resources and energy for other mobile

device activities. From this perspective, quantized and smaller

DNN models are best suited for mobile AI. The larger the

storage occupied by a DNN model, the higher the memory and

energy consumption.



D. Performance evaluation of EPAM

We develop and train the Gaussian process regression-based

predictive energy model, EPAM, with each device’s SoC, CPU

frequency, no. of cores, memory size, processing sources, no. of

threads, application type, DNN model, DNN structure, memory

usage, processing latency, and inference latency from the large

experimental dataset from this research to predict the total

energy consumption per application cycle (data processing and

inference for each input). We use an empty basis function,

and ARD squared exponential kernel function for the hyper-

parameter optimization. We use device-1, 2, and 4 for training

and validation, and device-3 for 1-step ahead prediction testing.

Due to page limitation, we show only a few prediction results

in Fig. 7. We observe that EPAM’s energy prediction per cycle

is highly accurate for all the models. The overall root mean

squared error (RMSE) is 0.075 (3.06%), and the marginal log-

likelihood value is −1.449× 102, which show that the trained

model is a good fit for the prediction. The prediction latency

depends on the machine used in running the model.
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Fig. 7. Evaluation of EPAM for (a) model 1 and 2 (b) model 3 and 4, (c)
model 5, and (d) model 6 and 7 with different processing sources.

Highlights: EPAM further helps developers and users to

perceive the performance of individual AI applications in terms

of energy with high accuracy – which is the primary motivation

of this research work. The larger and more diverse the training

dataset, the higher the prediction accuracy.

VI. CONCLUSION

In this paper, we presented a comprehensive study of mo-

bile AI applications with different processing sources and AI

models. Overcoming the challenges with measurement, we

conducted experiments to assess the performance of different

AI models, processing sources, and devices. Our measurement

work shows that the latency, energy consumption, and memory

usage vary based on DNN models and processing sources. Mo-

bile AI systems’ performance is substantially improved using

quantized models than floating-point models in terms of latency

and energy. Another important finding is that the storage space

occupied by DNN models influences the memory and energy

consumed during inference almost linearly. Additionally, non-

vision applications follow a different trend of latency and

energy consumption than vision-based AI since their input

processing techniques differ from vision applications. Every

AI application has an initiation delay caused by accessing

various hardware components of mobile devices, which varies

for different models and configurations. Moreover, the latency,

memory, AI model, and device configuration impact the total

energy consumption for a complete application cycle, albeit

at different correlations. This non-linear correlation in a non-

parametric model led to our proposed predictive energy model,

EPAM, based on Gaussian process regression. Finally, we

trained and validated EPAM with the vast dataset obtained

from our experiment. The evaluation of EPAM shows high

accuracy with an overall RMSE of 0.075 (3.06%). Developers

can use EPAM to predict the energy consumption of their

mobile AI applications without measuring the energy externally

to improve the comprehensive user experience. To summarize,

this novel predictive energy model, EPAM, will help the mobile

AI research community design energy-improved applications

considering all the control factors and parameters that can

reduce energy requirements to enable better service for smart-

phones, wearable devices, and autonomous vehicles.
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