Loading [a11y]/accessibility-menu.js
Towards Detection of Zero-Day Botnet Attack in IoT Networks Using Federated Learning | IEEE Conference Publication | IEEE Xplore

Towards Detection of Zero-Day Botnet Attack in IoT Networks Using Federated Learning


Abstract:

Automated Internet of Things (IoT) devices generate a considerable amount of data continuously. However, an IoT network can be vulnerable to botnet attacks, where a group...Show More

Abstract:

Automated Internet of Things (IoT) devices generate a considerable amount of data continuously. However, an IoT network can be vulnerable to botnet attacks, where a group of IoT devices can be infected by malware and form a botnet. Recently, Artificial Intelligence (AI) algorithms have been introduced to detect and resist such botnet attacks in IoT networks. However, most of the existing Deep Learning-based algorithms are designed and implemented in a centralized manner. Therefore, these approaches can be sub-optimal in detecting zero-day botnet attacks against a group of IoT devices. Besides, a centralized AI approach requires sharing of data traces from the IoT devices for training purposes, which jeopardizes user privacy. To tackle these issues in this paper, we propose a federated learning based framework for a zero-day botnet attack detection model, where a new aggregation algorithm for the IoT devices is developed so that a better model aggregation can be achieved without compromising user privacy. Evaluations are conducted on an open dataset, i.e., the N-BaIoT. The evaluation results demonstrate that the proposed learning framework with the new aggregation algorithm outperforms the existing baseline aggregation algorithms in federated learning for zero-day botnet attack detection in IoT networks.
Date of Conference: 28 May 2023 - 01 June 2023
Date Added to IEEE Xplore: 23 October 2023
ISBN Information:
Electronic ISSN: 1938-1883
Conference Location: Rome, Italy

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.