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Abstract—In this work, we investigate the secrecy performance
in an intelligent reflecting surface (IRS)-assisted downlink system.
In particular, we consider a base station (BS)-side IRS and as
such, the BS-IRS channel is assumed to be known perfectly.
Of more importance, we consider the case, in which only
outdated channel state information (CSI) of the IRS-user channel
is available. We study the impact of outdated CSI on the
secrecy performance numerically and analytically. Furthermore,
we propose an element subset selection (ESS) method in order
to improve the secrecy performance. A key observation is that
minimal secrecy outage probability (SOP) can be achieved using
a subset of the IRS, and the optimal number of selected reflecting
elements can be effectively found by closed-form expressions.

I. INTRODUCTION

Due to the broadcast nature of the wireless medium, trans-

mission over a wireless network is prone to eavesdropping

on information intended to be exchanged between legitimate

terminals. To securely transmit the data, physical security layer

(PLS) techniques can be applied [1], [2]. In recent years,

intelligent reflecting surfaces (IRS) have been applied in the

field of PLS, which shows great potential to improve the

security of wireless communication. IRS is a surface consisting

of a large number of reflecting elements whose phase can be

adaptively controlled by a microcontroller. The basic idea of an

IRS-assisted system is to configure the IRS to reflect the signal

in the direction of the desired legitimate receiver. Compared to

conventional systems, IRS-assisted systems can achieve higher

reliability and security at a lower cost [3]–[5].

The secrecy performance of IRS-assisted systems has been

studied in many recent works. In [6], [7], the secrecy per-

formance is analyzed in terms of secrecy outage probability

(SOP) and secrecy rate in single-input single-output (SISO)

systems considering the quantized phase error at IRS. The

authors in [8] jointly designed the secure beamforming and ar-

tificial noise (AN) to maximize the secrecy rate in IRS-assisted

multiple-input single-output (MISO) systems using the alter-

nating direction method of multiplier (ADMM). This work

is later extended to multiple-input multiple-output (MIMO)

systems in [9], where majorization-minimization (MM) is

used. The aforementioned works all assume perfect CSI,

which is usually not the case in practice. In [10], the authors

proposed a robust design of the beamformer at the base station

(BS) and the phase shifters at IRS to maximize the system
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sum rate considering CSI with estimation errors. Besides the

estimation error, outdated CSI is also a major contributor to

CSI imperfections [11]. In practice, the channel often changes

with time. In addition, the channel estimation process and

configuration of the beamformer at the BS and the phase

shifters at the IRS may take time, especially if the number of

reflecting elements is large. Consequently, the CSI observed

by the BS may be outdated for subsequent data transmission.

Configuring the beamformer at the BS and IRS phase shifters

using outdated CSI will result in a loss of signal-to-noise ratio

(SNR) and may degrade the secrecy performance.

In this work, we study the secrecy performance in IRS-

assisted downlink systems considering outdated CSI of IRS-

user channel. Since the phase shift at IRS cannot be configured

precisely in practice, we further assume that each reflecting

element suffers from an independent and uniformly distributed

random phase error. We present the statistical characterization

of SNR at Bob and Eve and derive the closed-form expressions

of the SOP taking into account the outdated CSI. In addition,

we propose a novel element subset selection (ESS) method

that has low complexity and can be used to improve secrecy

performance. More specifically, K of the total N reflecting

elements are selected and turned on during transmission,

while the other elements are turned off. The correctness

of the closed-form expressions is verified by Monte-Carlo

simulations. Additionally, we observe that the minimum SOP

is achieved by using a subset of the reflecting elements.

II. SYSTEM MODEL

In this work, we consider a BS with M antennas com-

municating with a legitimate user Bob in the presence of

an eavesdropper Eve. Both Bob and Eve are equipped with

single antennas. The transmission is facilitated by IRS, which

consists of N = NHNV reflecting elements. The size of each

element is dH×dV , where dH and dV are the horizontal width

and vertical height, respectively. Herein, we consider the IRS

at the BS side, i.e., both BS and IRS are on the top of some

high-rise buildings and close to each other [12]. Meanwhile,

the IRS can be adaptively configured by the BS. Considering

BS-side IRS, the channel between BS and IRS is modeled as

H =
√

βHa(ϕ1, θ1)b
H(ϕ2, θ2), (1)

where βH is the distance-dependent path loss factor,

a(ϕ1, θ1) ∈ CM and b(ϕ2, θ2) ∈ CN are the steering

vectors at BS and IRS, respectively. In this context, ϕ1 and θ1
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represent the azimuth and elevation angle of departure (AoD)

at BS, while ϕ2 and θ2 denote the azimuth and elevation angle

of arrival (AoA) at IRS. Furthermore, the m-th element of a

is given by

am = ej2π
dBS

λ
(m−1) sinϕ1 sin θ1 , (2)

where dBS and λ are the inter-antenna separation at the BS

and the carrier wavelength, respectively. Also, the n-th element

of b is

bn = ej
2π
λ

(k(n)dH cos θ2 sinϕ2+l(n)dV sin θ2), (3)

where k(n) = mod (n− 1, NH) and l(n) = ⌊(n− 1)/NH⌋
are the horizontal and vertical indices of n-th element, re-

spectively [13]. In this work, it is assumed that dBS =
dH = dV = 0.5λ, such that there is no correlation between

the individual transmit antennas and the reflecting elements1.

In practice, the distance-dependent path loss factor βH in

(1) remains unchanged for a long time. Also, a(θϕ1,θ1) and

b(θϕ2,θ2) can be calculated accurately if the location and

construction of the IRS are known. For this reason, we assume

that perfect information of H is available at BS, Bob and Eve.

Furthermore, we use a N × N diagonal matrix to represent

the IRS

Φ̃ = diag(ejφ̃1 , ejφ̃2 , · · · , ejφ̃N ), (4)

where φ̃n = φn+∆φn is the phase shift at the n-th reflecting

element, φn and ∆φn are the precise phase shift and random

phase error at each element, respectively. More specifically,

here we consider the discrete phase shift in IRS such that ∆φn

is uniformly distributed in [− π
L ,

π
L ], where L is the number of

quantization levels [14]. Moreover, the characteristic function

of ∆φn can be computed by

µp = E[ejp∆φn ] = si
(

−p
π

L

)

, p ∈ Z, (5)

where si(x) = sin(x)
x . The IRS-Bob channel and IRS-Eve

channel are modeled as

hB ∼ CN (0, βBIN ), hE ∼ CN (0, βEIN ), (6)

where βB and βE are the path-loss factors. Furthermore, the

direct link is assumed to be blocked by obstacles. Hence, the

received signal at Bob and Eve are, respectively, given by

yB =
√
P (HΦ̃hB)

H
wx+ nB, (7)

yE =
√
P (HΦ̃hE)

H
wx+ nE , (8)

where P is the transmit power, w denotes the beamformer at

BS, x is the transmit data symbol with E[|x|2] = 1, nB ∼
CN (0, σ2

B) and nE ∼ CN (0, σ2
E) are the receiver noise at

Bob and Eve, respectively.

In this work, we consider a practical passive eavesdropper

where the instantaneous CSI of hE is not available at the

1Although we set dH = dV = 0.5λ, there is still a weak correlation be-
tween the reflecting elements. However, the effect of such a weak correlation
is negligible, which can be easily demonstrated by simulations. Therefore, in
this work, it is assumed that there is no correlation between the individual
reflecting elements

BS. Note that, unlike the BS-IRS channel, we assume that the

instantaneous CSI of hB observed by the BS is outdated. This

is because the channels between the IRS and the users usually

changes over time, caused by the movements of the users and

other objects around them. Let ĥB denote the outdated version

of hB , the relation between ĥB and hB can be expressed as

hB = ρĥB + eB, (9)

where ρ = J0(2πfdTd) is the correlation coefficient, and

J0 is the zero-order Bessel function, fd and Td are the

Doppler frequency and the time distance between hB and ĥB ,

respectively. Moreover, eB is the complex Gaussian distributed

error with covariance matrix (1 − ρ2)βgIN . The beamformer

w and IRS will be designed based on H and ĥB . More

specifically, we apply maximum ration transmission (MRT)

to design the beamformer at BS expressed as

w =
HΦĥB
∥
∥HΦĥB

∥
∥
. (10)

Now, similar to (9), we use ĥE to represent the outdated

version of hE modeled as

hE = ρĥE + eE , (11)

where eE ∼ CN (0, (1 − ρ2)βEIN ). Based on the system

model introduced in this section, we analyze the secrecy

performance in the following sections.

III. SECRECY ANALYSIS

Let γB and γE denote the instantaneous SNR at Bob and

Eve, respectively. According to [1], the instantaneous secrecy

capacity is defined as

Cs(γB, γE) = [log2(1 + γB)− log2(1 + γE)]
+ , (12)

where [x]+ = max(0, x). Unlike most state-of-the-art works,

where Bob and Eve have their own perfect CSI, we investigate

the secrecy performance in different scenarios, 1) Bob (and

Eve) know their individual outdated CSI ĥB (and ĥE), 2) Bob

(and Eve) know their individual perfect CSI hB (and hE), 3)

Bob knows his outdated CSI ĥB while Eve knows her perfect

CSI hE . In the following, we characterize the received SNR at

Bob and Eve in III-A and III-B. The secrecy outage probability

is investigated in III-C.

A. SNR at Bob

In this subsection, we analyze the SNR at Bob assuming

outdated and perfect CSI, respectively. If Bob knows his

outdated CSI, i.e., ĥB , and coherent detection is performed,

the received signal at Bob in (7) can be recast as

yB =
√
P (HΦhB)

H
wx+ nB

=
√
P
(
HΦ̃(ρĥB + eB)

)H
wx+ nB

=
√
Pρ(HΦ̃ĥB)

H
wx+

√
P (HΦ̃eB)

H
wx+ nB

︸ ︷︷ ︸

n̂B

. (13)



Here, we treat the term containing the random error eB as the

additional noise, and we use n̂B to denote the overall effective

noise. The variance of n̂B is calculated as

σ̂2
B = E[n̂Bn̂

H
B ] = σ2

B + PE

[∣
∣
∣
∣
(HΦ̃et)

H HΦĥB

‖HΦĥB‖

∣
∣
∣
∣

2
]

= σ2
B + PMNβH(1− ρ2)βB , (14)

where the last equality is obtained by substituting (1) and (10).

Thus, the instantaneous SNR at Bob under the assumption of

outdated CSI is given by

γ̂B =
P

E[n̂Bn̂
H
B ]

∣
∣ρ(HΦ̃ĥB)

H
w

∣
∣
2

=
P

σ̂2
B

MβHρ2
∣
∣
∣
∑N

n=1 ĥ
H
B,ne

−jφ̃nbn

∣
∣
∣

2

, (15)

where bn and ĥB,n are the n-th element of b and ĥB ,

respectively. If Bob has his perfect channel information, i.e.,

hB , the instantaneous SNR at Bob is given by

γ̃B =
P

σ2
B

MβH

∣
∣
∣
∑N

n=1 h
H
B,ne

−jφ̃nbn

∣
∣
∣

2

. (16)

Next, we design the IRS to maximize the secrecy capacity

in (12). To this end, the optimal IRS should be designed

to maximize the SNR at Bob and minimize the SNR at

Eve. However, since we assume that BS is unaware of Eve’s

instantaneous CSI, we find the optimal IRS by maximizing

the SNR at Bob. In this context, the optimal IRS is obtained

as
φopt
n = ∠

(

ĥ
H
B,nbn

)

. (17)

It is noticed that the optimal IRS maximizing γ̂B in (15) and

γ̃B in (16) are the same since only H and ĥB are known to

the BS and the IRS is being controlled by the BS. By plugging

(17) in (15) and (16), we observe the distributions of γ̂B and

γ̃B in the following lemma.

Lemma 1. γ̂B and γ̃B follow the Gamma distributions,

γ̂B ∼ Gamma (κ̂B, ω̂B) , (18)

γ̃B ∼ Gamma (κ̃B, ω̃B) , (19)

where the scale parameters κ̂B , κ̃B , and the shape parameters

ω̂B , ω̃B are introduced in Appendix A. The corresponding

average SNRs at Bob are given by

E[γ̂B] =
P

σ̂2
B

MβH(ρ2NβB + ρ2N(N − 1)
π

4
βBµ

2
1), (20)

E[γ̃B] =
P

σ2
B

MβH(NβB + ρ2N(N − 1)
π

4
βBµ

2
1). (21)

Proof. See Appendix A.

B. SNR at Eve

Now, we investigate the SNR at Eve. Similar to (15) and

(16), the instantaneous SNR at Eve assuming outdated and

perfect CSI are, respectively, given by

γ̂E =
P

σ̂2
E

MβHρ2
∣
∣
∑N

n=1 ĥ
H
E,ne

−jφ̃nbn

∣
∣
2
, (22)

γ̃E =
P

σ2
E

MβH

∣
∣
∑N

n=1 h
H
E,ne

−jφ̃nbn

∣
∣
2
, (23)

where

σ̂2
E = σ2

E + PMNβH(1− ρ2)βE . (24)

Next, we obtain the distribution of Eve’s SNR as follows.

Lemma 2. γ̂E and γ̃E follow the exponential distributions,

γ̂E ∼ Exp(λ̂E), γ̃E ∼ Exp(λ̃E), (25)

where λ̂E = E[γ̂E ] = PMβHρ2NβE

σ2
E
+PMNβH(1−ρ2)βE

and λ̃E =

E[γ̃E ] =
P
σ2
E

MβHNβE .

Proof. The IRS is designed according to IRS-Bob channel,

thereby φopt
n can be considered as a randomly distributed

variable by Eve. Thus, the SNRs at Eve can be approximated

to exponential distributed variables [7].

C. Secrecy outage probability (SOP)

In this subsection, we analyze the secrecy performance in

terms of the SOP, which is a crucial metric for measuring

the security of a wireless channel. The SOP is defined as

the probability that the secrecy capacity falls below a certain

secrecy rate Rs,

Pso = Pr(Cs 6 Rs) = Pr

[

log2

(
1 + γB
1 + γE

)

6 Rs

]

= Pr
[
γB 6 2Rs (1 + γE)− 1

]

=

∫ ∞

0

FγB
(2Rs (1 + γE)− 1)fγE

(γE)dγE , (26)

where γB ∈ [γ̂B, γ̃B], and γE ∈ [γ̂E , γ̃E]. FγB
(·) and fγE

(·)
are the corresponding probability density function (pdf) and

cumulative density function (cdf) of the SNR at Bob and Eve.

Theorem 1. The exact SOP is given by

Pso =
1

Γ (κB)

∑∞
p=0

(

− 1
ωB

(2Rs−1)
)p

p!

×G2,2
3,3

[
ωB

λE2Rs
| 1, 1 + p− κB, 1 + p

1, p, 1 + p

]

, (27)

where κB ∈ [κ̂B, κ̃B], ωB ∈ [ω̂B, ω̃B], λE ∈ [λ̂E , λ̃E ] and

G·,·
·,· denotes the Meijer’s G-function [15]. Note that even

though (27) contains infinite series, it converges quickly and

can be approximated by a few terms.

Proof. The proof idea is analogous to [16, Corollary 9], hence

omitted due to space constraints.

To obtain further insights on the SOP, the following corol-

lary is provided.

Corollary 1. The lower bound of the SOP is obtained as

Pso >

(
λE

2−RsωB + λE

)κB

, (28)

where κB ∈ [κ̂B, κ̃B], ωB ∈ [ω̂B, ω̃B] and λE ∈ [λ̂E , λ̃E ].

Proof. See Appendix B.



IV. ELEMENT SUBSET SELECTION

In this section, we introduce ESS that can be used to

improve the secrecy performance. ESS is inspired by transmit

antenna selection, which is a technique used to enhance the

wireless transmission [11], [17]. The key idea of ESS is to

select the reflecting elements based on IRS-Bob’s channel.

During data transmission, only the selected elements are turned

on, while the other elements are turned off. More specifically,

the outdated CSI ĥB is used to perform ESS in this work.

The selection is considered random from Eve’s point of view,

which does not help to improve Eve’s SNR but is beneficial

to improve Bob’s SNR. As a result, the secrecy performance

can be effectively enhanced.

As the outdated CSI ĥB is known to the BS, the ESS is

performed based on its magnitude |ĥB|. We arrange |ĥB| in

descending order as

|ĥB,s1 | > |ĥB,s2 | > ... > |ĥB,sN |. (29)

Here, K elements are selected from the total of N reflecting

elements, and the set of selected indices is represented by

S = [s1, s2, ..., sK ]. Therefore, the instantaneous SNR at Bob

with ESS under outdated and perfect CSI are, respectively,

given by

γ̂∗
B =

PMβHρ2K2

σ2
B + PMKβH(1− ρ2)βB

∣
∣
∣
∣

1

K

∑

n∈S

|ĥB,n|ejφ̃n

∣
∣
∣
∣

2

,

(30)

γ̃∗
B =

P

σ2
B

K2MβH

∣
∣
∣
∣

1

K

(
ρ
∑

n∈S

|ĥB,n|ej∆φn+
∑

n∈S

eB,ne
jφ̃n
)
∣
∣
∣
∣

2

.

(31)

Let us define

h̄B =
1

K

∑

n∈S

|ĥB,n| = E

[

|ĥB,s1 |, |ĥB,s2 |, ..., |ĥB,sK |
]

.

(32)

For large number N , we obtain Pr(x ≤ |ĥB,sK |) = N−K
N .

It follows that |ĥB,sK | =
√

−βB ln(1− N−K
N ), since |ĥB,n|

obeys a Rayleigh distribution whose quantile can be computed

by Q(q) =
√

−βB ln(1− q). Additionally, the pdf and cdf of

|ĥB,n| are, respectively, given by

f(x) =
2x

βB
e
− x2

βB , F (x) = 1− e
− x2

βB . (33)

Thus, the mean value of (32) can be calculated by

µ̄B = E[h̄B] =
1

1− F (|ĥB,sK |)

∫ ∞

|ĥB,sK
|

xf(x)dx

=
1

1− F (|ĥB,sK |)

∫ ∞

|ĥB,sK
|

2x2

βB
e
− x2

βB dx

=

√
2βB

1− F (|ĥB,sK |)

∫ ∞

|ĥB,sK
|2

βB

√
re−rdr

=

√
2βB

1− F (|ĥB,sK |)
Γ

(

3

2
,
|ĥB,sK |2

βB

)

, (34)

where Γ(α, x) is the upper incomplete gamma function defined

as Γ(α, x) =
∫∞

x tα−1e−tdt, which is available in most

software tools. According to [18], when N is large, h̄B is

asymptotically normally distributed as

h̄B ∼ AN
(
µ̄B , β̄B

)
, (35)

where µ̄B is given by (34), β̄B = p(1−p)

N [f(F−1(p))]2
and p =

1−eµ̄
2
B/βB . Taking advantage of the fact that the random phase

error at each element is independent of Bob’s channel, we

obtain the distribution of γ̂∗
B and γ̃∗

B in the following lemma.

Lemma 3. The distributions of Bob’s SNR with ESS assuming

outdated and perfect CSI at Bob are, respectively, given by

γ̂∗
B ∼ Gamma (κ̂∗

B, ω̂
∗
B) , (36)

γ̃∗
B ∼ Gamma (κ̃∗

B, ω̃
∗
B) , (37)

where κ̂∗
B =

Kµ2
1µ̄

2
B

2(µ̄2
B
+β̄B)(1+µ2−2µ2

1
)+4Kβ̄Bµ2

1

, κ̃∗
B =

ρ2Kµ2
1µ̄

2
B

2ρ2(µ̄2
B
+β̄B)(1+µ2−2µ2

1
)+4ρ2Kβ̄Bµ2

1
+2(1−ρ2)βB

, ω̂∗
B =

E[γ̂∗
B ]

κ̂∗
B

and

ω̃∗
B =

E[γ̃∗
B ]

κ̃∗
B

, in which

E[γ̂∗
B] =

PMβHρ2K(µ̄2
B + β̄B)(1 − µ2

1 +Kµ2
1)

σ2
B + PMKβH(1− ρ2)βB

, (38)

E[γ̃∗
B] =

PMβHρ2K

σ2
B

(

(µ̄2
B + β̄B)(1− µ2

1 +Kµ2
1)+

K(1− ρ2)βB

)

, (39)

Proof. By using (35) and following the same steps as used in

Lemma 1, we obtain the distribution of γ̂∗
B and γ̃∗

B . Details

are omitted due to space constraints.

Remark 1. Note that the ESS for Eve is considered random,

so the distribution of Eve’s SNR with ESS can be easily

obtained by Lemma 2, replacing N with K . We use γ̂∗
E and γ̃∗

E

to denote the instantaneous SNR at Eve with ESS assuming

outdated and perfect CSI, and we obtain

λ̂∗
E = E[γ̂∗

E ] =
PMβHρ2KβE

σ2
E + PMKβH (1− ρ2)βE

, (40)

λ̃∗
E = E[γ̃∗

E ] =
P

σ2
E

MβHKβE . (41)

Remark 2. The SNR distribution at Bob and Eve remain

unchanged with ESS. Therefore, the closed-form expression

of the SOP with ESS and the corresponding lower bound

can be obtained from Theorem 1 and Corollary 1 by setting

κB ∈ [κ̂∗
B, κ̃

∗
B], ωB ∈ [ω̂∗

B, ω̃
∗
B] and λE ∈ [λ̂∗

E , λ̃
∗
E ].

Finally, the optimal number of selected reflecting elements

can be obtained by

Kopt = argminP ∗
so(K), (42)

where P ∗
so(K) is the SOP as a function of K . Therefore, the

SOP with optimal ESS can be calculated by P ∗
so(Kopt).
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Fig. 1: Worst-case SOP, Rs = 3 bps/Hz
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Fig. 2: Comparison of the SOP in different scenarios, ρ = 0.9, Rs = 4 bps/Hz

V. NUMERICAL RESULTS

In this section, we present the numerical results to evaluate

the secrecy performance using the proposed ESS method. We

obtain the numerical results by averaging over 105 Monte-

Carlo simulations. Throughout the simulations, we set M = 4,

P = 5 dBm, σ2
B = σ2

E = −120 dBm, and N = 100 (if not

specified otherwise). We assume that the distance between BS

and IRS is d1 = 10 m, and the distance between IRS and

Bob/Eve is d2 = 80 m. The pass-loss factors βH and βB/E

are obtained by βH = C1d
−α1

1 and βB/E = C2d
−α2

2 , where

C1 = −26 dB, C2 = −28 dB, α1 = 2.2, and α2 = 3.67. Also,

it is assumed that the IRS phase error is uniformly distributed

in [−π
4 ,

π
4 ].

We first evaluate the SOP in the scenario where Bob knows

his outdated CSI ĥB and Eve knows her perfect CSI hE in

Fig. 1. This is the worst case because outdated CSI available

at the receiver degrades the SNR at Bob. As a result, the

secrecy performance is more critical than in other scenarios.

Fig. 1a shows the SOP as a function of the number of

selected reflecting elements K . Moreover, we compare the

performance of the random ESS with that of the proposed

ESS. It can be seen that the proposed ESS performs better

than the random ESS. Meanwhile, the performance of both

selections is the same when K = 100, since all elements

available are selected. An interesting observation is that the

minimum SOP is achieved when only a small number of

the reflecting elements are selected. We also compare the

theoretical results with the simulation results. As can be seen,

the theoretical results agree very well with the simulation

results, which validates Theorem 1. Besides, the lower bound

of the proposed ESS behaves similarly to the exact results

and therefore can be used to find the optimal number of

the selected reflecting elements. Fig. 1b shows the secrecy

outage probability as a function of the number of reflecting

elements N , where we compare the SOP using all elements

(w/o ESS) and using the optimal ESS. It can be seen that the

SOP becomes smaller as the number of reflecting elements

increases. Also, the SOP is getting higher as the correlation

parameter ρ decreases, which means that the outdated CSI

degrades the secrecy performance. Besides, we find that the

secrecy performance with optimal ESS is better than without

ESS, especially for large N . Moreover, a perfect agreement

between the theoretical and simulation results is observed,

indicating the correctness of closed-form expressions.
In Fig. 2, we compare the SOP in different scenarios,

where we use curves and markers to represent the theoretical

and simulation results, respectively. The scenarios are defined

in section III. Fig. 2a illustrates the SOP with the random

ESS and the proposed ESS versus the number of selected

reflecting elements K . It can be seen that the minimum SOP



with the proposed ESS for all scenarios is achieved by using

only a subset of the IRS. Thus, it is necessary to find the

optimal number of selected elements to achieve the minimum

SOP. The secrecy performance without ESS and with the

optimal ESS is compared in Fig. 2b, where we can see that

the secrecy performance with the optimal ESS is better than

that without ESS, implying that our proposed method can

effectively enhance the secrecy performance in all scenarios.

VI. CONCLUSION

In this work, we have studied the secrecy performance

in an IRS-assisted multi-antenna BS system. In particular,

we assumed that the BS is aware of the outdated CSI and

the beamformers at the BS and IRS are designed by the

outdated CSI. We characterized the SNR at Bob and Eve,

which was used to analyze the SOP. In addition, we proposed

an ESS method to improve the secrecy performance. Both

the simulation and analytical results show that the proposed

method can effectively improve the secrecy performance. An

interesting observation is that the minimum secrecy outage

probability can be achieved with a subset of the IRS.

APPENDIX

A. Proof of Lemma 1

Substituting (17) into (15), we obtain γ̂B =
P
σ̂2
B

MβHρ2|∑N
n=1 e

j∆φn |ĥB,n||2. Let X̂ =
∑N

n=1 e
j∆φn |ĥB,n|, assuming large number N , we

have Re[X̂ ] ∼ N (m̂u, δ̂
2
u) and Im[X̂] ∼ N (0, δ̂2v),

where m̂u = N
2

√
πβBµ1, δ̂2u = N

2 βB(1 + µ2 − π
2µ

2
1),

and δ̂2v = N
2 βB(1 − µ2) [14]. Thus, we obtain

|X̂|2 = (Re[X̂])2 + (Im[X̂])2 follow a Gamma distribution.

It follows that γ̂B obeys a Gamma distribution with

the mean value E[γ̂B] = P
σ̂2
B

MβHρ2(| Im[X̂ ]|2 +

|Re[X̂]|2) = P
σ̂2
B

MβHρ2
(

m̂2
u + δ̂2u + δ̂2v

)

=
P
σ̂2
B

MβHNβBρ
2(1 + π

4µ
2
1(N − 1)), and the variance is

given by V[γ̂B] =
(

P
σ̂2
B

MβHρ2
)2

2
(

2m̂2
uδ̂

2
u + δ̂4u + δ̂4v

)

.

Therefore, the shape and scale parameter can be

computed by κ̂B = (E[γ̂B ])2

V[γ̂B] =
(m̂2

u+δ̂2u+δ̂2v)
2

2(2m̂2
uδ̂

2
u+δ̂4u+δ̂4v)

and

ω̂B = V[γ̂B ]
E[γ̂B] = P

σ̂2
B

MβHρ2
2(2m̂2

uδ̂
2
u+δ̂4u+δ̂4v)

(m̂2
u+δ̂2u+δ̂2v)

, respectively. In

the case where the perfect CSI is available, Bob’s SNR is given

by γ̃B = P
σ2
B

MβH |ρ∑N
n=1 e

j∆φn |ĥB,n| +
∑N

n=1 eB,n|2.

Let X̃ =
∑N

n=1 e
j∆φn |ĥB,n| +

∑N
n=1 eB,n, we have

Re[X̂] ∼ N (m̃u, δ̃
2
u) and Im[X̃] ∼ N (0, δ̃2v), where m̃u =

ρN
2

√
πβBµ1, δ̃2u = ρ2N

2 βB(1 + µ2 − π
2µ

2
1) +

N
2 (1 − ρ2)βB ,

and δ̃2v = ρ2N
2 βB(1 − µ2) +

N
2 (1 − ρ2)βB . Following the

same steps as deriving the scale and shape parameters

under the assumption of outdated CSI, we observe

κ̃B =
(m̃2

u+δ̃2u+δ̃2v)
2

2(2m̃2
uδ̃

2
u+δ̃4u+δ̃4v)

and ω̃B = P
σ2
B

MβH
2(2m̃2

uδ̃
2
u+δ̃4u+δ̃4v)

(m̃2
u+δ̃2u+δ̃2v)

.

B. Proof of Corollary 1

The SOP in (26) can be rewritten as Pso = Pr[γB 6

2Rs (1 + γE) − 1] = Pr[γB 6 2RsγE + constant] > 1 −

Pr[γE/γB 6 2−Rs ]. Exploiting the fact that γB and γE
follow the Gamma and exponential distribution, we have
E[γB]γE

E[γE]γB
follows an original Fisher–Snedecor distribution with

the degrees of freedom d1 = 2, d2 = 2κB , where E[γB ]
and E[γE ] are given by Lemma 1 and Lemma 2, respectively.

As a result, we obtain Pso > 1 − Pr
[
γE/γB 6 2−Rs

]
=

1 − Pr
[
E[γB ]γE

E[γE ]γB
6 2−Rs

E[γB]
E[γE]

]

= 1 − I d1x

d1x+d2

(1, κB) =
(

λE

2−RsωB+λE

)κB

, where I is the regularized incomplete beta

function and x = 2−Rs
E[γB ]
E[γE] .
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