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Abstract—In cellular networks, User Equipment (UE) handoff
from one Base Station (BS) to another, giving rise to the load
balancing problem among the BSs. To address this problem,
BSs can work collaboratively to deliver a smooth migration (or
handoff) and satisfy the UEs’ service requirements. This paper
formulates the load balancing problem as a Markov game and
proposes a Robust Multi-agent Attention Actor-Critic (Robust-
MA3C) algorithm that can facilitate collaboration among the
BSs (i.e., agents). In particular, to solve the Markov game and
find a Nash equilibrium policy, we embrace the idea of adopting
a nature agent to model the system uncertainty. Moreover, we
utilize the self-attention mechanism, which encourages high-
performance BSs to assist low-performance BSs. In addition,
we consider two types of schemes, which can facilitate load
balancing for both active UEs and idle UEs. We carry out
extensive evaluations by simulations, and simulation results
illustrate that, compared to the state-of-the-art MARL methods,
Robust-MA3C scheme can improve the overall performance by
up to 45%.

Index Terms—Load balancing, multi-agent reinforcement
learning, Nash equilibrium, self-attention

I. INTRODUCTION

In a mobile cellular system, User Equipment (UE) move-
ments across Base Stations (BSs) result in a Load Balancing
(LB) problem causing UE dissatisfaction [1]. To balance the
load, UEs are migrated among BSs and channels in each
BS. Thus, it is crucial to coordinate multiple base stations to
reallocate UEs when they move from one region to another.
In a 5G network, BSs could be more close to each other
compared with LTE/4G network, which means UEs are more
likely to move from one BS to another more frequently. This
makes BSs’ collaboration even more important than before.

Recently, Reinforcement learning (RL) approaches have
shown the advantages of solving the load balancing problem
[2]. However, existing RL-based LB algorithms cannot address
multi-BSs LB problem properly. The single agent solution is
proposed to control BSs with one policy [3]. Hierarchical
[4] and transfer learning-based RL methods [5] have also
been developed and showed improved performance in terms
of data throughput and load variation reduction. However,
these methods fail to consider multi-agent interactions and
cannot guarantee Nash equilibrium. In addition, the classical
multi-agent actor-critic algorithm [6] does not consider Nash
equilibrium.

To address aforementioned issues, in this paper, we formu-
late the load balancing problem over multiple base stations
(Fig. 1) as a Markov game. Specifically, we treat base stations

Base Station
(BS)

Sectors in each
BS

Fig. 1: A cellular network tessellation with 7 BSs. Each
hexagon denotes one sector. One BS consist of three sectors,
which draw in the same color. Each sector controls 120 angle
degrees. Furthermore, in each sector, there are 4 channels
residing on 4 different carrier frequencies. In this paper,
we control the parameters of these 7 BSs to achieve load
balancing.

as agents and learn the corresponding policies to control
the load balancing. To solve the Markov game, we propose
Robust-MA3C, a Robust-Multi-agent Attention Actor-Critic
algorithm. The main focus of our work is to leverage col-
laboration among BSs to improve system performance. In
particular, we seek to enhance the UE experience in under-
performing BSs. A major challenge in achieving these goals
is that agents tend to maximize their own goals greedily,
which affect the overall experiences of the UEs. The state-
of-the-art rule-based method cannot address this challenge
properly, since they do not formulate the problem in multi-
agent settings. The single-agent approach available in the
literature is not suitable to foster BS collaboration [3]. This is
because, in single-agent algorithms, BSs are controlled by one
centralized neural network, which fails to converge when the
action space increases with the number of agents. The state-
of-the-art MARL load balancing algorithms are not able to
deal with this challenge either, since they spare no effort to
preserve the UE experience in poorly performing BSs.

To overcome this challenge, we adopt the following two
mechanisms. First, to encourage collaboration among all BSs,
we introduce an attention-based [7] multi-agent actor critic
algorithm. Specifically, during the centralized training, each
transmitted information will be assigned a weight value. The
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motivation is that agents will have different attention to the
received information. Since our objective is to maximize the
overall system performance, high-performance agents can help
the poorly performing agents based on transmitted informa-
tion. Second, we utilize the nature agent idea [8] to achieve
the Nash equilibrium policy. The nature agent plays against all
other agents by selecting the worst-case actions. Thus, to fight
against the worst-case scenario raised by the nature agent, all
agents need to work together and develop a joint equilibrium
policy.

We evaluate the proposed Robust-MA3C method against
the state-of-the-art (SOTA) multi-agent RL (MARL)-based
methods in a system-level network simulator for a network,
which is depicted in Fig. 1. The simulation results show that
our method can improve the network throughput by up to 45%.

In summary, this paper makes the following contributions:
• We formulate the multi-BS LB problem as a Markov

game and propose a MARL solution, which enhances
system performance by exploiting collaborations among
the BSs.

• To improve the underperformaing BSs’ performance, we
propose an attention-based weighting mechanism to each
transmitted information.

• To model uncertainty, we add a nature agent to play
against all agents to find the Nash equilibrium policy.

• We benchmark the proposed method against five other
methods and demonstrate its performance superiority.

II. RELATED WORK

Load balancing algorithms have been designed for wireless
networks to evenly distribute UEs across different network
resources, i.e., frequency bands (channels) and base stations.
The MAS model [9] is for a dynamic load balancing scheme
for a multi-agent system in which the agent selection is based
on agents’ credit value, and location selection is based on the
inter-machine communication load. Another mobility-based
load balancing infrastructure is called JIAC [10]. The migra-
tion decision is taken locally which prevents the centralized
control problems. In [11], a centralized load balancing system
is given. The selection policy is based on the job’s execution
time, while the location policy is based on negotiation with
cluster nodes. Previous work [3] has explored single-agent
RL for load balancing in network systems, with a close-to-
heuristic performance achieved in moderate-scale simulations.
This paper applies and studies MARL algorithms on the
network load balancing problem in a realistic testbed, which
considers load balancing for idle UEs and active UEs at the
same time.

Approaches that address multi-agent cooperative tasks can
be generally grouped into two types. The first type is based on
implicit message exchange. These types of methods utilize a
centralized training framework to share agents’ value function
parameters, which facilitates agents’ collaboration. MADDPG
[12] adopts global observations and actions for each action-
value function estimation. COMA [13] leverages the advantage
of this idea and estimates each advantage function using a

counterfactual baseline. The second type of methods is based
on explicit communication using learned protocols [14]–[16].
In DIAL [14], each agent generates message and Q-value
function at the same time. Each agent then encoded the learned
message and computed it with other transmitted information.
CommNet [16] learns a generalized communication protocol,
which aggregates all of the received messages and computes
the average value. NeurComm [15] propose a differentiable
communication protocol, which can reduce information loss.
In this paper, we focus on the first type with implicit message
exchange, because it is more applicable for a real-world
scenario without additional communication protocol require-
ments.

III. SYSTEM MODEL AN ASSUMPTIONS

A. Wireless Network Terminologies

We use the term “load” to refer to the number of UEs being
served. The term “Base Station” (BS) describes a physical site,
where radio access devices are placed. In each BS, there are
three non-overlapping “sectors”, each of which controls 120
angle degrees. A sector serves the UEs located in a certain
direction which is associated with the corresponding BS. Each
sector contains several “channels” corresponding to the carrier
frequencies supported by a sector. A channel is a service entity
that serves UEs in a certain direction and on a specific carrier
frequency.

B. Communication Load Balancing Features

In this work, we focus on leveraging reinforcement learning
to optimize load balancing for two types of users, i.e., idle
UEs and active UEs. The idle UE load balancing (IULB) is a
load balancing feature designed specifically for idle UEs. This
load balancing technique can help adjust the host channels
for idle UEs from a crowded channel to a less overloaded
channel. The channel is referred to as a combination of the
sector and frequency. The control knobs for IULB are the
channel re-selection ratios, which lie between 0 and 1. By
adjusting the re-selection ratios, the probabilities of frequency
to be selected as the host channel will be adjusted. Then,
when the status for UEs changes from idle to active, the
communication load will be distributed more evenly between
different cells. Active UE load balancing (AULB) is a load
balancing feature designed for active UEs that are actively
exchanging data with the BS. The AULB will be triggered
when the load of the current serving channel is larger than the
neighbouring channel, and one of the neighbouring channels
will be chosen. For AULB, there will be two threshold values
for each channel, which help to determine when the load
balancing feature will be determined and which neighbouring
channel will be determined as the target channel.

C. System Metrics

Suppose that there are NU UEs (either active, idle, or
mobile) in the network. Define Ui as the set of UEs associated
with the i-th channel. Among Ui, there are both active UEs
(denoted as Uai ) and idle UEs (denoted as Udi ). Naturally, we



have Ui = Uai ∪Udi . Further, let ui,k denote the k-th UE in the
i-th channel. Note that an idle UE at the current moment may
become active in the future, and vice versa. We aim to balance
the assignments of UEs to different channels, to improve the
system performance in terms of the following performance
metrics.

Average Throughput Gaver = 1
NU

∑
i

∑
k
Ai,k

T measures
the overall system performance, where T is the time period
of interest, and Ai,k denotes the total size of packets received
by ui,k within T . Improving this metric means increasing the
overall system performance.

Minimum Throughput Gmin = mini,k

(
Ai,k

T

)
captures

the worst-case UE performance.
Standard Deviation Gsd =(√

1
NU

∑
i

∑
k(
Ai,k

T −Gaver)2
)−1

represents the fairness

services to all UEs. Minimizing this metric reduces the gap
between different UEs’ performance, and improves fairness
to UEs.

We linearly combine these metrics as the reward r =
Gaver +Gmin−Gsd. Note that these metrics are in the same
range, which does not require normalization.

IV. METHODOLOGY

A. Definitions and Problem Statement

There exist N BSs, which allocate UEs to different channels
based on their current location and usage. All BSs work
together to satisfy the UEs’ communication requirements. In
this work, we formulate this multi-base-station load balancing
task as a Markov game G, which is comprised of a set of states
and possible actions. Each action transits the current state to
a new state and receives a reward. The objective is to find the
optimal policy, i.e., an action in each state to maximize the
expected total reward. A Markov game can be described by a
tuple G = (N ,S,A,P,R):
• N : the set of agents in the Markov game. Here, we denote

them as N = {1, . . . , N}, where N is the total number
of base stations.

• S: the set of joint states. We denote agent k’s state as
sk. In our case, there are three types of states, which are
number of UEs in every BS sue, the bandwidth utilization
of every BS sband, and the average throughput of every
BS stput.

• A: the set of joint actions of all agents, a = {a1 ×
· · · × aN}. Agent k’s action is denoted by ai. In par-
ticular, every action ak contains two components. The
first component regulates the active UE load balancing
operations and the second component controls the idle
UE load balancing parameters.

• P: the state transition probability function, where
P (St+1 = s′|St = s,At = a) maps a state–action pair
at time t to a probability distribution over states at time
t+ 1, such that P : S ×A× S′ → [0, 1].

• R: the reward function. In the multi-agent cooperation
setting, the goal is to maximize the total reward r =

r1 + . . .+ rn, where Rk : Sk ×Ak → Rk is the reward
of agent i (to be defined in Sec. III-C).

Besides, we denote by π = {π1, . . . , πN} the set of policies
of all agents. Formally, we define the multi-agent LB problem
as follows:

J (π) = max
αk,βk,γk∼πk

N∑
k=1

Gk, (1)

s.t. αk ∈ [αkmin,α
k
max], (2)

βk ∈ [βkmin,β
k
max], (3)

γk ∈ [γkmin,γ
k
max], (4)

where Gk denotes the system performance of BS k, αkmin
and αkmax denote the controllable range of AULB actions of
BS k, and βkmin, βkmax, γkmin and γkmax define the con-
trollable range of IULB actions of BS k. In this paper, αk ∈
[−2db, 2db],βk ∈ [−20db, 20db],γk ∈ [−20db, 20db], k =
{1, . . . , N}. Due to its combinatorial nature, solving this
multi-agent LB problem using traditional optimization methods
will not be feasible for a practical system.

The goal of MARL is to learn a set of agent policies
{[αki,j ,βki,j ,γki,j ] ∼ πk}k=1,...,N that maximize the total
expected return

∑N
k=1Gk per episode.

For multi-agent load balancing, since we focus on maximiz-
ing the joint reward of all BSs, the proposed solution should
be in accordance with the Nash equilibrium. In particular, the
Nash equilibrium is defined as follows:

J (πk∗ , π−k∗ ) ≥ J (πk∗ , π−k∗ ),∀k ∈ N , (5)

where π−k =
∏
k 6=i π

i refers to other agents’ joint policies
except agent k. Our goal is to find a Nash equilibrium such
that, given all other agents’ equilibrium policies π−k∗ , there is
no motivation for agent k to deviate from πk∗ .

B. Actor-Critic Algorithm

To start with, we first introduce the actor-critic algorithm,
which is the primitive of the state-of-the-art algorithms in
MARL [12], [13]. The actor-critic algorithm [17], as its name
suggests, consists of two functions: the actor function and
the critic function. The critic function estimates the action
value, which is often noted as the Q-value function. This
function serves as the policy learning guidance as it estimates
the performance of the current action, which can be seen as
an expert that controls the direction of gradient learning. The
actor function directly controls the agent’s behaviors according
to the “suggestion” from a critic.

C. Multi-agent Actor-Critic Algorithm

We propose to extend the actor-critic algorithm to the
multi-agent scenario. We adopt the centralized critic training
decentralized actor execution framework [12], [13]. During
the critic training phase, each agent receives neighbor agents’
information (the size of the transmitted information is about
a few bytes) at every step t, which are states si and actions
ai. Thus, the critic loss function can be written as:

L(φi) = Es,a,r[y −Qi(s1t ,a
1
t , . . . , s

k
t ,a

k
t ;φ

i)]2, (6)
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Fig. 2: Illustration of proposed algorithms. Dash lines refer
to the information transmission. Different dash line colors
correspond to different importance weights.

where y = ri+γQi(s1t+1,a
1
t+1, . . . , s

k
t+1,a

k
t+1;φ

i). While
in the execution phase, the agent makes decisions based on its
states. According to the policy gradient theorem [18], the actor
updating function can be written as:

∇J (θi) = Esi,ai∼D[∇θi logπi(ai|si)Qi(s1t ,a
1
t , . . . , s

k
t ,a

k
t )],

D. Attention-Based Multi-agent Actor-Critic Algorithm

To encourage collaboration among different agents, we pro-
pose an attention-based multi-agent learning approach. Specif-
ically, in the centralized critic training phase, we adopt the self-
attention mechanism [7] to learn the importance weights of
transmitted information. For the simplicity of calculation, we
encode information ei = g(si,ai), where g(·) is a multi-layer
perceptron (MLP). Hence, the importance weight of agent j
to agent i is denoted as αi,j = softmax

(
ei·ej√
dk

)
ei, where dk

is the dimension of ek. Then, we assign an attention weight
to each received information ej and re-write the critic loss
function as follows:

L(φi) = 1

N

∑
j

(y −Qi(si, αi,1e1, . . . , αi,Nej ;φi))2,

where y = ri + γQi(ei, αi,1e1, . . . αi,NeN ;φi),
(7)

where Qi(·) is the centralized action-value function [12], to
which we extend the neighbor attention. The inputs of this
function are encoded by agents’ observations and actions. The
outputs are action-value for agent i.

Moreover, with the introduced attention weights, the actor
updating function can be expressed as:

∇L(θi) = Esi,ai∼D[∇θi logπi(ai|si)
Qi(ei, αi,1e1, . . . αi,NeN )].

(8)

E. Improving Nash Equilibrium by Adding a Nature agent

To further enhance agents’ collaborations and solve the
Nash equilibrium defined in Eqn. 5, we adopt the nature agent
idea [8] and propose a corresponding Robust-MA3C algo-
rithm. The motivation is that the nature agent always plays
against each agent by selecting the worst-case actions at every

state, which can be also seen as the model of the reward
uncertainty. Thus, to fight against the worst-case scenario
raised by the nature agent, all agents need to work together
and develop a joint equilibrium policy.

We replace the reward with the nature agent in the critic
function and develop a robust-critic loss function:

y = πω(ŝ, â) + γQi(ei, αi,1e1, . . . αi,NeN ;φi), (9)

where nature-agent’s policy is approximated by an neural
network parameterized by ω, ŝ stands for the nature-agent’s
state, and â refers to nature-agent’s action. We update the
nature agents policy parameter as follows:

ωt+1 = ωt − βt · ∇πωt(ŝt, ât), (10)

where βt is the learning rate that diminishes over time, i.e.,
limt→∞ βt = 0. The Robust-MA3C algorithm is summarized
in Algorithm 1. An overview of the proposed method, i.e.,
Robust-MA3C is given in Fig. 2.

Algorithm 1 Robust-MA3C

1: for t = 1 to maximum episode length do
2: Execute actions a = (a1, . . . , aN ) and observe reward

r and next states s′ = (s′1, . . . , s
′
N ).

3: Store (s, a, r, s′) in replay buffer D
4: for agent i to N do
5: Sample a random minibatch of samples (s,a,r,s’) from

D
6: Update the nature-agent’s policies by using Eqn 10.
7: Update critic loss by using Eqn. 9.
8: Update actor loss by using Eqn. 8.
9: end for

10: end for

V. EVALUATION

A. Experiment Setup

The experiments reported here utilize a proprietary system-
level network simulator. This simulator was created to simulate
the behaviors of cellular communication networks. We use
a network with 7 BSs to benchmark the proposed method,
each of which supports 3 sectors. In each sector, there are 4
channels residing on 4 different carrier frequencies. (These
4 carrier frequencies are identical across different sectors
and BSs.) The scenario is wrapped around at the edges. We
emulate various traffic scenarios and days. The details of these
simulation parameters can be seen in Table. I. Specifically, two
types of UEs need to be balanced, with the two aforementioned
load balancing mechanisms, i.e., AULB and IULB. These UEs
are uniformly distributed geographically at initialization. The
active UE movement follows a random walk process with an
average speed of 3m/s. The packet arrival follows a Poisson
process with an average inter-arrival time of 200ms.

To demonstrate the effectiveness of the proposed method,
we conduct experiments in a scenario illustrated in Fig 1. In
this scenario, there are 7 BSs, 6 arranged in a hexagonal ring
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Fig. 3: System performance over various metrics in different traffic scenarios. In metric average throughput, the higher the
better. In minimum throughput, the higher the better. In standard deviation, the lower the better.

Traffic ID Day UE Active UE Idle UE Packet Size
A 1 40 12 28 0.41 Mbps
B 1 40 10 30 1.03 Mbps

C
1 40 7 33 0.89 Mbps
2 40 18 22 1.18 Mbps
3 40 19 21 1.11 Mbps

TABLE I: Parameters of different traffic scenarios and days.

around a central station. In this scenario, actions taken by one
BS affect other BSs’ decisions. We control all of these 7 BSs
to analyze the effectiveness of the proposed method.

B. Methods Evaluated

We implement the following baseline methods. Non-LB
evaluates the system performance without load balancing.
Rule-based controls a BS based on prior knowledge and
fixed control parameters. Independent DDPG trains each BS
independently by utilizing DDPG policy learning algorithm
[19]. MADDPG introduces centralized training decentralized
execution framework to facilitate agents’ collaboration, which
is one of the SOTA MARL methods [12]. Robust-MADDPG
develops a Q-learning algorithm to find robust Nash equilib-
rium policies, which also solves the model uncertainty problem
[8]. This is a follow-up work of MADDPG. MA3C (ours) the
ablation study of proposed Robust-MA3C without a robust
agent. Note that this approach does not guarantee to converge
to the Nash equilibrium.

C. Evaluation Results in Different Traffic Scenarios

We evaluate all the comparison schemes on different traffic
scenarios, which are shown in Fig. 3 and showcase the
evaluation results on the aforementioned metrics. From this
figure, we can observe that the proposed MA3C and Robust-
MA3C algorithm consistently outperforms other baselines in
terms of various metrics. Compared to the third best baseline
(i.e., Robust-MADDPG), MA3C increases the performance
of average throughput, minimum throughput, and standard
deviation by up to 12%, 31%, and 42%. This illustrates
that, by utilizing the neighbor-aware attention mechanism, our
proposed MA3C MARL algorithm enhances agents’ collabo-
rations.

Furthermore, we visualize the effectiveness of combining
robust agents by comparing Robust-MA3C to the third best
baseline. The results show that Robust-MA3C improves the
performance over corresponding metrics by up to 18%, 37%,
and 45%. This verifies the effectiveness of finding Nash
equilibrium and further advances the state-of-the-art.

D. Evaluation Results in Different Days

Next, we further present results on different days of one
traffic scenario, which are depicted in Fig. 4. We draw the
same conclusion that the proposed two algorithms can improve
the system performance overall metrics. Precisely, MA3C in-
creases the performance of average throughput, minimum
throughput, and standard deviation by up to 12%, 31%, and
42%. As for Robust-MA3C, it improves the performance over
metrics by up to 19%, 37%, and 45%. These results further
illustrate the effectiveness of the proposed algorithms.

E. Evaluations of Individual BSs

To better understand the performance of each BS, we
present a learning curve in Fig. 5. Note that we use the
Robust-MA3C as the training algorithm as an example since
MA3C illustrates the same phenomenon. In this figure, we
observe that all BSs converge to the same range of rewards
1.25 ∼ 1.5. This result illustrates that after training around
30k episodes, all BSs tend to achieve a Nash equilibrium and
further illustrates the effectiveness of the proposed method.
Among the learning curves, we can observe an interesting
phenomenon: to reach a Nash equilibrium, some agents that
achieve high reward at the early stage would decrease their
performance for poorly performing BSs. For example, we find
there is a big drop in the learning curve of BS#6. This BS#6
achieves a high reward at around 12k episodes. Then, the
performance of this agent drastically drops to a low value.
This happens because other agents cannot find optimal policies
at this time. To help the poorly performing agents, BS#6
would like to explore some sub-optimal actions and sacrifice
its performance to help the other agents. Finally, the received
reward of BS#6 steadily increases after other agents converge.
With the help of good agents, all agents collaborate and
converge on the same range of rewards.
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Fig. 4: System performance in different days.
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Fig. 5: The MA3C learning curves of seven BSs. The x-axis
refers to the training episodes and the y-axis stands for the
mean episode rewards that defined in Sec. III-C.

VI. CONCLUSION

We have studied the multi-agent load balancing problem in
cellular networks, where active UEs and idle UEs are migrated
across BSs. A major challenge lies in how to enable collabora-
tion among multiple BSs to achieve the joint Nash equilibrium
policy for the agents. To address this challenge, we have
proposed a novel algorithm, i.e., Robust-MA3C, a Robust-
Multi-agent Attention Actor-Critic load balancing algorithm.
Specifically, to provide a good migrating service, we utilize
an attention mechanism to improve the performance of low-
performance agents with the help of high-performance agents.
In addition, we leverage the idea of nature-agent to achieve
the Nash equilibrium. The evaluation results demonstrate that
Robust-MA3Ccan achieve superior performance over the rule-
based and other multi-agent reinforcement learning algorithms
on three key network performance metrics. By using the
simulation results, we have also demonstrated how the agents
converge to Nash equilibrium.
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