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Abstract—Reconfigurable intelligent surface (RIS) is a newly-
emerged technology that, with its unique features, is considered
to be a game changer for future wireless networks. Channel
estimation is one of the most critical challenges for the realization
of RIS-assisted communications. Non-parametric channel estima-
tion techniques are inefficient due to the huge pilot dimensionality
that stems from the large number of RIS elements. The challenge
becomes more serious if we consider the mobility of the users
where the channel needs to be re-estimated whenever the user
moves to a new location. This paper develops a novel maximum
likelihood estimator (MLE) for jointly estimating the line-of-sight
(LOS) channel from the user to the RIS and the direct channel
between the user and the base station. By smartly refining the
RIS configuration during the channel estimation procedure, we
show that the channels can be accurately estimated with only a
few pilot transmissions—much fewer than the number of RIS
elements. The proposed scheme is also shown to be capable of
effectively tracking the channel when the user moves around in a
continuous but non-stationary manner with varying LOS angles.

Index Terms—Reconfigurable intelligent surface, parametric
channel estimation, maximum likelihood estimator.

I. INTRODUCTION

A reconfigurable intelligent surface (RIS) can shape the
propagation environment between a wireless transmitter and
receiver [1]-[3]. The prevalent use case is to deploy an RIS
within line-of-sight (LOS) from a base station (BS) and then
configure it to reflect the BS’s signals toward a user that has
LOS to the RIS but not to the BS [4]. This is because the RIS
cannot manage the highly frequency-selective fading in non-
LOS scenarios and hardly beats a direct LOS path. Channel
state information (CSI) is essential for RIS configuration and
can be acquired through pilot signaling. Unfortunately, the
pilot length required by the least-squares (LS) estimator [5]
and minimum mean-squared error estimator [[6] is proportional
to the number of RIS elements, which can be in the order of
hundreds. This massive pilot requirement makes it essential to
find an answer to the question posed in [3]: “Can an RIS be
real-time reconfigured to manage user mobility?”

Dynamic RIS reconfiguration under user mobility has been
considered in several recent works, with a focus on scenarios
with stationary fading processes. Jakes’ model was used in
[7], [8]] to describe the temporal fading correlation over non-
LOS channels with Rayleigh fading and known statistics.
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LOS channels were treated in [9], [10] using Rician fading
models with similar temporal correlation and LOS paths that
are constant over time except for the phase shifts. These
approaches can track the channel aging for users moving in
a tiny region where the channel statistics can be modeled
as stationary but cannot manage large-scale mobility (e.g.,
vehicles or people passing by an RIS). In LOS scenarios,
where the optimal RIS configuration reflects the signal via
the LOS path [4]], the RIS must only be reconfigured when
the user moves out of the main lobe of the reflected signal;
that is, when the channel statistics are changing so the prior
methods are insufficient.

Pilots must be transmitted more frequently under mobility,
thus it is problematic to use the approaches in [7]-[10] that
require a pilot length equal to the number of RIS elements
(plus one for the direct path). There are ways to utilize the
channel structure to reduce the pilot length. One approach
is to treat adjacent RIS elements as a single element [11],
at the cost of reduced beamforming gain. By limiting the
scope to a LOS scenario, one can exploit the resulting channel
structure to estimate the complete channels using shorter
pilots, using compressive sensing or array signal processing
methods [12]. For example, parametric maximum likelihood
estimators (MLEs) were derived in [13]], [14], but without
considering a direct path or user mobility.

In this paper, we consider the estimation and tracking of the
LOS channel between the UE and RIS, particularly consider-
ing large-scale mobility where there is no stationary channel
statistics (contrary to previous works). We derive a new MLE
for joint estimation of the UE-RIS and direct channel, with
arbitrary RIS configurations during pilot transmission. We
propose a mechanism where the estimation accuracy is pro-
gressively refined by updating the RIS configurations during
pilot transmission, thereby enabling much fewer pilots than in
[S]-[1Q]. Finally, we demonstrate how the mechanism can be
used for tracking the channel under user mobility.

II. SYSTEM MODEL

An RIS-assisted communication system is considered,
where the transmission between the single-antenna UEs and
the single-antenna BS is aided by an RIS with N recon-
figurable elements. The channel between the BS and the
RIS, h = [hy,...,hn]" € C¥, is assumed to be known
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since the RIS and BS are deployed at fixed locations. The
channel between an arbitrary UE and the RIS is denoted by
g=1g1,...,9n]" € CV and the direct channel between this
UE and the BS is represented by d € C. The BS serves
a multitude of UEs at different locations in a time-division
multiple access (TDMA) manner. The channels g and d are
time-varying in a non-stationary manner and must thus be
estimated in the absence of a statistical characterization. We
consider the uplink but the results of this paper are also
applicable to the downlink.

If the UE transmits the signal = € C to the BS, the received
signal can be expressed as [4]

N
Y= <Z hngneijen + d) T+ w, (D

n=1

where w ~ N¢(0,0?) is the complex Gaussian receiver noise
and 6,, is the phase shift that the nth RIS element applies to
the impinging signal. If x4 ~ N¢(0, Py) is the transmitted
data signal with power Py, the spectral efficiency (SE) for a
given RIS configuration is [4]
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where the expression on the first line holds for the arbitrary
RIS phase shifts e=7%1 ... e=7%% and the upper bound on
the second line is achieved by setting the RIS phase shifts as
0, = arg(h,)+arg(g,) —arg(d) forn = 1,..., N. With this
optimal selection, the signals from all the N + 1 propagation
paths are combined coherently at the BS. As h is assumed to
be known, we need to estimate the direct channel d and the
channel g between the UE and RIS. To focus on the channel
estimation problem, we consider a hardware implementation
where any phase shifts 6,, € [0,27) can be selected.

In the next section, we will develop a novel MLE for
joint estimation of g and d, where g is assumed to be LOS-
dominant such that

ge A= {\/Eej“’a(go) B >0,we [O,27r),<p€<1>}, )

with 8 and w denoting the channel gain and the phase shift at
the reference RIS element (first element), and a(¢) being the
array response vector for a plane wave arriving from the angle-
of-arrival (AOA) ¢. Considering a planar RIS, we have ¢ =
[Paz, pe1]™ Where ¢,, and . are the azimuth and elevation
Ao0As and the set @ is given by
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The array response vector for the considered planar RIS can
be expressed as

alp)=|1,... e/ (Nu=D)gpm
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where nyg and ny are the row and column indices of the RIS
elements, respectively, and Ny and Ny denote the number
of elements in each row and column of the RIS such that
N = NuNvy. Further,
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with Ay and Ay indicating the inter-element spacing between
the adjacent horizontal and vertical elements.

III. PARAMETRIC MAXIMUM LIKELIHOOD ESTIMATOR

In this section, we will derive the proposed MLE for the

problem at hand. By defining the RIS phase-shift vector § =

e 0 . ,e*j(’N}T € CV and the diagonal matrix Dy, =
diag(hi,...,hn), we can rewrite as

y=(0"Dng+d)z+w. ®)

The cascaded UE-RIS-BS channel 87Dy, g can be interpreted
as a projection of the unknown channel g onto the direction
of the vector "Dy, determined by the RIS configuration. The
UE transmits a known pilot signal at L time instances and
the RIS uses a different configuration at each time instance so
that the projections of g in different directions are observable.
Particularly, if the UE transmits the deterministic pilot signal
z, = /P, with power P, at L time instances with the
RIS being configured as 64, . . ., 81, the concatenated received
signal y € C” at the BS can be expressed as

y = (BDng+dlrxi) /Py +W 9)

where
B=10...,01]", (10)
W:[wla"'awL]Tv (11)

and w; ~ Nc(0,0?) is the independent noise at pilot time
instance [, for [ =1,..., L.

There is a multitude of channel estimators that can be
developed based on the received pilot signal in (@). We
will take the MLE approach [15] because the channels g
and d are assumed to be unknown but not having a known
random characterization due to non-stationary mobility. The
probability density function (PDF) of y for a given g and d
can be expressed as

1 _ lly—(BDpe+d1)/Pp 2
2

fx(yig,d) = —5pe v
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We are looking for the channel estimates g and d that
maximize the PDF in (I2)), which is equivalent to minimizing
the squared norm in the exponent. Hence, we can formulate
the MLE problem as
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where Re(-) gives the real part of its argument. Without loss
of generality, we decompose the direct channel into its channel
gain o > 0 and phase shift J € [0,27) as d = /ael?.
These channel parameters will only appear in the last two
terms of (I3), thus the corresponding MLE subproblem can
be expressed as

(y"BDng) + P, L|d|?

13)

{a,9} =
argmin P,Lo — 2\/PpaRe( ~i91"(y — \/P,BDpg )
a>0,9€[0,27)

(14)

The minimum is found by first selecting the phase estimate

@—arg( \/_BDhg)

which makes the term inside Re(-) positive. The resulting

expression P,La — 2,/P,v/a|1™(y — /P,BDng)| is a
second-order polynomial of /o with the minimum given by
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By utilizing the parametrization of g given in and substi-
tuting d = v/ae?? into (I3), the remaining MLE subproblem
can be expressed as
{B.0,¢} =
. 1
argmin  P,f <|BDha(cp)||2 -7 |1TBDha(go)|2)
)

B>0,wel0,27),
ped

—24/P,BRe (ej“’ H (IL — leL) BDha(cp)) . (7

We first notice that w only appears in the last term in (7)),
which is minimized when the term inside Re(-) is positive.
The minimum is obtained by

1
W= —arg (yH (IL - ZleL) BDha(<P)> . (18)

Substituting (I8) into yields

1
{8,¢} = argmin P, 5 (IIBDha(sO)I2 -7 |1TBDha(<p)|2>
B>0,pc®
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which is quadratic with respect to /3 and, thus, we have
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Finally, after substituting 20) into (19), the MLE for the
AoA is obtained as
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MLE subproblems of the kind in may have many local
maxima [16]. We might identify all of them [13] but in our
case, a simple grid search is sufficient because we will develop
an algorithm in Section [Vl that iteratively improves the utility
function in @I) by sending new pilots until the global peak
value is easily distinguished from the local ones. We thus solve
(21) numerically by performing a two-dimensional search over
the set of feasible AoAs.

The following theorem summarizes the proposed channel
estimation scheme.

Theorem 1. The MLE of d and g based on the received signal
Bei®a(p) where

[v" (I~ $111) BDna(e)|”

in @) are given by d = ae’® and g =

@ = arg max ;o (22
e<t ||BDua(p)|” - 1 [1"BDna(p)[
A 1 .
@ = —arg <yH <IL — EILXL) BDha(QD)) ) (23)
2
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The estimates are interconnected in the sense that we must
first compute ¢ using (22)) and use it to compute the MLE of g
from (2Z3) and @4). Finally, & is used to compute d using (23)
and (26). This is the opposite order of how they were derived.
We can now configure the RIS based on the estimates. Since
there is no channel statistics, the RIS should be configured as
if the estimates are perfect. Particularly, the phase shift vector

’e*jarg(hw)) a*(@), (7)

achieves the maximum SE in (@) if the parameters have been
perfectly estimated. We notice that it depends on the AoA ¢
and phase shifts @, ¥, but not on the channel gains & [3 since
we only want to ahgn all signal paths in phase.

0= ej(@*‘:’)diag (e*jarg(hl), e

IV. ADAPTIVE RIS CONFIGURATION DURING ESTIMATION

The accuracy of the proposed MLE procedure in Theorem/[I]
depends on how the RIS is configured during channel esti-
mation; that is, the choice of B. Many previous works (e.g.,



[Sl, [6], [13]) require L > N since B is either selected a
priori to explore all channel dimensions of CV or randomly.
In this section, we propose an iterative algorithm to adaptively
add columns to B to improve the MLE accuracy. If we use
the subscript | to denote the estimated parameters in the [th
iteration, from (27), the SE-maximizing RIS phase shift vector
is given by

0, = ej(lgl_a’l)diag (e_jarg(hl), s e_jarg(hN)) a*(@;)-
(28)
This RIS phase shift vector is then used for selecting the next
RIS configuration during the pilot transmission.

We define a set B = {@¢;,¢5,...,pn} of N = NyNy
plausible azimuth-elevation AoA pairs for the user that might
be considered during channel estimation. Based on these
angles, we define the resulting set of RIS configurations as

0= {diag (e_jarg(hl), ce e_jarg(hN)) a*(p) 1 p € B} .
(29)
Our proposed method can be explained as follows: First, we
select two RIS configurations 6, and 6, from the set in
and transmit pilots at two time instances utilizing the selected
RIS configuration matrix By = [61, 02]". We then use Theo-
rem [I] to estimate the AoA vector from (22)) via a 2D search
over the set defined in (3) and obtain the estimated phase
shifts from and (23)). For the (I + 1)th pilot transmission,
the RIS configuration is set as the unused configuration in
© which is closest to the RIS phase shift vector 0, in @23,
in terms of the absolute value of the inner product. The RIS
configuration matrix is updated as B;11 = [B], 0;41]", where
the subscripts indicate the iteration number. A new pilot is
then transmitted using the newly obtained configuration and
the concatenated received signal y;11 = [y}, yi41]" is used
for channel estimation in the (I+1)th iteration. This procedure
is iteratively performed until we reach the intended number of
pilot transmissions L. Algorithm [1l summarizes the proposed
iterative scheme for estimating the channel parameters.
We show in Section [V] that the proposed algorithm quickly
converges to a good channel estimate using L < N.

A. Channel Tracking

If the BS has a sense of where the UE is, the initial RIS
configurations 61, 05 in the channel estimation can be selected
to explore that location. Hence, one important use case of
Algorithm [1] is to successively estimate the channel of a UE
that moves along an unknown trajectory. If 8 is selected based
on the last successful RIS configuration, we begin searching
for a new RIS configuration in its vicinity. This can lead to
efficient tracking of the RIS channel using even fewer pilots.
We will detail such a procedure in the next section.

V. NUMERICAL RESULTS

We will now demonstrate the effectiveness of the proposed
parametric MLE and adaptive RIS configuration. We consider
an indoor setup where the RIS is mounted in the middle of
a wall in a 5 x 5 m? room, to have a LOS link to a UE in

Algorithm 1 Parametric MLE of g and d.

: Define the set © of plausible RIS configurations in (29)
: Select two initial RIS configurations 8; and 6> from ©
: Set B2 = [01,02]" and update © <+ © \ {01,602}
: Send pilot signals using the RIS configurations 81, 82 to get the

received signal yo € C?
cforl=2,...,L do () ) o

“ Yy (Ii—71ix1)BiDna(e)

Compute @, = arigéax IBiDpa(e)|?—+[1TB;Dya(e) |’
Obtain @y, Bl, and 9; from @3)-C3)
if { < L then

Compute 8; in @28)
10: Compute 6, , = arg max |0; 6|

6co
11: Set Biy1 = [B;r7 9[+1]T, update O+ 06 \ {9[+1}
12: Send a pilot signal using the RIS configuration 6;,; and
collect received signals in y;+1 = [y, yi+1]"

13:  end if
14: end for
15: Obtain & 26)

\/Bre’®ra(@,) and d = Vet

S W N —

g\Ul

% 3

b

16: return g =

the room and to the BS outside the building (e.g., through a
window). The RIS is equipped with Ny = Ny = 8 elements
where the element spacing is Ay = Ay = A/4. Since the BS
is deployed outside the building, the direct path between UE
and BS is a non-LOS link. We assume that the direct path is
ten times stronger than the per-element cascaded channel and
generated as d ~ N¢(0,10|hyg,|?). Since we consider LOS
channels to/from the RIS, |h,, g, | is independent of the element
index n. We generate the azimuth and elevation angles in the
set B considered during channel estimation as [14]:

o /2m\ | Nu-—1 Nu
(paz—aI‘CSln(NH).m— { 5 J, ,{2J (30)

- . 2m . - Nv—l NV
<Pe1—ar051n(NV>.m— { 5 J, ,{2](31)

The user walks randomly in the room with an average speed
of 50 cm/s such that the azimuth and elevation angles seen
from the RIS change over time. An instance of the angle
variation is illustrated in Fig. [l for 200 seconds. When the UE
is close to the RIS, a relatively small move may translate to a
rapid variation in the azimuth and elevation angles. In Fig. 1]
this phenomenon occurred in the time interval indicated by a
rectangle. We utilize these angles to generate channel vector
g as in (). Since the LOS channel between the RIS and BS is
known, our algorithm compensates for Dy, by designing the
RIS configuration according to (29). Therefore, any choice of
the angles used to generate h gives the same results.

We define the per-element data SNR as

P,
SNRy = ~5 |hngal”. (32)

and assume the pilot SNR, SNR,, is 10dB larger than SNRq
(i.e., P, = 10Fy) since pilots can be expanded over frequency.

Fig. [2l shows the average SE over different noise realization
and all AOAs during the random walk, with respect to the
pilot length L when SNR, = 0 dB and SNRq = —10 dB.



90

Azimuth
o

-90

100 120 140 160 180 200
Time (s)

(a) Variations in the azimuth angle over time.

20 40 60 80

0

220}
230

40}
S50

Elevation

-60 -
-7T0 -
80

-90

100 120 140 160 180 200
Time (s)

20 40 60 80

(b) Variations in the elevation angle over time.

Fig. 1: An example of how the azimuth and elevation change
over time when a UE walks randomly in the considered room.

In this figure, the black and magenta lines represent the SE
in achieved using the proposed MLE scheme, where the
colors distinguish between different approaches of selecting
{01,02} in Step 2 of Algorithm [Il The dashed black line
corresponds to the random selection of 61 and 65 from the
set © while the solid magenta line follows a smarter selection.
Specifically, when a user wishes to connect to the BS for the
first time, Algorithm [T selects {01, 03} randomly which results
in the SE represented with the black line in Fig. [2l Henceforth,
the CSI only needs to be updated periodically to avoid SE
losses. As the user speed is limited, we select 61 based on
our last successful RIS configuration. Specifically, if 8, is the
RIS phase shift vector obtained in the last channel estimation
phase, we select 8, as

6, = argmax |0} 6], (33)
0c6
and 65 randomly. This approach results in the magenta line
in Fig. 2l We compare our method with the maximum SE
obtained with perfect CSI according to (). Additionally, we
use the conventional LS estimator [5] as the benchmark,
where L columns of an NV X N DFT matrix are used as the
L RIS configurations [14]. We observe that the black line
converges gradually to the maximum SE and reaches 98%
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Fig. 2: Average SE with respect to pilot length L. The
proposed method is compared with with LS and perfect CSIL

with L = 9 pilot transmissions. When we exploit our last RIS
configuration to initialize the channel estimation algorithm at
the next time instance, 98% of the maximum SE is achieved
already with L = 5 pilots. On the other hand, the LS estimator
needs 60 pilots to attain this level. We stress that our proposed
algorithm converges quickly since, at each iteration, it sends
a new pilot using an unused RIS configuration from © that
helps solidify estimation accuracy.

A. Channel Tracking

The optimized RIS configuration in beamforms the
impinging signal toward the UE and matches the phase shift
with that of the direct path. When the user moves randomly
in the room, the AOAs at the RIS and the phase difference
between the direct and cascaded path (¥ — w) will change.
The variations have therefore non-stationary statistics and are
related to the walking speed of the user and its current distance
from the RIS. We will demonstrate the effectiveness of the
proposed algorithm to track the channel variations and inves-
tigate how frequently the RIS configuration must be changed
to maintain an acceptable SE. To this end, we generate channel
realizations every 200 ms and between two time instances, the
UE moves 10 cm. To re-estimate the channel and re-configure
the RIS, we use Algorithm [lf with L = 6 and follow the smart
initialization given in (33) that resulted in the magenta line
in Fig. 2l Accordingly, Fig. [3] reports the SE (averaged over
different noise realizations) at each time instance, based on
two RIS re-configuration policies. The first policy estimates
the channel and selects the RIS configuration every 1 second,
while the second policy updates the configuration every 10
seconds. For both policies, the RIS configuration is constant
between two updates. We observe that with the first policy, we
can track the channel variations and maintain an SE close to
the perfect CSI case almost all the time; the solid yellow line
rarely falls below 8 bps/Hz, which is 92% of the maximum
SE in this setup. On the other hand, updating the CSI every 10
seconds is not frequent enough to efficiently track the channel,
leading to many deep falls in SE (see the blue dashed curve)
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Fig. 3: Achievable SE following two different policies to reconfigure the RIS. The channel instances are generated every 200 ms
and the UE moves 10 cm between each two instances. L = 6 pilots are used to update the CSI and re-configure the RIS.

since the UE moves out of the main lobe of the beam from the
RIS. The intuition is that as long as the RIS is reconfigured
frequently enough so that the UE never moves out of the main
lobe, we have an insignificant performance loss in between the
RIS updates which is mainly due to the fast-changing phase
shift difference between the direct and RIS paths.

VI. CONCLUSIONS

In this paper, we proposed a new MLE-based channel
estimation framework with low training overhead, high ac-
curacy, and mobility management capability. By adaptively
configuring the RIS during the channel estimation process,
the proposed method progressively improves the channel esti-
mation accuracy and obtains accurate CSI using much fewer
pilots than there are RIS elements. We showed that the number
of pilot transmissions can be further reduced if we have some
prior knowledge of the location of the user. This feature can
be used to efficiently track the channel of a user that moves
along an unknown trajectory with very low pilot overhead.
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