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Abstract—The paper investigates the weighted sum-rate maxi-
mization (WSRM) problem with latent interfering sources outside
the known network, whose power allocation policy is hidden
from and uncontrollable to optimization. The paper extends the
famous alternate optimization algorithm weighted minimum mean
square error (WMMSE) [1] under a causal inference framework
to tackle with WSRM. Specifically, with the possibility of power
policy shifting in the hidden network, computing an iterating
direction based only on the observed interference inherently
implies that counterfactual is ignored in decision making. A
method called synthetic control (SC) is used to estimate the
counterfactual. For any link in the known network, SC constructs
a convex combination of the interference on other links and uses
it as an estimate for the counterfactual. Power iteration in the
proposed SC-WMMSE is performed taking into account both
the observed interference and its counterfactual. SC-WMMSE
requires no more information than the original WMMSE in
the optimization stage. To our best knowledge, this is the first
paper explores the potential of SC in assisting mathematical
optimization in addressing classic wireless optimization problems.
Numerical results suggest the superiority of the SC-WMMSE over
the original in both convergence and objective.

I. INTRODUCTION

The wireless network evolution has been driven by a need

for consistently higher rates over the past decades, along with

the emergence of the internet of everything (IoE), which aims

to serve as a platform for connecting processes, people and

data [2]. The requirement for high spectral efficiency in IoE

scenarios calls for a need to revisit classic wireless optimization

problems under highly dynamic environments. The weighted

sum-rate maximization (WSRM) problem [3] is one of these

many, solving which plays a key role in determining the

effective capacity of a wireless channel. Finding the global

maximum of WSRM is generally considered to be an NP-

hard problem [3].

As a result, significant research efforts have been devoted to

developing high-quality sub-optimal solutions for the problem.

The weighted minimum mean square error (WMMSE) algo-

rithm, first proposed in [1], is one such solution which has

been shown to be an efficient algorithmic framework for many

cross-layer transmission tasks [3]. Therefore, this algorithmic

framework has been significantly extended by many other

literature and the research exploring remains still active [4]–

[9]. Additionally, the WSRM problem has also been addressed

by data-driven methodologies–more specifically–graph neural

networks (GNN) based methods [10]–[13]. The basic idea is to

use a GNN to encode the network topology information into

a GNN that maps channel state information (CSI) to power

control policy. Unsupervised model training is also possible

by in-cooperating learning in the processing of a primal-dual

algorithm [10].

The single-input-single-output (SISO) case of [4]–[13] and

many other research summarized in [14] falls into a special case

of the problem investigated in this paper, i.e. when there are no

latent interfering links whose power allocation is unknown and

uncontrollable. It’s important to note that the latent interfering

links cannot be treated simply as noise, because the power

allocation of the latent links may be dependent on those of the

known links, or, they may evolve over time. Treating it as noise

omits these facts.

The paper examines the WMMSE optimization mechanism

from a causal inference’s perspective. WMMSE algorithm and

other similar methods can suffer performance loss in this

scenario because of the influence of these latent factors on

the iterating directions towards the ground-truth optimality. To

overcome this challenge, the paper proposes the use of the

synthetic control (SC) method [15], which uses counterfactual

reasoning to infer the causal relationship between optimization

variables and the objective. The resulting algorithm requires

no additional information beyond that used in the traditional

WMMSE algorithm, yet it demonstrates improved convergence

and objective value, as well as resilience to emerging and disap-

pearing latent interference sources. The trick in this paper hence

applies to most of its previous extensions [3]–[9]. Numerically,

the proposed SC-WMMSE shows advantage over its origin on

both convergence and objective value as well as demonstrates

resilience to emerging and disappearing of latent interference

sources.

II. MODEL AND PROBLEM

Consider a wireless network consisting of multiple commu-

nications links. The set of all links is denoted by K, and for

any link k (k ∈ K), the set of links that interfere with k is

denoted by Ik , where Ik ⊂ K. The channel gain between the

transmitter and receiver of link k is denoted by hk,k, and the

channel gain from the transmitter of link k to the receiver of

link j is denoted by hk,j (k 6= j). It is assumed that |hk,j | = 0
for any j /∈ Ik (j 6= k), and the channel matrix is denoted by
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Rk = log

(

1 +
|hk,k|2pk

∑

j∈K+ |hj,k|2pj +
∑

i∈K−
|hi,k|2qi + σ2

k

)

k ∈ K+ (1)

H. The power of the transmitter of link k is denoted by pk,

and the noise power is denoted by σ2
k .

The paper considers a scenario where there are latent inter-

ference sources whose power distribution and allocation is not

known a priori and is neither observable nor controllable. The

known network is denoted by K+, and the unknown network

is denoted by K−, with K+ ∪ K− = K and K+ ∩ K− = φ.

Let K = |K+|. The two networks mutually affect each other

through interference. No assumptions are made about the power

policies of K−. The notation q is used to represent the power

allocation in K−, which can proactively or reactively change

over time and may be dependent on p. The problem is defined

in (2), with Rk defined in equation (1). The goal is to find

a power allocation p1, p2, . . . pK for all the corresponding

transmitters of the K links in the known network such that

the weighted sum rate
∑

k αkRk of the known network is

maximized.

max
p

∑

k∈K+

αkEH

[

Eq|H,p

[
Rk

]
]

(2a)

s.t. 0 ≤ pk ≤ pmax
k , k ∈ K+ (2b)

III. SUM RATE MAXIMIZATION WITH CAUSAL INFERENCE

A. How Latent Interference Affects WMMSE

It is shown that (2) submits to a reformulation as a weighted

sum-mean-square-error minimization problem [4], [5] when the

power allocation vector of the unknown network, q, is fixed as

constants. When q is fixed, the mathematical expectation on q

is removed from the problem.

To make this reformulation, the noise plus interference term

from the unknown network K− is replaced by a new variable

ηk. Denote ηk =
∑

i∈K−
|hi,k|2qi + σ2

k. This replacement can

be made in the denominator of the rate expression in (1), and

the problem in (2) can be rewritten as (3) without loss of

optimality [4], [5].

min
w,u,v

EH

[
∑

k∈K+

αk(wkek − logwk)

]

(3a)

s.t. |vk|
2 ≤ pmax

k , k ∈ K+ (3b)

The reformulation of the problem in (2) to a weighted

sum-mean-square-error minimization problem utilizes two ad-

ditional variables: wk and ek, where wk is a positive weight

variable, and ek is the mean-square error, defined as:

ek = |ukhk,k, vk − 1|2 +
∑

j 6=k

|ujhj,kvk|
2 + ηk|uk|

2 (4)

The variable pk in the original formulation is replaced by vk ,

with pk = |vk|2 (k ∈ K+).

The WMMSE algorithm is designed to solve the reformu-

lation in (3) using the theory of alternate optimization. The

algorithm is illustrated in Algorithm 1. It should be noted that

there also exists a stochastic version of the WMMSE algorithm

that can be used when the channel matrix, H, is a random

variable. The proposed methodology in this paper can also be

applied to the stochastic version of the WMMSE algorithm. In

practice, the variable ηk can be approximated using techniques

such as clear channel assessment (CCA) [16].

Algorithm 1: The WMMSE algorithm for solving the

problem in (3).

1: Initialize v,u,w randomly

2: repeat

3: Observe η1, η2 . . . ηK

4: for all k = 1, 2 . . .K do

5: uk = |hk,kvk|/(
∑

j∈K+ |hj,k|2|vj |2 + ηk)

6: wk = 1/(1− |ukhkvk|)

7: vk = αkhkukwk/(
∑

j∈K+ αjwj |hk,juj |2 + λk)

8: until Convergence

9: return v,u,w

The term ek is a convex quadratic function in u and v,

which have closed-form solutions. However, when q is a latent

random variable, it can change throughout the optimization

process and affect the sampling of ηk, making the optimization

process challenging. This is because the collected samples of

ηk may not guarantee that uk will move towards the optimum

of the quadratic function ek when w is fixed. This problem can

be mitigated if ηk is i.i.d., yet such assumption is too strong

to be realistic.

B. Causal Inference Estimator vs. Regression Estimator

The key obstacle in applying the WMMSE algorithm is that

the interference at any receiver k (k ∈ K+) is difficult to

handle from an optimization perspective, due to its dependency

on q. To tackle this obstacle, instead of considering only ηk ,

the entire denominator of uk, denoted by Ik, is considered.

This allows for better generalization of the proposed inference
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methodology, as it can estimate the denominator as a whole

for any link k if the CSI of another link j (j 6= k, j ∈ K+)

is unknown or outdated. In the kth loop of Algorithm 1, the

power allocation pk is the variable to be optimized and the

other power p−k are fixed. The mathematical expectation of

Ik conditional on the optimization variable pk is as follows.

E[Ik|pk]

= EHEq|H,pk

[
∑

j∈K+

|hj,k|
2pj +

∑

i∈K−

|hi,k|
2qi + σ2

k

]

= EH

[
∑

j∈K+

|hj,k|
2pj

]

+ EHEq|H,pk

[
∑

i∈K−

|hi,k|
2qi + σ2

k

]

︸ ︷︷ ︸
ηk

Estimating the second part of Ik, ηk, is difficult as it depends

on the power allocation of the latent interfering sources, which

is unknown and may change over time. Supervised machine

learning models are limited for this task as the distribution of

q is not i.i.d and may change due to changes in the power

allocation of the latent sources or new transmitters/receivers

joining or leaving the network. A more suitable approach is to

leverage causal inference methods, specifically the structural

causal model (SCM) approach, to inexplicitly estimate the

counterfactual distribution of q given the observed interference

Ik. This approach allows for estimation of the interference

distribution under different power allocation policies, which

can then be used to infer the causality relationship between pk
and Ik.

A causal inference estimator targets E[Ik|do(pk)], which

takes both the actual outcome and potential outcomes

into consideration, rather than just the former. Specifically,

E[Ik|do(pk)] represents the expected value of the interference

Ik at receiver k when we intervene and set the power allocation

of link k to pk, and consider all possible power policies of

the latent interfering links K−. On the other hand, E[Ik|pk]
represents the expected value of the interference Ik at receiver k
when the power allocation of link k is pk, but the power policies

of the latent interfering links K− are not intervened, and are

instead determined by the current distribution of q given H

and p. E[Ik|do(pk)] better aligns with the requirements of

optimization.

For E[Ik|do(pk)] and E[Ik|pk] to be equal, the power alloca-

tion pk is independent of all the other interfering links and their

power allocations in the network, i.e., there are no confounding

variables. In this case, conditioning on pk would not change

the distribution of Ik and the expectation would be the same

whether we condition on pk or intervene on it. This implies that

power allocation in K+ is being performed randomly, rather

than through a specific optimization algorithm.

C. Estimating Interference with SC Methods

The synthetic control method (SC), first proposed in [15],

is a powerful technique for estimating the effects of large-

I1

I2

I3

I4

I5 Î6

Î6

px

py

0

Figure 1. Illustration of interpolation vs. extrapolation. Consider K+ =
{1, 2, 3, 4, 5, 6} and K− = {x, y}. Note that qx and qy are latent variables to
K+, influencing the observed interference at each link of K+. The positions
of I1, I2 . . . I5 are affected by the value of qx and qy at the moment of

observation. Estimations are performed for the link 6, denoted by Î6 with blue
and red dots. The blue is from intertropolation, as it falls in-between the known
observations (i.e. the convex hull), whereas the red is from extrapolation.

scale interventions [17]. It has been shown to be competitive

with other fixed matching estimators [18]. SC approximates the

counterfactual outcomes of one unit by constructing a weighted

combination of the observed outcomes of other units. It works

with panel data, which contains multiple observations for each

unit over time. While SC is often used in the context of binary

treatment and no interference between units, it can also be

applied in more complex settings with units interfering each

others, such as in [19], where the potential outcome for unit

k ∈ K+ is linear to latent factors, with noise in the factor

model being additive, zero mean, and independent.

In the training stage, consider observations of I1, I2 . . . Ik in

format of panel data, i.e.

X =









I
(0)
1 I

(0)
2 · · · I

(0)
K

I
(1)
1 I

(1)
2 · · · I

(1)
K

...
...

. . .
...

I
(L)
1 I

(L)
2 · · · I

(L)
K









∈ R
L×K

where each row ℓ (1 ≤ ℓ ≤ L) is an observation across all the

K units. For any k ∈ K+, denote by xk the kth column of X .

Denote by X−k the matrix without column k. The SC estimator

is trained by solving the constrained optimization problem (5)

as follows.

νk = argmin
β≥0

‖xk −X−kβ‖ (5a)

s.t.
∑

i

βi = 1 i = 1, 2 . . .K − 1 (5b)

Solving (5) yields a vector νk (k ∈ K+), which is essentially

a group of coefficients that can be used to construct a linear

combination of Ij (j ∈ K+\k). The objective function (5a)
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suggests that the computed coefficients lead to an as small

as possible mean-squared-error over all the L observations of

the unit k and respectively its constructed linear combinations.

Note that (5b) imposes a hard constraint on the coefficients

such that the obtained linear combination is guaranteed to be

a convex combination. In other words, solving the formula-

tion (5) trains a (constrained) linear regression model between

the observed interference of unit k and those of the others. In

this context, a convex combination has better interpretability.

Namely, in terms of interference, it finds a function that accu-

rately estimates the values of the counterfactual interference in

the range of the observed interference, as opposed to extrapola-

tion. See Figure 1 for an illustration. Section IV demonstrates

the necessity of constraint (5b) by showing numerically that it

helps improve optimization significantly.

In the inference stage, the synthetic control method is used to

estimate the counterfactual outcome for unit k under treatment

pk. This is done by averaging the outcomes of the synthetic

control units (K+\{k}), weighted by the coefficients obtained

in the training stage. The estimation is denoted as Îk = ν
⊺

kµk

for all k ∈ K+, where µk denotes the observations for all units

other than k, i.e. any Ij (j 6= k).

D. Algorithm Design

The algorithm SC-WMMSE is designed straightforwardly by

incorporating the ideas discussed in Sections III-A, III-B, and

III-C. It is presented in Algorithm 2.

Algorithm 2: The SC-WMMSE algorithm for solving

the problem in (2)

1: Initialize v,u,w randomly

2: Train estimators ν1,ν2 . . .νK offline by (5)

3: repeat

4: Observe I1, I2, . . . IK under v

5: for all k = 1, 2 . . .K do

6: µk = [I1, . . . Ik−1, Ik+1, . . . IK ]

7: if Rand() < ε then

8: uk = |hk,kvk|/ν⊤
k µk // Counterfactual update

9: else

10: uk = |hk,kvk|/Ik // Factual update

11: wk = 1/(1− |ukhkvk|)

12: vk = αkhkukwk/(
∑

j∈K+ αjwj |hk,juj |2 + λk)

13: until Convergence

14: return p =
[
v21 , v

2
2 , . . . v

2
K

]

The algorithm SC-WMMSE combines the WMMSE algo-

rithm with SC method, which is designed to estimate the

counterfactual outcome of a unit under a certain treatment.

The algorithm is trained offline using past observations of

I1, I2, . . . IK and K SC estimators are trained. During op-

timization, I1, I2, . . . IK are observed in every iteration and

the SC estimators are used to update uk with a probability ε,

otherwise, the update follows the same rule as WMMSE. The

parameter ε is set to decay based on the number of iterations

for the convergence of the algorithm1. The effectiveness of

the algorithm is demonstrated in the simulation section of the

paper.

E. Intuition Behind

From a causal inference perspective, the optimization process

of WMMSE makes treatment decision pk by its knowledge of

how such an intervene would affect the outcome Ik at each

loop k. The covariates are q, H (which are related to network

topology and density). The SC method is used to estimate the

impact of this treatment by comparing the treated group ({k})

to a SC group, which is created from a weighted combination

of untreated groups (K+\{k}).

Ideally, the SC group ought to be selected carefully to

closely mimic the characteristics of the treated group before

the treatment is applied. Optimizing the selection of the SC

group is out of the scope of this paper. The SC method allows

us to estimate what would have happened to the link k if

pk had not been applied, making it a counterfactual analysis.

In Algorithm 2, line 8 can be viewed as a ”counterfactual

update” and line 10 as a regular update. The optimization

variable uk is therefore updated using both the observation and

the counterfactual, allowing us to address cases where some

observed Ik are not statistically caused by the treatment pk,

but rather by other pre-treatment characteristics.

It is worth noting that the power allocation serves both as the

intervention of causal inference and the optimization for sum-

rate maximization. How to best utilize this interplay remains

an open area of study.

IV. SIMULATION

The simulation setups are as follows: multiple transmitters

are randomly and uniformly distributed within a circle with

a radius of 200 meters. For each transmitter, multiple target

receivers are randomly and uniformly distributed within a circle

with a radius of 25 meters. The path-loss model follows the

InH-Shopping Malls-NLOS dual slope model in [20], which

takes into account the the probability of line-of-sight shadow

fading and blockage. The model applies across 0.5-100 GHz

band and 60 GHz is selected for the simulations in this paper.

A flat channel is considered and the total bandwidth is 80 MHz.

The maximum power on a resource unit (RU) is set to 200 mW

uniformly for all links.

A random matrix Z is generated following a uniform

distribution U(−1, 1) unless specified otherwise. The power

1In the implementation of this paper, the formula ε(t) = [a(1−t/tmax)]b

is used, where t is the iteration index and a, b are hyper-parameters. As for
this paper, the setting a = 0.2 and b = 2 stays unchanged throughout all
simulations in Section IV.
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(c) |K−| = 40
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(d) |K−| = 50

Figure 2. The performance in objective maximization and convergence is evaluated over 50 independent simulations. The 90% confidence interval is plotted
for each curve. The setup |K+| = 50 is used throughout 2(a)–2(d). The y-axis is the sum-rate over all links in K+.

q is obtained by the linear transformation q = Zp with

randomness and is always capped by the maximum power

limit after the transformation2. Each figure in this section is

based on 50 independent simulations to ensure that the results

are statistically significant. In every simulation, the network

topology is regenerated by following the rules stated above.

Additionally, the random matrix Z, if used, is refreshed in each

simulation, for both the training and inference stages.

The code of the simulation is available on � [21].

A. Objective Performance and Convergence

This subsection aims to evaluate the effectiveness of the

proposed algorithm, SC-WMMSE, in optimizing the objective

function in (2) and its performance in terms of convergence.

The original WMMSE algorithm is used as a baseline for com-

parison, as well as a version of WMMSE that only uses local

network information for optimization, referred to as WMMSE

2Note that p in the optimization process depends on the iteration step (and
hence time), making q is actually evolving with time too.

(Local). In the local version, the term ηk in Algorithm 1 is

set to σ2
k, effectively ignoring all changes in K−. This is used

to gauge the impact of K− on K+ and to determine if such

impact is too small to expect SC-WMMSE having an effect.

The results are shown in Figure 2 with |K+| = 50 and |K−|
ranging from 20 to 50. SC-WMMSE consistently outperforms

the baseline in terms of objective function maximization.

Particularly, when the transmissions in the latent network

K− are dense, the algorithm demonstrates significantly better

performance in both objective maximization and convergence.

On the other hand, when the transmissions in K− are sparse,

WMMSE (Local) performs similarly to the original WMMSE.

This suggests that the impact of K− on K+ is low, and the term

ηk can be well approximated by σ2
k . As a result, the update in

line 8 becomes less significant in the optimization process.

B. Robustness

The robustness of SC-WMMSE in dynamic network changes

is evaluated in this section. The algorithm’s ability to adapt to
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(b) |K−| = 50 at training. |K−| = 0 at inference.

0 100 200 300 400 500

150

200

250

Iterations

G
ig

a
N

at
s

/
s

WMMSE (Original)

WMMSE (Local)

SC-WMMSE

(c) |K−| = 0 at training. |K−| = 50 at inference.

Figure 3. In this evaluation, the algorithm’s ability to adapt to changes in
the network is tested by introducing or removing latent interference sources,
while keeping the number of links in K+ constant at 50. The scenario in which
no latent interference exists in either the training or testing phase is used as
a baseline, as seen in Figure 3(a). The results are based on 50 independent
simulations, with a 90% confidence interval plotted.

50 100 150 200
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3.5

|K+|

G
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a
N
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/
s

WMMSE (Original)

WMMSE (Local)

SC-WMMSE

Figure 4. Scalability is evaluated for the proposed algorithm over 50
independent simulations, with |K−| = 50. The results are presented with a 99
percent confidence interval, which are visually narrow. The y-axis represents
the average throughput per link, which is calculated by dividing the sum-rate
achieved on average over 500 algorithm iterations by the number of links.

emergence or disappearance of interference sources in K− is

in question. Figure 3(a) is used as a baseline scenario with

no latent interference links. SC-WMMSE is not expected to

perform better than the others since there is no latent interfer-

ence. The algorithm’s performance is on par with the others in

terms of objective value at convergence, but the convergence is

slower due to added noise via the convex hull approximation Îk
(k ∈ K+). Figure 3(c) illustrates SC-WMMSE’s robustness in

dealing with changes in the network. Even though there is no

latent interference present during training, the causal estimator

can still make impact in the optimization stage, resulting in

SC-WMMSE outperforming the other two in terms of both

objective value and convergence. However, the performance is

not as good as seen in Figure 2(d) due to the more significant

data distribution change between training and testing.

C. Scalability

The scalability of the algorithm is evaluated by analyzing its

performance on per-link throughput as the density of transmis-

sions in the optimized network, K+, increases. Results show

that when the transmissions in K+ are sparse, both WMMSE

and SC-WMMSE perform similarly. However, as the number

of links in K+ increases, the advantage of SC-WMMSE

becomes more pronounced, until reaching a threshold around

150 links. Beyond this point, the advantage of SC-WMMSE

starts to decrease, possibly due to the inherent limitations of

the optimization mechanism used by all three algorithms when

dealing with large scale problems. It is also worth noting that

the gap between WMMSE and its local version also shrinks

with an increase in the number of links in K+. Overall, SC-

WMMSE demonstrates better performance than its baseline

WMMSE in all scenarios in Figure 4.
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Figure 5. SC (Free) is the unconstrained version of (5), i.e., SC (Conv).
Additionally, the evaluation includes two other methods: SC Center, which
uses the center point of the convex hull for estimation of all units; and SC
(Dirich), which generates a random Dirichlet distribution as the coefficients β

and selects a random point inside the convex hull in each iteration step.

D. Necessity of the Convexity Constraint

The effectiveness of the convex combination constraint

in (5b) for optimization is demonstrated in Figure 5. On top of

the synthetic control method used in this paper (the method of

solving (5), referred to as SC (Conv)), several other methods

are compared, including, its unconstrained version (SC (Free)).

Additionally, the center point of the convex hull can be used as

the estimate (SC (Center)). One could also generate a Dirichlet

distribution for the coefficients (SC (Dirich)). These methods

are used in place of the convex combination constraint in

Algorithm 2 to compare with the baseline WMMSE.

SC (Free) performs similarly to the baseline WMMSE,

which suggests that relaxing the constraint leads to an over-

fitting to observation, neglecting the counterfactual. Both SC

(Center) and SC (Dirich) perform worse than the baseline, in-

dicating that the inference task is not trivial and that SC (Conv)

is by-far an effective method for obtaining the coefficients for

optimization.

V. CONCLUSION AND DISCUSSION

This paper has showcased the potential of using causal

inference to assist in solving optimization problems of wire-

less communications. The proposed SC-WMMSE demonstrates

how a causal inference framework can address the challenges

posed by confounding variables in optimization. As future

work, further analysis and theoretical proofs of the algorithm’s

convergence are suggested. Additionally, the research in causal

inference has typically been based on the assumption of no

inter-unit interference, which is not applicable in wireless

communications. Therefore, it would be beneficial to develop

causal factor models that are better suited for this field.
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