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Abstract—The terahertz (THz) band radio access with larger
available bandwidth is anticipated to provide higher capacities
for next-generation wireless communication systems. However,
higher path loss at THz frequencies significantly limits the
wireless communication range. Massive multiple-input multiple-
output (mMIMO) is an attractive technology to increase the
Rayleigh distance by generating higher gain beams using low
wavelength and highly directive antenna array aperture. In
addition, both far-field and near-field components of the antenna
system should be considered for modelling THz electromagnetic
propagation, where the channel estimation for this environment
becomes a challenging task. This paper proposes a novel channel
estimation method using a recursive information distillation
network (RIDNet) together with orthogonal matching pursuit
(OMP) for hybrid-field THz mMIMO channels, including both
far-field and near-field components. The simulation experiments
are performed using the ray-tracing tool. The results indicate
that the proposed RIDNet-based method consistently provides
lower channel estimation errors compared to the conventional
OMP algorithm for all signal-to-noise ratio (SNR) regimes,
and the performance gap becomes higher at low SNR regimes.
Furthermore, the results imply that the same error performance
of the OMP can be achieved by the RIDNet-based method using
a lower number of RF chains and pilot symbols.

Index Terms—RIDNet, hybrid-field channel, massive MIMO,
spectral efficiency, terahertz

I. INTRODUCTION

The Terahertz (THz) band provides ultra-high bandwidth to
satisfy the increasing data rate requirements of next-generation
wireless communication systems such as 6G [1]. However,
the THz frequency band suffers from high molecular absorp-
tion and spreading losses, which limits wireless propagation
resulting in lower communication coverage. The advent of
massive multiple-input multiple-output (mMIMO) structures
has enabled the generation of high-gain beams, which can
potentially overcome the higher path loss issue in the THz
band [2]. Accurate channel estimation is required to generate
high-gain beams; however, a reduced RF chain along with the
limited number of pilots makes this a challenging task.

Electromagnetic propagation characteristics can be divided
into two categories, namely near-field and far-field [3]. The
Rayleigh distance, which can be calculated by dividing the
square of the antenna array aperture by the wavelength,
determines the boundary between the far-field and near-field.

If the distance between the base station and the signal source
is greater than the Rayleigh distance, it indicates that the
signal source comes from the far-field region and therefore
propagates as a plane wave. Otherwise, the signal source is in
the near-field region, and the electromagnetic wave propagates
as a spherical wave.

The number of antennas in traditional cellular communica-
tion systems is relatively small, and the Rayleigh distance is
only a few meters, so near-field components can be neglected.
However, the Rayleigh distance is expected to increase signif-
icantly in 6G systems due to a large number of antennas. For
example, researchers have designed a 2m×3m array with 3200
antenna elements operating at 2.4GHz in [4]. The Rayleigh
distance of this antenna array is around 200m, which is greater
than a typical 5G cell. In addition, the Rayleigh distance of
the antenna array operating at 300GHz and having an antenna
aperture of 0.1m is approximately 20m, which provides rela-
tively higher coverage in THz systems. Therefore, hybrid-field
channel models incorporating far-field components along with
near-field components should be considered to characterize the
wireless communication channel [5].

Matrix transformation has been utilized in the literature
for compressive sensing-based channel estimation with lower
pilot overhead [6]. However, traditional compressive sensing-
based methods have limited channel estimation performance,
especially when the number of RF chains is low compared
to the number of antennas and the number of pilot symbols
is limited. Deep learning methods have been used recently
to support traditional methods and improve the accuracy of
channel estimation [7]–[12]. For example, a two-stage channel
estimation method is presented in [7], [8], where approximate
message passing (AMP) is used as a coarse estimation in the
first stage, followed by convolutional neural network (CNN)
structure for channel feature extraction to decrease the channel
estimation error. Inspired by these works, in this paper, we
propose a hybrid-field channel estimation mechanism using a
recursive information distillation network (RIDNet) to improve
the estimation performance of the orthogonal matching pur-
suit (OMP) algorithm, especially at low signal-to-noise ratio
(SNR)s. The proposed method successfully compensates for
errors caused by not only having the number of RF chains
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lower than the number of antennas but also the number of
limited pilot symbols due to mMIMO systems.

The performance of the proposed channel estimation
scheme is evaluated using the ray tracing tool in Matlab,
where the Sketchup program is utilized to model a hybrid-
field environment including both near-field and far-field com-
ponents. The RIDNet-assisted OMP scheme consistently pro-
vides lower channel estimation error for all SNR regimes, and
the performance improvement increases as the SNR decreases.
The proposed scheme achieves lower error performance using
8 RF chains compared to the OMP scheme using 12 and
16 RF chains. Similarly, the same error performance can be
achieved by the proposed scheme using a lower number of
pilot symbols.

Throught this paper, x and X denote a vector and matrix,
respectively. ∥x∥ represents the norm of x. CN (µ, σ2

n) iden-
tify the probability density function of the complex Gaussian
distribution with mean µ and σ2

n variance.
The rest of this paper is organized as follows: Section II in-

troduces hybrid-field THz mMIMO channel that includes path
loss and sparse representation of the channel. In Section III, the
proposed OMP-RIDNet-based hybrid-field channel estimation
method is detailed. Finally, simulation results and conclusions
are elaborated in Section IV and Section V, respectively.

II. SYSTEM MODEL

In this section, we present the proposed uplink channel
estimation system model for THz mMIMO OFDM communi-
cation systems with multiple time slots allocated to each user,
as depicted in Fig. 1. The base station (BS) is equipped with a
uniform linear array (ULA) of NRF RF chains and N antenna
elements such that there is a spacing of d = λ

2 between two
consecutive antenna elements, where λ represents the carrier
wavelength. In addition, a hybrid precoding architecture is
utilized in the BS to improve energy efficiency by reducing
the number of RF chains. We assume that M subcarriers
are served simultaneously to K users, and orthogonal pilot
symbols are transmitted to the BS for channel estimation.

Let ym,p ∈ CNRF×1 represent the uplink received signal

ym,p = Wphmsm,p +Wpnm,p, (1)

where sm,p is the transmit pilot symbol at the m-th subcarrier
in time slot p, nm,p ∈ CN×1 denotes a complex Gaussian
noise with the distribution function of CN

(
0, σ2IN

)
and

Wp ∈ CNRF×N represents an analog combining matrix
containing the phase coefficients of the phase shifters. Also,
hm indicates the hybrid-field channel between the BS and the
user at the m-th subcarrier. The overall received signal from
time slot 1 to P at the BS for the m-th subcarrier without the
pilot symbols can be expressed as

ym =
[
yTm,1, · · · ,yTm,P

]T
= Whm + nm, (2)

where nm =
[
nTm,1W

T
1 , · · · ,nTm,PWT

P

]T ∈ CQNRF×Q,
and W =

[
WT

1 , · · · ,WT
P

]T ∈ CQNRF×N identify the
overall noise and analog combining matrix for P time slots,

respectively. Assume that W is generated randomly using the
uniform random distribution U(−1, 1) and normalized with
1/
√
N .

A. Hybrid-Field THz Massive MIMO Channel Model

Far-, near-, and hybrid-field channel models are described in
this section. A Rayleigh distance is determined by DR = 2D2

λ ,
where D and λ represent the antenna array aperture and the
wavelength of the transmitted signal, respectively. Assuming
that BS is equipped with ULA with N antenna elements,
antenna array aperture D is equal to N λ

2 .
The Rayleigh distance determines whether a channel in-

cludes far- or near-field propagation components. When a
signal travels more than the Rayleigh distance, the signal
propagates as a plane wave characterized by the far-field prop-
agation model. Otherwise, the near-field propagation model
characterizes the radiation pattern, where the signal propagates
as a spherical wave. Since the Rayleigh distances are small in
5G and previous communication systems, the far-field model
having only plane wave propagation is sufficient to obtain
the radiation field. However, the Rayleigh distance of THz
mMIMO communication systems necessitates that both far-
and near-field approaches should be considered using a hybrid
approach. While there is a direct link between the BS and
a user in the far-field region, there may also be scattered
signals from the same user in the near-field region. Therefore,
a hybrid-field channel vector at the m-th subcarrier containing
both far-field and near-field components can be expressed as
[5]

hm =

√
N

L

 Lf∑
lf=1

αlfa (θlf ) +

Ln∑
ln=1

αlnb (θln , rln)

, (3)

where L, Lf , and Ln represent the number of all path, far-
field, and near-field components, respectively. αlf and θlf
denote the channel complex gain and the angle of the lf -th
path for the far-field. αln , θln , and rln denote the channel
complex gain, the angle, and the distance of the ln-th path for
the near-field, respectively. The array steering vector in the
far-field region can be expressed as

a
(
θlf
)
=

1√
N

[
1, e−j

2πd
λ cos θlf , . . . , e−j(N−1) 2πd

λ cos θlf

]H
,

(4)
where d is the distance between antenna elements in the ULA
and assumed to be λ/2. Furthermore, the array steering vector
in the near-field region varies with respect to the distance
between the BS and the user or the scatter in addition to the
angle of arrival as follows

b (θln , rln) =
1√
N

[
e
−j 2π

λ

(
r
(1)
ln

−rln
)
, . . . , e

−j 2π
λ

(
r
(N)
ln

−rln
)]H

,

(5)



Fig. 1. The proposed channel estimation scheme based on OMP-RIDNet structure.

where rln describes the distance between ln-th scatter and
the center of the antenna array and changes geometrically
according to each element z in the antenna array as follows:

r
(z)
ln

=
√
r2ln +∆2

zd
2 − 2rln∆zθlnd, (6)

where ∆z =
2z−N−1

2 with z = 1, 2, ..., N .
1) Path Loss: Aside from spreading loss, molecular ab-

sorption is added to the total path loss at THz frequencies
due to the small wavelength. In communication systems,
there may be line-of-sight (LoS) and non-line-of-sight (NLoS)
links between the transmitter and receiver, where the channel
gain expressions are different. In the case of an LoS uplink
transmission, the channel gain can be calculated as [13]

αl =
c

4πfmrl
e−

k(fm)rl
2 e−j2πfmτ

L
l , (7)

where c, k(fm), fm, and rl denote the speed of the light,
molecular absorption coefficients of the channel at THz band,
the m-th subcarrier frequency, and the distance between the
user and the BS, respectively. However, a LoS link may not al-
ways be available, and the information may be carried through
the signals reflected or scattered from the environment. In the
case of an NLoS uplink transmission, the channel gain can be
expressed as [14]

αNl =
c

4πfm

(
r
(1)
l + r

(2)
l

)e
(
−

k(fm)(r(1)l
+r

(2)
l )

2

)

×R(fm)e−j2πfmτ
N
l , (8)

where r(1)l represents the distance between the user and a scat-
ter location while r(2)l denotes the distance between a scatter
and the BS. R(fm) = γn,u(f)ρn,u(f) denotes the reflection

coefficient, where γn,u(f) ≈ − exp

(
−2 cos(ψn,u)√

η(f)2−1

)
is the

Fresnel reflection coefficient, where η(f) and ψn,u represent
the refractive index and the angle of the incident signal to the
reflector, respectively. ρn,u(f) = exp

(
− 8π2f2σ2 cos2(ψn,u)

c2

)

is the Rayleigh factor that characterizes the roughness effect,
where σ is the surface height standard deviation.

2) Sparse Representation of THz massive MIMO Chan-
nel: There have been a number of matrix transformation
approaches proposed to reduce pilot overhead for mMIMO
systems in addition to sparse channel representations pro-
viding a low overhead solution for channel estimation. This
section presents the polar domain (PD) matrix transformation
approach used to represent the hybrid-field channel sparsely,
where both far-field and near-field propagation components are
simultaneously modeled.

A DFT matrix can be used for a channel model with only
far-field components; however, it is not suitable for a channel
model with hybrid-field components since the DFT matrix
has only angle-related information and does not include the
distance-dependent information of the near-field channel. As
a result, the near-field channel is not sparse in the angular
domain (AD). In this study, polar-domain transformation is
used to represent the hybrid-field channel as sparse. The polar-
domain representation of the channel can be expressed as

hm = Unh
P
m, (9)

where Un ∈ CN×S and S are the number of sampled far
and near-field steering vectors in the PD, respectively. The
PD matrix Un can be represented as

Un =
[
b
(
θ1, r

1
1

)
, . . . ,b (θ1, r

S1
1

)
, . . . ,

b
(
θN , r

1
N

)
, . . . ,b

(
θN , r

SN

N

)]
,

(10)
where sn = 1, 2, . . . , Sn denotes the samples of distance at
each angle. Note that the columns of Un contain samples
at each angle and distance. The PD transform accounts for
both angle and distance information of all components, so the
energy spread the effect of near-field components in the AD
is also eliminated.



III. OMP AND RIDNET FOR HYBRID-FIELD THZ
MASSIVE MIMO CHANNEL ESTIMATION

In this section, the proposed OMP-RIDNet method is de-
scribed for the hybrid-field channel estimation. The method
consists of two stages (i.e., OMP and RIDNET). OMP algo-
rithm strives for better performance, especially at low SNR
regions. Thus, the RIDNet further refines the estimate after a
coarse estimation with OMP and provides the desired result.

A. OMP Stage
Channel estimation can be performed with the low pilot

overhead using compressive sensing algorithms such as OMP
in sparse channels. The pseudo-code of the OMP is described
in Algorithm 1, where Y,W,Un, N , and M are defined
above, and T represents the number of iterations. During
the estimation of the hybrid-field components, the matrix
A = WUn is used as a sensing matrix. The correlation
between A and the residual matrix R is calculated at each
iteration. Then, the highest correlative index is stored as an
element of vector s, which is updated after each iteration.
Using the least square algorithm, we then obtain the estimated
hybrid-field sparse channel matrix in the PD.

Algorithm 1 Estimation of the sparse hybrid-field channel
1: function OMP(Y,W,Un, T,N,M )
2: A = WUn

3: R = Y
4: for i← 1 : T do
5: k∗ = argmax

∥∥AH(:, k)R
∥∥2
2

6: s = s ∪ k∗
7: ĤP = 0N×M
8: ĤP (s) = AH (:, s)Y
9: R = Y −AĤP

10: end for
11: end function

As the output of Algorithm 1, we obtain the estimated sparse
hybrid-field channel.

B. RIDNet Stage
In the second stage, a feature attention-based THz hybrid-

field channel denoising network called RIDNet is utilized
further to improve the channel estimation of the OMP algo-
rithm. The second stage consists of three main steps: feature
extraction, feature learning residual on the residual module,
and reconstruction.

First of all, the coarse estimated ĤP using the OMP
algorithm passes through the feature extraction module that
includes only one convolutional layer. Thus, the initial features
f0 are obtained from noisy input ĤP

fĤP
0
= fConvE(Ĥ

P), (11)

where fConv(·) is the convolution operator. Next, fĤP
0

goes
through the feature learning residual on the residual module,
which is created by cascading the EAM modules.

fĤP
r
=Mfl

(
ĤP

0

)
, (12)

where fĤP
r

are the learned features and Mfl(·) is the main
feature learning on the residual component. Then, the output
features fĤP

r
from the final layer go through the reconstruction

module fConvR(·), which consists of a single convolutional
layer.

ŷ = fConvR

(
fĤP

r

)
(13)

As depicted in Fig. 1, input data is summed with ŷ via a
long skip connection, and denoised estimated channel ĤP

R

is obtained as output. For N training pairs in each batch,
{ĤP ,HP}Ni=1, where ĤP is the noisy input channel that is
output of the OMP algorithm and HP is the ground truth, the
loss function can be expressed as

L(W) =
1

N

N∑
i=1

∥∥∥RIDNet
(
ĤP
i

)
−HP

i

∥∥∥
1
, (14)

where W denotes the network parameters learned.
There are four EAMs in the RIDNet model. First, the

input features are divided into two branches, and each passes
through two convolution layers, then concaneted and passed
through one more convolution layer. Furthermore, after learn-
ing the features using two convolution layers, compression
is performed with a total of three convolution layers, two of
which are 3 × 3 kernel size, and the third is 1 × 1 kernel
size. Also, for channel estimation denoising problems, channel
features are generally treated equally, but this may not be
appropriate. When we feed the compressed data directly to
the convolutional layer, only local information will be used.
Therefore, a global average pooling is applied before the
convolutional layer to get the statistics of the data. Moreover,
after global average pooling, there are two convolutional layers
and the sigmoid is used as an activation function in the second
convolutional layer. Finally, the output of the convolutional
layer containing the sigmoid is multiplied by the input of the
global average pooling layer and summed with the input of
the EAM module through the short skip connection.

IV. SIMULATION RESULTS

This section presents the performance evaluation of the pro-
posed OMP-RIDNet method through simulation experiments
for THz mMIMO systems.

A. Simulation Scenario

It is hard to obtain real measurement data for massive
antenna systems in the THz band due to the hardware lim-
itations. However, thanks to simulators such as NYUSIM
[15], TeraMIMO [16], Wireless InSite [17], and Matlab, THz
mMIMO channels can be accurately modeled using the ray
tracing technique.

In this study, an outdoor environment consisting of one
BS, selected 1000 measurement points on a user grid, and
different shapes and sizes objects representing buildings are
modeled using Sketchup as shown in Fig. 2. This Sketchup
environment is imported into Matlab to be utilized by the ray
tracing tool for obtaining the information of LoS and NLoS
paths such as angle of arrival (AoA) path delays, the phase, and



Fig. 2. The simulation environment

the propagation distance. The LoS and NLoS path properties
are used in (3), (7), and (8) to construct the hybrid-field
channel matrix. In particular, a ULA of N = 256 elements
is used as the antenna in the BS. In a typical communication
environment, the number of multipath components depends on
the user locations. For a stationary Tx on a particular location,
measurements are taken from 1000 different receiver locations
to make an analysis closer to the practical scenario. Further-
more, the operating frequency is 100 GHz which corresponds
to the THz band in the spectrum, and the bandwidth is 60
MHz. In our scenario, the LoS propagation distance varies
between 110 and 160m. When the operating frequency is
100GHz using 256 antennas at the base station, the Rayleigh
distance is approximately 100m. Thus, the signal source is
always in the far-field region in our case. We can assume that
the signal coming from the LoS path propagates as a plane
wave. In addition, depending on the environment, NLoS path
can be modeled as a near-field channel and scatters propagate
as a spherical wave.

During the offline training stage, the learning rate is set
as 0.001, and the mini-batch of 64 samples is used in each
iteration. Also, 80% and 20% part of all dataset is selected
as the training and validation data sets, respectively. 1000
samples that have been obtained from the receiver point at
1000 different points are used in the Monte Carlo analyses.

All the numerical results are implemented on a PC with
Intel(R) Core(TM) i9-11980HK @ 2.60GHz and Nvidia
GeForce RTX 3080. Also, RIDNet is carried out by using
the TensorFlow framework.

B. Performance of the OMP-RIDNet

The channel estimation performance of the OMP-RIDNet
is evaluated by the normalized mean-square error (NMSE)

NMSE = E

(
∥H− Ĥ∥22
∥H∥22

)
. (15)

The NMSE performance of the OMP-RIDNet algorithm is
compared with the OMP algorithm by varying the number of
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Fig. 3. The NMSE performance of the proposed channel estimation scheme
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different RF chains and Q pilot matrices in Fig. 3 and Fig. 4,
respectively.
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The results show that using the AD transform matrix is a
disadvantage for the channel estimation performance due to
near-field components in hybrid field channels, so PD trans-
formation matrices with both angle and distance information
should be used for the sparse representation of hybrid field
channels. In Fig. 3, the channel estimation performance of
OMP-RIDNet and OMP methods is compared according to
different RF chain numbers by keeping the number of pilots
constant. There is a difference of 4dB at 0 SNR when 8
RF chains are used between the proposed channel estimation
method and the classical OMP algorithm. In addition, the
channel estimation performance obtained by using 16 RF
chains can be achieved, especially at low SNRs, by using
8 RF chains with the proposed method. Thus, when using



OMP-RIDNet, a significant advantage is gained from hardware
complexity and power consumption.

Furthermore, the performance analysis with respect to dif-
ferent numbers of pilots is provided in Fig. 4, where the
NMSE values of the OMP algorithm can be obtained using
less number of pilot symbols thanks to the OMP-RIDNet
channel estimation scheme. Thus, a channel estimation scheme
having a lower pilot overhead can be utilized for THz mMIMO
systems.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a RIDNet-assisted two-stage
channel estimation scheme for THz mMIMO systems by
taking hybrid-field channels into account. In addition, we
developed a ray-tracing tool to model a THz environment
with different building heights and shapes. Simulation results
show that the proposed OMP-RIDNet method consistently
provides better channel estimation accuracy using low pilot
overhead and less number of RF chains compared to the
OMP algorithm, especially for the low SNR regime. We also
showed that the PD transformation of the channel provides
lower channel estimation error for hybrid-field channels, which
can be represented as sparse in the PD.

Future work will investigate one stage hybrid-field channel
estimation method with lower complexity instead of a two-
stage channel estimation scheme.

ACKNOWLEDGMENT

This publication was made possible by the NPRP award
[NPRP12S-0225-190152] from the Qatar National Research
Fund, a member of The Qatar Foundation. The statements
made herein are solely the responsibility of the authors. We
thank to StorAIge project that has received funding from
the KDT Joint Undertaking (JU) under Grant Agreement
No. 101007321. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme in
France, Belgium, Czech Republic, Germany, Italy, Sweden,
Switzerland, Türkiye, and National Authority TÜBİTAK with
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