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Abstract—In this paper, we propose an efficient simulation
method based on adaptive importance sampling, which can
automatically find the optimal proposal within the Gaussian
family based on previous samples, to evaluate the probability
of bit error rate (BER) or word error rate (WER). These two
measures, which involve high-dimensional black-box integration
and rare-event sampling, can characterize the performance of
coded modulation. We further integrate the quasi-Monte Carlo
method within our framework to improve the convergence speed.
The proposed importance sampling algorithm is demonstrated
to have much higher efficiency than the standard Monte Carlo
method in the AWGN scenario.

Index Terms—adaptive importance sampling, Monte Carlo,
quasi-Monte Carlo, bit error rate, error probability

I. INTRODUCTION

In wireless communication, reliability is assessed by mea-
suring the correct rate of packets of a certain size delivered
within a specified time. For a single user, N packets can be
specified to be sent according to business requirements, the
packet transmission delay can be measured, and reliability can
be evaluated by recording whether the packet transmission de-
lay is within the specified time. The reliability (or success rate)
of packet transmission in traditional mobile broadband (MBB)
systems (2G/3G/4G) is usually at the level of 0.1 or 0.01. This
is because they mainly serve for voice and video transmission
between humans who are relatively delay tolerant. In addition
to MBB, 5G/6G introduces URLLC systems that are designed
for communications between “intelligence” including humans
and machines which ask for higher reliability at the level
of 10−6 or even to 10−9 [1]. This enables many future
applications such as telesurgery, robot cooperation, and remote
control of machines. However, the efficiency of evaluating a
high-reliability system is becoming a crucial problem since
generating error packets at very low probability becomes a
rare event and therefore performing Monte-Carlo simulation
is time-consuming. For example, suppose the reliability target
value is 99.999% (32bytes @ x ms), assuming that 100,000
packets are sent, if the delay when transmitting 99,999 packets
is less than or equal to x ms, then the reliability of transmitting
32-byte packets within x ms is 99.999%. For the whole
system, the required statistic is the proportion of users who
satisfy 99.999% of the total number of simulated users. Then,
106 sampling points are needed to find the incorrect packets
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Fig. 1. Illustration of system model

with traditional sampling methods, which would exert an
impractical big cost.

Importance sampling (IS) technology provides a remedy,
which can reduce the variance of the MC estimator by tiling
or scaling the original target distribution as a proposal. The
target function in practice is usually complex, like modu-
lated codewords with noise. Using importance sampling, the
resulting biased distribution would have a higher frequency
of occurrence of rare events. This biased distribution will be
corrected by using the importance weight. The optimal pro-
posal distribution is not known since it depends on the black-
box integral function. In fact, even if the optimal proposal
distribution is known, it is usually difficult to sample. Thus,
the proper choice of the family of proposal distribution and its
parameter is crucial to find a sub-optimal proposal. For a gentle
introduction to the importance of sampling in communications
systems, see [2].

Two families of distributions have often been used as
proposals in the literature on communications systems. [3], [4]
used the Bernoulli distribution as a proposal for importance
sampling to evaluate the performance of binary linear block
codes. [3] also developed an adaptive approach to update the
parameters in the Bernoulli proposal. [5] used the Gaussian
proposal for importance sampling to estimate the random
coding Union (RCU) bound and gave the asymptotic analysis
of the estimator. However, the RCU bound [6] is only the
theoretical maximal channel coding rate achievable at a given
block length and error probability, which is a bit far away from
practice. The Gaussian proposal has also been used to evaluate
the performance of Low-density Parity Check (LDPC) Codes
in an AWGN channel [7] and Rayleigh Fading Channels [8].
However, both of them didn’t discuss how to determine the
parameter for the Gaussian proposal.

Our paper makes two main contributions. First, we introduce
an adaptive importance sampling scheme based on the work
of Bugallo et al. [9] to update the parameters of our Gaussian
proposal. Second, instead of relying on traditional random
number generators, we use Quasi-Monte Carlo (QMC) and
randomized QMC methods to sample from our Gaussian
proposal. QMC and RQMC offer a substitute for the widely
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utilized Monte Carlo method in scientific computing and
financial analysis [10]–[12]. Unlike Monte Carlo, which uses a
random sampling approach, QMC uses a deterministic rule to
generate points. As a result, QMC can achieve the same level
of integration error with fewer points, leading to increased
efficiency in the integration process, thus higher efficiency
in importance sampling. In this paper, we focus on additive
white Gaussian noise (AWGN) in link-level simulation when
the encoder and decoder are omitted, see Figure 1.

II. MODEL SETTING AND PERFORMANCE MEASURE

Let m ∈ X k be the message vector. A codeword c ∈ Xn
is obtained by encoding this message word. The signal X is
the sequence after modulation of codeword c. At the output
of the channel, a word r ∈ Xn perturbed by some noise
before demodulation, is what we can observe in practice. The
decoder will try to recover the observation r to the original
message m. In communication system modelling, we can have
the binary phase-shift keying (BPSK) modulation with additive
white Gaussian noise (AWGN) channels or Rayleigh fading
channels. For example, in Figure 1, when we set h ≡ 1 and ε
as Gaussian distribution, we obtain the AWGN channel.

The performance of the codes is measured by some metric,
averaged over all words r generated by some independent
drawings from some joint distribution π(Y |X)π(X), and
then transferred by the demodulator. For example, by aver-
aging the 0-1 loss (i.e. if the received word is erroneously
decoded, then the loss is 1 and 0 otherwise), we get the
probability of word error (WER). In general, we can write
Pe = Eπ(Y )[I(Y )] ≈ 1

N

∑N
i=1 I(yi), where yi ∼ π(Y ).

Due to the complex structure of both the demodulator and
decoder and the length of the code, we cannot explicitly write
down the active area of indicator function I(Y ). We need to
use Monte Carlo simulation to evaluate this high-dimensional
integration. When the SNR is high, Pe could be very small.
For the case of WER, the relative error can be approximated

by
√
V ar[P̂e]
Pe

≈ 1√
PeN

, which indicates that, for rare event
sampling, a large sample size is required to maintain accuracy.

III. IMPORTANCE SAMPLING

To sample the rare event, a good candidate solution is
importance sampling (IS)

P̂e ≈
1

N

N∑
i=1

I(yi)
π(yi)

g(yi)
=

1

N

N∑
i=1

I(yi)w(yi), (1)

where w(yi) =
π(yi)
g(yi)

, yi ∼ g(Y ) and g(Y ) is the density of
proposal distribution, which has higher probability to incur the
error. There also exists another estimator for IS, which only
requires both the proposal and target distribution known up to
a normalizing constant by normalizing the importance weight:
P̂e ≈

∑N
i=1 I(Yi)w(yi)∑N
i=1 w(yi)

. Note that π(Y ) =
∫
π(Y |X)π(X)dx

has no closed form in practice. For example, in AWGN
channel, π(Y |X) is the pdf of

∏n
i=1N(yi, σ

2) and X can
follow the discrete uniform distribution. Then, we have two
strategies:

1) We jointly sample Y and X based on the proposal
g(Y,X) = g(Y |X)π(X). In this case the importance
weight change to w(yi, xi) =

π(yi|xi)
g(yi|xi) .

2) We apply the conditional importance sampling approach
[13], [14] by first sampling xi ∼ π(X), then condi-
tional on xi, we use importance sampling to evaluate
Eπ(Y )[I(Y )|X]. In this case, we have the IS estimator

Pe = Eπ(X)[Eπ(Y |X)[I(Y )|X]]

≈ 1

S

S∑
j=1

∑N
i=1 I(Yij)w(yij , xj)∑N

i=1 w(yij , xj)
.

(2)

This estimator will work well if the error is dominated by the
noise ε and the codeword x has a minor impact on the error.
For example, when the loss is WER, we could have

Eπ(Y |X)[I(Y )2|X] = Eπ(Y |X)[I(Y )|X] ≈ pe. (3)

Then, by the law of total variance,

Varπ(Y )[I(Y )] = Eπ(X)[Varπ(Y |X)[I(Y )|X]]

+Varπ(X)[Eπ(Y |X)[I(Y )|X]]

≈ Eπ(X)[Varπ(Y |X)[I(Y )|X]]

≈ Varπ(Y |X)[I(Y )|X] = pe − p2e.

(4)

In other words, the variance of the IS estimator in equation (2)
is close to the case that we have the analytic form of π(yi).
This implies that we can sample xi such that S � N . In the
extreme case, S = 1.

Conditional on X , the optimal proposal is given by

g∗(Y |X) =
I(Y )π(Y |X)

Eπ(Y |X)[I(Y )|X]
, (5)

which is impossible to sample. The key problem in importance
sampling is designing a sub-optimal proposal. We need to
balance the following four points.

1) The proposal distribution can efficiently sample rare
events compared to the target distribution.

2) The importance weight can be evaluated quickly.
3) Sampling from the proposal distribution is straightfor-

ward.
4) The effective sample size should not be too small.

IV. IMPORTANCE SAMPLING WITH AWGN CHANNEL

If codeword x is sent over the AWGN channel, then the
conditional target distribution is y|x ∼ N(x, σ2In). To tackle
the rare event simulation, we consider two approaches to
construct the proposal distribution.

A. Exponential Tilting

Exponential Tilting is used in Monte Carlo estimation
for rare-event simulation, which will shift the target distri-
bution. Suppose π(Y,X) is the pdf of normal distribution
N(x, σ2In), the tilted density gθ(y) is N(x+θ, σ2In), where
θ = (θ1, ..., θn) is the vector of tilting parameters we need to
tune. Then, the unnormalize importance weight reads

π(yi|xi)
gθ(yi|xi)

= exp

[
− (yi − xi)T θ

σ2

]
exp

[
‖θ‖2

2σ2

]
. (6)



The resulting IS estimator is

p̂e ≈

∑N
i=1 exp

[
− (yi−xi)T θ

σ2

]
I(yi)∑N

i=1 exp
[
− (yi−xi)T θ

σ2

] , (7)

or if we use conditional importance sampling,

p̂e ≈
1

S

S∑
j=1

∑N
i=1 exp

[
− (yij−xj)T θ

σ2

]
I(yij)∑N

i=1 exp
[
− (yij−xj)T θ

σ2

] . (8)

The variance of importance sampling is

Varg(Y |X)π(X)

[
I(Y )

π(Y |X)

g(Y |X)

]
=Eπ(Y |X)π(X)

[
I(Y )

π(Y |X)

g(Y |X)

]
− p2e,

(9)

which is not possible to obtain. But our problem is to find the
tilting parameter θ to minimize the variance above. Since only
the first term of the equation (9) depends on θ, we can find
a surrogate objective function, which is the second-moment
estimator for IS.

Lemma 1. The second moment estimator for IS in the expo-
nential tilting case is

Eθ[p̂
2
e] =

∑N
i=1 I(yi)

2 exp

[
−2(yi−xi)T θ+‖θ‖22

2σ2

]
N

(10)

with its derivative

∂Eθ[p̂
2
e]

∂θ
=

1

N

N∑
i=1

I(yi)
2 exp

[
−2(yi − xi)T θ + ‖θ‖22

2σ2

]

×
[
−2(yi − xi) + 2θ

2σ2

]
,

(11)
where (xi, yi) is sampled from the target distribution π(Y,X).
In addition, ∂2Eθ[p̂

2
e]

∂θ2 > 0 for all θi, which implies that the
second moment estimator for IS in (10) is a convex function
with respect to the variable θ.

Therefore, we have the following theorem.

Theorem 2. The optimal tilting parameter θ̂ that minimizes
the variance of the IS estimator given by (7) or (8) is

θ̂ =

∑N
i=1 I(yi)

2(yi − xi) exp[− (yi−xi)T θ̂
σ2 ]∑N

i=1 I(yi)
2 exp[− (yi−xi)T θ̂

σ2 ]
, (12)

where (xi, yi) is sampled from π(Y,X). Thus, as N →∞,

θ̂ →a.s

Eg(Y,X)

[
I(Y )2(Y −X)π

2(Y,X)
g2(Y,X)

]
Eg(Y,X)

[
I(Y )2 π

2(Y,X)
g2(Y,X)

]

≈

∑N
i=1 I(yi)

2(yi − xi) exp
[
− 2(yi−xi)T θ̂

σ2

]
∑N
i=1 I(yi)

2 exp

[
− 2(yi−xi)T θ̂

σ2

] ,

(13)

where g(Y |X) could be the pdf of N(x+ θ, σ2In) for any θ
and (xi, yi) is sampled from g(Y |X)π(X).

Remark. Lemma 1 and equation (12) in Theorem 2 tell us
that it is not possible to obtain a closed-form expression
for θ̂, but the numerical result can be obtained by using
gradient descent with convergence guaranteed by the convexity
of Eθ[p̂2e]. However, evaluating the gradient from equation (11)
needs to sample the rare event from the target distribution.
When the SNR is high, the Monte Carlo gradient from (11)
might be unreliable. A remarkable consequence of equation
(13) is that we can obtain an unbiased IS estimator for
θ̂ by using any exponential tilting normal distribution. This
provides two merits: 1. Sampling the rare event from the tilting
distribution is easier. 2. We can update the estimator θ̂ based
on samplers from the previous proposal.

B. Scaling Variance

Another way to sample the rare event is by scaling the
variance of the target distribution. In this case, the scale density
gc(y) is N(x, cσ2In), where c > 1 is the scaling parameter
to be tuned. The unnormalize importance weight then reads

π(yi|xi)
gθ(yi|xi)

= c
n
2 exp

[(
1

c
− 1

)
‖yi − xi‖22

2σ2

]
. (14)

Similar to exponential tilting, we can obtain the optimal IS
estimator using scaling variance.

Lemma 3. The second moment estimator for IS in the scaling
variance case is

Ec[p̂
2
e] =

c
n
2

∑N
i=1 I(yi)

2 exp
[(

1
c − 1

) ‖yi−xi‖22
2σ2

]
N

(15)

with its derivative given by

∂Ec[p̂
2
e]

∂c
=
n

2
c
n
2−1

∑N
i=1 I(yi)

2 exp
[(

1
c − 1

) ‖yi−xi‖22
2σ2

]
N

− cn2−2
∑N
i=1 I(yi)

2 exp
[(

1
c − 1

) ‖yi−xi‖22
2σ2

]
‖yi−xi‖22

2σ2

N
,

(16)
where (xi, yi) is sampled from the target distribution π(Y,X).

Theorem 4. By setting ∂Ec[p̂
2
e]

∂c = 0, the stationary point ĉ
satisfies

ĉ =
2
∑N
i=1 I(yi)

2 exp
[
( 1c − 1)

‖yi−xi‖22
2σ2

]
‖yi−xi‖22

2σ2

n
∑N
i=1 I(yi)

2 exp
[
( 1c − 1)

‖yi−xi‖22
2σ2

] , (17)

where (xi, yi) is sampled from π(Y,X). Thus, as N →∞,

ĉ→a.s

2Eg(Y,X)

[
I(Y )2

‖Y−X‖22
2σ2

π2(Y,X)
g2(Y,X)

]
nEg(Y,X)

[
I(Y )2 π

2(Y,X)
g2(Y,X)

]
≈
2
∑N
i=1 I(yi)

2 exp
[
( 1c − 1)

‖yi−xi‖22
σ2

]
‖yi−xi‖22

2σ2

n
∑N
i=1 I(yi)

2 exp
[
( 1c − 1)

‖yi−xi‖22
σ2

] ,

(18)



where g(Y |X) is the pdf of N(x, cσ2In) for any c and (xi, yi)
is sampled from g(Y |X)π(X).

Remark. Theorem 4 is slightly weaker than Theorem 2
because ∂2Ec[p̂

2
e]

∂c2 > 0 can not be guaranteed. Hence, ĉ in
equation (18) is only the stationary point. In each update, we
let c∗ = max {1 + δ, ĉ}, where δ > 0. This guarantees that
the proposal distribution always has a larger variance than
the target distribution.

C. Adaptive Importance Sampling

The adaptive importance sampling [15] is an iterative pro-
cess to generate the proposal densities to reduce the variance
of importance sampling. The procedure consists of three
basic steps: generating samples from proposals, calculating the
importance weight of each sample (weighting), and updating
the parameters in the distribution family of the proposal to
obtain new proposals for the next iteration (adapting). The
way to make adaption is tailored to the specific problem
as mentioned. Many methods have been proposed [16]–[18]
for combining the samples from different proposals. Here,
we choose a straightforward way, which is to normalize the
weighted cross of all samples from all proposals. Algorithm 1
below implements our adaptive importance sampling strategy.

V. QUASI-MONTE CARLO METHOD

The Monte Carlo method is one of the most widely used
numerical methods for simulating probability distributions. It
is a decisive step in overcoming the curse of dimensionality
problem as computing operations do not grow exponentially
but remains manageable and proportional to the dataset’s size.
A major drawback, however, is that Monte Carlo methods pro-
duce probabilistic predictions rather than definitive answers.
Another critical point in applying Monte Carlo methods is
the generation of random samples. Although Monte Carlo
commonly assumes that true random numbers are used as
inputs, in practice, they are, in fact, deterministic. These
inputs are called pseudo-random numbers and are designed
to mimic true random numbers. Quasi-Monte Carlo methods
are a deterministic counterpart to the Monte Carlo methods,
which rely on using low-discrepancy sequences with more
evenly space-filling properties rather than random sequences
[10]. As a result, there is a significant improvement when

Monte Carlo Quasi-Monte Carlo

random deterministic
N−1/2 convergence close to N−1 convergence

Probabilistic error bounds deterministic error bounds

using quasi-Monte Carlo for high-dimensional integration to
achieve a much faster explicit convergence rate. Furthermore,
when a similar problem needs to be solved repeatedly, quasi-
Monte Carlo is more reliable, as is often the case in pricing
applications, where quasi-Monte Carlo methods have gained
tremendous attention [19]–[21].

Both MC and QMC take the same format when approx-
imating an integral, i.e.,

∫
[0,1]s

f(x) dx ≈ 1
N

∑N
i=1 f(xi),

where xi ∼ U([0, 1]s) are independent random samples for
MC methods. In contrast, QMC methods utilize a deterministic
low-discrepancy sequence in place of these random samples.
The comparison between the two methods is summarized in
the table above for quick reference.

QMC methods can integrate continuous functions in a hy-
percube of d-dimensional Euclidean space using equal weights
with convergence rate O

(
N−1(logN)d−1

)
, that is, for a

continuous function f on [0, 1]d,∣∣∣∣∣∣ 1N
N∑
i=1

f(xi)−
∫
[0,1]d

f(x)dx

∣∣∣∣∣∣ ≤ Cf (logN)d−1

N
, (19)

where xiNi=1 are points from a low-discrepancy sequence and
Cf is a constant that depends only on the function f . Roughly
speaking, low-discrepancy sequences are designed in such a
way that there are no large empty regions or clustered points.
The sequence systematically fills gaps in any initial segment,
unlike random points. This leads to improved performance
compared to traditional Monte Carlo methods.

Recall that codeword x is sent over the AWGN channel,
then the conditional target distribution y|x ∼ N(x, σ2In),
where yi ∼ π(Y ). Moving to the QMC way, we will use
the low discrepancy point in the sampling procedure for
the Gaussian distribution. Low-discrepancy sequences are a
type of sequence widely used in numerical computation and
statistical analysis. They include classical constructions such
as Halton-type sequences, Sobol points, digital nets [22], and
lattice rules [23] along with their variations. The seminal work
on low-discrepancy sequences can be found in [24]. When
randomization techniques such as random shift or scrambling
are applied to these sequences, they become randomized
Quasi-Monte Carlo (RQMC) sequences. RQMC estimators are
unbiased and can lead to a reduction in variance compared to
ordinary Monte Carlo methods. Furthermore, RQMC provides
a probabilistic framework for analyzing QMC-related meth-
ods, as discussed in [12] and references therein. The difference
between MC and some QMC points is shown in Figure 2. It
is evident that the QMC points are more uniformly distributed
within the unit square, as compared to MC points.

Low-discrepancy sequences have also been integrated into
Markov Chain Monte Carlo (MCMC) methods, as described



Fig. 2. From left to right: MC Points, and QMC Points including Halton, Sobol, and Scrambled Sobol. In each case, the number of points is N = 128.

in [25], [26]. The deterministic versions of statistical samplers,
such as acceptance-rejection samplers [27] and importance
sampling [28], have been studied, and it has been observed
that the use of QMC points can lead to improved performance
in various applications.

A. Using QMC in Importance Sampling

In the importance sampling framework, there are at least
two ways to improve the algorithm’s performance: by design-
ing a more effective proposal distribution and by obtaining
better samples from the proposal. This section focuses on
the latter aspect, specifically, obtaining better samples from
the chosen proposal distribution. To achieve this, the quasi-
Monte Carlo method will be used. As a result, we will obtain
low-discrepancy samples that are specifically designed for
the chosen proposal distribution and have better space-filling
properties compared to those obtained using the Monte Carlo
method.

The use of QMC points in the importance sampling frame-
work has been explored in previous studies, such as [28],
where a significant improvement in numerical integration tasks
was observed. More recent research, such as [29, Theorem
3.1], has shown that using randomized QMC in the importance
sampling framework for a Gaussian proposal can lead to an
RMSE of the order N−1+ε for arbitrarily small ε > 0. In the
importance sampling framework, QMC points can be used to
sample from the proposal distribution, replacing Monte Carlo
points. The higher integration accuracy of QMC methods
compared to MC methods means that fewer sampling points
are needed to estimate the bit error. However, different types of
QMC points may result in slightly different performances. In
our experiment, we will consider several commonly used QMC
point sets, and further research could be done to construct
the optimal QMC/RQMC points for the importance sampling
algorithm. This is left for future work.

VI. EXPERIMENTS

In this section, we demonstrate how different sampling
methods perform estimating the bit error in a 6G wireless
communication scenario when the number of sampling is
large. We consider only the AWGN channel with the proposed
methods. We first randomly generate some code words x
and modulate them to latent space. Then we sample y from
gη(y | x) with parameter η.This is done by adding Gaussian
noise based on the proposal distribution on modulated code

Fig. 3. SNR vs. BER for three sampling methods: Monte Carlo, Quasi-Monte
Carlo and MC-based Importance Sampling.

words. We repeat this process several times. Each time we
updated the parameter η based on equation (18). After we
finish sampling, we reweight all the important weights of
the samples. Next, we demodulate the noisy signal back and
compute the bit error rate for each sampler. The importance
sampling estimator is obtained by calculating the weighted
sum of the bit error rate. See Algorithm 1. We evaluate the
BER by repeating the simulation multiple times. We compare
three methods in the experiment: vanilla Monte Carlo, Quasi-
Monte Carlo and importance sampling based on scaling vari-
ance. All experiments are simulated in Matlab.

A. MC and QMC points

In the experiments, we use both Monte Carlo and Quasi-
Monte Carlo sampling points. Figure 2 illustrates the MC
points by pseudo-random algorithm and QMC points by Sobol,
Halton, and scrambled methods from left to right. All the
methods sample n = 128 points in unit square [0, 1]2. The MC
points in the leftmost are scattered randomly in [0, 1]2. The
QMC points are more regularly aligned in the unit square than
MC points but with higher integration accuracy with the same
number of sampling points. Sobol and Halton are typical QMC
points, while scrambled Sobol points are randomized QMC
methods. Here the “randomized” means that each scrambled
point is a Sobol point with a small perturbation. The scrambled
points have the integration accuracy between MC and QMC
methods as mentioned.



B. Importance Sampling by Monte Carlo Method

We present the simulation results of biasing the noise pdf
using variance scaling, as well as replacing the Monte Carlo
method with the Quasi-Monte Carlo method.

We evaluate the BER for sampling methods for signal-to-
noise ratio (SNR, db) from 5 to 25, where the bit error rate
is calculated by BER =

∑N
i=1|mi−m′

i|
N . We assume that the

input signal x has 5000 codewords and 100 packets, noise ε
is Gaussian distributed with mean zero and variance 0.5 ×
10−

SNR
10 . Three methods are evaluated in the experiments: the

plain Monte Carlo (MC) Method, Quasi-Monte Carlo (QMC)
method, and Importance Sampling with MC (IS-MC). In IS-
MC, the proposal SNR is the original SNR reduced by 5 using
Algorithm 1.

We show the SNR vs. BER in the semilog plot in Figure 3,
where the x-axis is SNR from 0 up to 25, and the y-axis
is the BER. In the simulation, we use Ns = 100 packs and
N = 5000 packets and qammod order is 16. The number
of sampling points is then 500, 000. We observe that the
importance sampling method achieves great improvement on
fixed sampling numbers. When SNR is less than 20, those
three methods show similar performance. However, neither the
Monte Carlo method nor the Quasi-Monte Carlo method can
estimate BER when SNR is larger than 20. The importance
sampling method can precisely estimate BER roughly equal
to 10−15 by using 500, 000 samplings.

C. Comparison of MC and QMC Methods

We evaluate MC and QMC methods by comparing each of
them with importance sampling. As the IS method shows a
small variance for each SNR up to 25, we treat the IS result
as the ground truth and compute the relative error for the
plain MC and the QMC and RQMC methods. The QMC (or
RQMC) method provides (nearly) equal-area points which can
be used to sample Gaussian distributed points by dividing the
norm of each point. Figure 4 shows the difference of the bit
error rates between each of MC sampling, Sobol-based QMC
sampling, and scrambled-Sobol-based RQMC sampling with
IS-MC sampling. Both MC and QMC methods have a tiny
error when SNR is less than 15. When SNR is large and the
probability of error is small, the variance of both of the two
methods increases. When the number of sampling points is
limited (and then SNR is high), the QMC shows a smaller
variance than the plain MC method. The RQMC method has
a similar performance as the QMC.

VII. CONCLUSION AND DISCUSSION

We propose a new and efficient sampling method for eval-
uating wireless communication that requires high reliability,
specifically for 6G systems. Our approach is based on an
adaptive importance sampling algorithm with an updating rule
that has a theoretically guaranteed minimal variance for the
simplified AWGN case. Our results show that the proposed
importance sampling approach is significantly more efficient
than traditional Monte Carlo methods, achieving a BER of
10−15 with 500,000 samplings while Monte Carlo fails at

Fig. 4. Comparison of MC with QMC (left), and MC with RQMC (right).
The y-axis is the difference of bit error rates between MC, QMC or RQMC
with IS-MC. The QMC sampling uses Sobol points and the RQMC is based
on scrambled Sobol points.

10−6. Quasi-Monte Carlo and randomized Quasi-Monte Carlo
methods, which have demonstrated higher accuracy in high-
dimensional integration, are also potential replacements for
Monte Carlo in our importance sampling framework.

While our main focus is to present a novel concept and
framework for simulating rare events in 6G Ultra-Reliable
Low-Latency Communications systems, further empirical eval-
uations comparing the performance and efficiency of our
proposed approach to existing methods will be conducted in
future work. Moreover, we believe that our framework can be
generalized to more complicated scenarios, such as Rayleigh
and more general fading channels.
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