
ar
X

iv
:2

30
2.

06
05

5v
1

 [
cs

.N
I]

 1
3

Fe
b

20
23

Computation Offloading for Uncertain Marine Tasks

by Cooperation of UAVs and Vessels

Jiahao You†, Ziye Jia†, Chao Dong†, Lijun He∗, Yilu Cao†, and Qihui Wu†

†The Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and

Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
∗School of software, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, China

{yjiahao, jiaziye, dch, caoyilu, wuqihui}@nuaa.edu.cn, lijunhe@nwpu.edu.cn

Abstract—With the continuous increment of maritime applica-
tions, the development of marine networks for data offloading
becomes necessary. However, the limited maritime network re-
sources are very difficult to satisfy real-time demands. Besides,
how to effectively handle multiple compute-intensive tasks becomes
another intractable issue. Hence, in this paper, we focus on
the decision of maritime task offloading by the cooperation of
unmanned aerial vehicles (UAVs) and vessels. Specifically, we
first propose a cooperative offloading framework, including the
demands from marine Internet of Things (MIoTs) devices and
resource providers from UAVs and vessels. Due to the limited
energy and computation ability of UAVs, it is necessary to help
better apply the vessels to computation offloading. Then, we
formulate the studied problem into a Markov decision process,
aiming to minimize the total execution time and energy cost.
Then, we leverage Lyapunov optimization to convert the long-
term constraints of the total execution time and energy cost into
their short-term constraints, further yielding a set of per-time-
slot optimization problems. Furthermore, we propose a Q-learning
based approach to solve the short-term problem efficiently. Finally,
simulation results are conducted to verify the correctness and
effectiveness of the proposed algorithm.

Index Terms—Maritime networks, Cooperative computation
offloading framework, Lyapunov optimization, Q-learning.

I. INTRODUCTION

W
ITH the increasing demands from marine Internet of

things (MIoTs) [1], the limited marine network re-

sources cannot satisfy multiple tasks. Fortunately, the devel-

opment of space-air-ground network can help figure out such

resource insufficient issues. Besides, the multi-access edge com-

puting (MEC) [2]–[4] technique can be introduced to handle

the computation related requirements from MIoTs, e.g. marine

rescue. Due to the easy deployment and flexible movement

of unmanned aerial vehicles (UAVs), it can be employed to

assist MIoTs for rapid rescue [5]. However, UAVs cannot

complete the compute-intensive tasks due to the limited energy

and computation resources. Therefore, how to assist UAVs

to handle compute-intensive tasks is significant. Vessels can

provide abundant computing and energy resources to address

the resource limitation of UAVs. Thus, the cooperation of UAVs

and vessels provides more flexible services for the maritime

MEC tasks. However, the following challenges still should be

handled: 1) the position adjustment of UAV cannot follow the

uncertainty of user demands; 2) how to select an appropriate

vessel for a UAV to offload the selected tasks; 3) the arrival of

marine tasks is uncertain, and UAVs have no knowledge of the

task information. Hence, it is significant to design a reasonable

offloading scheme involving both UAVs and vessels for the

marine MEC tasks.

There exist a couple of recent works related to MEC in UAV

based scenarios. For instance, Jia et al. [6] consider the cooper-

ation of LEO satellites and HAPs. The matching among users,

HAPs, and satellites are solved with a matching algorithm. In

[7], Yang et al. use multi-armed bandits learning to optimize

offloading delay and energy cost. Thus, the reliability of marine

communications is ensured. Zhao et al. [8] study cooperative

offloading strategies under MEC for multiple UAVs, and model

the problem as a Markov decision process (MDP). The resource

management of computation and communication is imple-

mented by multi-agent deep reinforcement learning to minimize

the sum of latency and energy cost. Ning et al. [9] build a 5G-

enabled UAV-to-community offloading system to maximize the

throughput. This work designs an auction based algorithm to

deal with the trajectory design, as well as a community based

scheduling algorithm to meet the transmission rate demands.

In [10], Sacco et al. solve the problem of task offloading via

a distributed architecture. The system learns the best actions

from environments to minimize the latency and energy cost to

improve network service levels. However, the aforementioned

works lack considering the uncertain MEC tasks in the marine

environment, which is a significant issue.

In this work, we focus on the MEC related problem coop-

erated by UAVs and vessels for marine applications. In detail,

we propose an integrated space-air-ground-marine architecture

in order to clearly depict the resources and demands in the

marine scenario. Based on the proposed architecture, we further

formulate the studied problem into a mixed-integer program,

to minimize both the total execution time and energy cost.

However, the formulated problem is NP hard and prone to

dimensional catastrophes at large scales [11]. To this end, we

first utilize the Lyapunov optimization technique to transform

the formulation problem into a set of per-time-slot optimiza-

tion problems. Then, we propose a Q-learning based method

to solve each per-time-slot optimization problem efficiently.

http://arxiv.org/abs/2302.06055v1

Finally, numerical results verify that the proposed algorithm

can effectively guarantee solution effectiveness.

The rest of the paper is organized as follows. The system

model and problem formulation are presented in Section II.

Then, a virtual queue-based Q-learning approach (VQQ) is

proposed in Section III. Numerical results are provided in

Section IV, and finally conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, an integrated space-air-ground-marine

architecture consisting of satellites, UAVs, vessels, and base

stations (BSs) is provided. Satellites provide signaling and nav-

igation for the target area. BSs mainly provide tasks commands

for vessels and UAVs. The vessels are equipped with multiple

receiving antennas, powerful computing capability, etc. Hence,

vessels can perform as the mobile base stations. The MIoT

devices in Fig 1 build multiple tasks with computation demands.

However, the limited computing and energy ability of MIoT

cannot complete the local computation. Therefore, UAVs can

collect the data from MIoT for lightweight computing. Besides,

due to the limited payloads of UAVs, the compute-intensive

demands can be relayed to vessels by the UAV.

The components in the system include MIoTs, UAVs, and

vessels. MIoTs are denoted as i ∈ M = {1, 2, 3, ..., I},

UAVs are represented as j ∈ U = {1, 2, 3, ..., J}, and vessels

are indicated by k ∈ V = {1, 2, 3, ...,K}. The vessels

are equipped with Nmax
k antennas, denoting the maximum

number of UAVs that can communicate simultaneously. The

total time is depicted as T and divided into T time periods

with length l0 of each time slot. We utilize a 3D Cartesian

coordinate system to represent the positions of MIoTs, UAVs,

and vessels, as mi(t) = (xmi , y
m
i , h

m
i), uj(t) = (xuj , y

u
j , h

u
j),

and vk(t) = (xvk, y
v
k, h

v
k), respectively. The tasks generated by

the MIoTs in time slot t is λmi (t) = {lmi (t), dmi (t)}, in which,

lmi (t) (in bits) indicates the input data size, and dmi (t) (in CPU

cycles/bit) denotes the number of CPU cycles to process data.

Considering the practical situation of limited UAV capacity, the

maximum capacity of UAV j is denoted as Smax
j .

In time slot t, the task offloading decision should be made

for each new arrival task, and we define the task offloading

decision O = [oi,j]I×J , S = [si,k]J×K as:

oi,j(t) =

{

1, if task λmi (t) is offloaded to UAV j,

0, otherwise,
(1)

and

si,k(t) =

{

1, if task λmi (t) is offloaded to vessel k,

0, otherwise.
(2)

The connection decision Q = [qi,j]I×J between MIoT i and

UAV j is:

qi,j(t) =

{

1, if MIoT i is connected to UAV j,

0, otherwise.
(3)

Satellite

UAV

Vessel

BS

Cloud

MIoT

Task offloading

Trajectory of

UAV and vessel

Communi-

cation link

Fig. 1. System overview.

Besides, some tasks should be offloaded to vessels relayed by

UAVs, the connection P = [pj,k]J×K between UAV j and

vessel k is defined as:

pj,k(t) =

{

1, if UAV j is connected to vessel k,

0, otherwise.
(4)

Note that we assume UAVs communicate in full-duplex

mode, i.e., the upload and download of tasks can be performed

simultaneously. Moreover, since the size of computed data is

much smaller than the original data, the orthogonal frequency

division multiple access technique is leveraged in backhaul

transmission. Hence, the result can be sent back within one

time slot, and the corresponding delay is omitted.

A. Communication Model

According to [5], ξa,b(t) indicates the path loss from node a

to node b, in which (a ∈ M, b ∈ U) or (a ∈ U , b ∈ V). The

path loss between two nodes in the marine environment is:

ξa,b(t) =
ζL − ζNL

1 + α exp{−β[γa,b(t)− α}

+ 20 lg

(
4π‖xa − xb‖fc

C0

)

+ ζNL,

(5)

in which

γa,b(t) = arctan

(
|ha − hb|

‖xa − xb‖2

)

, (6a)

where xa, xb denote the positions of transmitter a and receiver

b, respectively. ha and hb represent the heights of transmitter

and receiver, respectively. fc indicates the carrier frequency, C0

is the speed of light. ζL, ζNL, α, and β represent environmental

parameters.

Following Shannon formula, the average rate between trans-

mitter a and receiver b is calculated as:

Ra,b(t) = B0 log2[1 +
Paξa,b(t)

NG

], (7)

1 2 3

Tasks generated

by MIoT UAV processing tasks

Accomplished tasks

Vessel processing tasks

Accomplished tasks

4

(a) Tasks are generated from MIoTs.

21 UAV processing tasks

Accomplished tasks

Vessel processing tasks

Accomplished tasks

(b) Task 1 is being processed on the UAV. Task 2 is offloaded to the vessel
for processing.

1

2

UAV processing tasks

Accomplished tasks

Vessel processing tasks

Accomplished tasks

4

(c) Task 1 is completed and transmitted back to MIoT. Task 2 is being
processed on the UAV. Task 3 is offloaded to the vessel for processing. Task
4 is being processed on the UAV.

1 4

2

UAV processing tasks

Accomplished tasks

Vessel processing tasks

Accomplished tasks

3

(d) Task 2 is completed and transmitted back to UAV. Task 3 is being
processed on the vessel. Task 4 completion is returned to the MIoT.

Fig. 2. An example of task offloading

where B0 is the bandwidth of the channel, Pa represents the

transmitting power, and NG indicates the power of the additive

white Gaussian noise.

B. Computation Model

1) UAV based computation model: For each task generated

by MIoT i in time slot t, the total execution time includes

the execution time of the UAV-based computation, the queuing

delay and the task transmission time:

T uc
i,j (t) = T ue

i,j + T ut
i,j + T

uqd
i,j

=
dmi (t)

fu
j

+
lmi (t)

Ri,j(t)
+ T

vqd
i,j ,

(8)

where T ue
i,j is the execution time of UAV-based computation.

T ut
i,j represents the transmission time from MIoT i to UAV j,

and T
uqd
i,j denotes the queuing delay. fu

j indicates the computing

ability of UAV j, i.e., the CPU clock.

2) Vessel based computation model: If a task is offloaded

from UAV j to vessel k, such a process requires three pro-

cedures: task transmission, task execution, and task backhaul.

Since the backhaul time is much smaller than the transmission

and execution time, it is omitted and the total execution time

is expressed as:

T vc
i,j,k = T ve

j,k + T ut
i,j + T vt

j,k + T
vqd
j,k

=
dmi (t)

fv
k

+
lmi (t)

Ri,j(t)
+

lmi (t)

Rj,k(t)
+ T

vqd
i,k ,

(9)

where T ve
j,k is the computation time cost on vessel k, and T vt

j,k

denotes the task transmission time from UAV j to vessel k.

fv
k represents the computing ability of vessel k, i.e., the CPU

clock.

As above, the total execution time for task generated by MIoT

i in time slot t is:

T a
i (t) =

J∑

j=1

K∑

k=1

oi,j(t)T
uc
i,j (t) + si,k(t)T

vc
i,j,k. (10)

During task offloading, the constraints related to the total ex-

ecution time should be considered, to ensure the effectiveness.

Hence, the total execution time related constraint is listed as:

lim
T→∞

1

T

T∑

t=1

T a
i (t)

T a
i (t)

≤ ϕt
max, (11)

where T a
i (t) =

1
t

∑t−1
i=0 T

a
i (t), and ϕt

max is the bounds of the

total execution time.

C. Energy Model

There exist three main energy-consuming modes of UAVs:

hovering, trajectory and for computation functions. The energy

required for UAV j trajectory is [12]:

P t
j =

vj

vmax
j

[
Pmax
j − P h

j

]
, (12)

where vj and vmax
j denote the current speed and maximum

speed, respectively. Pmax
j is the power at maximum speed and

P h
j is the power for hovering. The hovering energy cost of the

UAV is:

P h
j = C0

√
√
√
√

(
Mu

j

)3

r2jκj
, (13)

where g represents the acceleration of gravity, and θ denotes

the air density. Mu
j represents the mass, rj is the propeller

radius, and κj indicates the number of propellers. C0 is the

environmental parameter, and C0 =
√

g3

2πθ .

The energy cost of a UAV to compute the task generated by

MIoT i at time slot t is:

Euc
i,j(t) = dmi (t)ςuj , (14)

where ςuj is the energy cost per unit computational resources.

The energy consumed by vessel k to compute task λmi (t) is

Evc
i,j,k = dmi (t)ςvk , (15)

where ςvk is the energy cost of per unit of computational

resources of vessel k.

Hence, the energy cost of the task generated by MIoT i in

time slot t is:

Ea
i (t) =

J∑

j=1

oi,j(t)P
t
j

‖uj(t)− uj(t+ 1)‖

vj
+ P h

j l0

︸ ︷︷ ︸

energy cost for UAV movement

+
J∑

j=1

K∑

k=1

oi,j(t)E
uc
i,j +

si,k(t)PjL
m
i (t)

Rj,k(t)
︸ ︷︷ ︸

UAV based computation and communication cost

+
J∑

j=1

K∑

k=1

si,k(t)E
vc
i,j,k

︸ ︷︷ ︸

vessel based calculation cost

.

(16)

Besides, energy related constraints should be considered

in terms of time constraints. Therefore, task energy related

constrained is represented as:

lim
T→∞

1

T

T∑

t=1

Ea
i (t)

Ea
i (t)

≤ ϕe
max, (17)

where Ea
i (t) = 1

t

∑t−1
i=0 E

a
i (t), and ϕe

max is the bounds of

energy constraints.

D. Problem Formulation

The optimization problem is formulated to minimize the total

execution time as well as energy cost:

P0: min
O,S,P,Q

T∑

t=1

I∑

i=1

θ0E
a
i (t) + θ1T

a
i (t), (18a)

s.t.

J∑

j=1

oi,j(t) +
K∑

k=1

si,k(t) = 1, ∀i, t, (18b)

I∑

i=1

oi,j(t) ∗ l
m
i (t) + Sj(t) ≤ Smax

j , ∀j, t, (18c)

J∑

j=1

pj,k(t) ≤ Nmax
k , ∀k, t, (18d)

‖uj(t)−uj(t+1)‖≤ l0V
max
j ,∀t ∈ [0, T−1], j,

(18e)

oi,j(t), si,k(t), qi,j(t), pj,k(t) ∈ {0, 1}, ∀i, j, k, t,
(18f)

(11) and (17), ∀i, j, k,

where θ0 and θ1 indicate the weights of energy cost and the total

execution time, respectively. Constraint (18b) ensures that a task

can be implemented by only one UAV or vessel. Constraint

(18c) is a storage constraint, denoting at any time slot, a

UAV cannot store more tasks than its own storage capacity.

Constraint (18d) denotes a vessel connection constraint i.e., the

maximum number of connections of a vessel cannot exceed

Nmax
k . Constraint (18e) indicates that the maximum moving

distance for a UAV in two adjacent time slots is limited by the

speed of UAV. Constraint (18f) indicates the binary indicators.

Due to the binary variables, P0 is non-convex and the solution

space grows exponentially with the problem scale, which is

intractable to solve by a traditional optimization approach.

III. DEEP REINFORCEMENT LEARNING-BASED

TASK OFFLOADING

Since both the constraints of energy cost and time cost hold

for a long time T , i.e., long-term constraints. Hence, T is

decoupled as multiple time slots, and each time slot is short-

term t. Then, by leveraging the Lyapunov optimization, the

long-term stochastic optimization problem can be decoupled

into short-term deterministic optimization subproblems.

A. Problem Transformation

In order to transform the constraints in P0 within the same

time slot, we convert (11) and (17) into virtual queues, detailed

as:

V t
i (t+ 1) = max{V t

i (t) +
T a
i (t)

T a
i (t)

− ϕt
max, 0}, (19)

and

V e
i (t+ 1) = max{V e

i (t) +
Ea

i (t)

Ea
i (t)

− ϕe
max, 0}. (20)

Thus, the original problem P0 is converted to the cross-time

slot problem P1. Therefore, P1 can be solved by per-time-slot

strategy, which guarantee the time and energy constraints:

P1: min
O(t),S(t),Q(t),P(t)

T∑

t=1

I∑

i=1

Ai,j,k(t),

s.t. 18(b)− 18(f),

(21)

where A is:

Ai,j,k(t) = V t
i (t)(

T a
i (t)

T a
i (t)

− ϕt
max) + V e

i (t)(
Ea

i (t)

Ea
i (t)

− ϕe
max).

(22)

To figure out P1, it is necessary to design a task offloading

scheme, and each MIoT generates a task in different time slots

and offloads to a UAV or a vessel, to minimize Ai,j,k(t). Hence,

P1 is transformed as a MDP problem [13].

In particular, the process of MDP is defined as: state, action,

reward and transfer probability, as follows:

1) State: The state at time slot t is defined as s(t) =
{T a

i (t), E
a
i (t), V

t
i (t), V

t
e (t)}, which represents the en-

ergy cost and time consumption in the current time slot.

Algorithm 1 A virtual queue-based Q-learning approach.

Input: State S(t), epochs N , and ǫ.

Output: O(t), S(t), Q(t), and P(t).
1: Randomly generate initial values of s(t) and µ, and create

neural networks with µ.

2: for each k = 1 : N do

3: for each t = 1 : T do

4: if rand(0, 1) < ǫ then

5: Stochastically select action.

6: else

7: Select the action with the largest Q value.

8: end if

9: Change the connections according to O(t) and S(t).
10: Offload tasks according to Q(t) and P(t).
11: Compute the reward of the task and loss function.

12: Update µ = µ+ φ▽µloss(µ).
13: Update s(t+ 1) and move to the next state.

14: end for

15: end for

2) Action: The action in time slot t is defined as a(t) =
{O(t),S(t),Q(t),P(t)}, which denotes the offloading

and connection decision.

3) Reward: As for the optimization problem, we set the

reward as r(t) = −Ai,j,k(t).
4) Transfer probability: The probability of moving from the

current state to the next state is p(s(t+ 1) | s(t), a(t)).

In MDP, the state space solution tends to deteriorate due to

the curse of dimensionality. Then, we propose the reinforcement

learning-based model to figure out the intractable issue.

B. Algorithm Design

The Q-learning based mechanism is utilized to solve the

current problem via selecting the Q value of action a(t) in

state s(t), and the Q value is defined as:

Q(s(t), a(t)) =Q(s(t), a(t)) + φ[r(t + 1)+

ψmax
a

Q(s(t+ 1), a)−Q(s(t), a(t))],
(23)

where φ,R, ψ denote the learning rate, reward and discount

factors, respectively.

In order to simplify the scale of the computation and reduce

the subsequent storage of Q values, we design the deep Q-

network method, leveraging a deep neural network to map the

relationship between the current state and the action. Such a

relationship denotes Q values, and the deep neural network is

utilized to gradually approximate the current parameter µ:

Q(s(t), a(t), µ) ≈ QO,S,P,Q(s(t), a(t)). (24)

Further, the loss function is defined as:

loss(µ) = (r(t) + ψmax
a

Q(s(t+ 1), a)−Q(s(t), a(t)))2.

(25)

The VQQ is detailed in Algorithm 1. Firstly, we assume that

there are N epochs and each episode consists of T time slots.

5 10 15 20 25 30
Number of MIoT

0

500

1000

1500

2000

2500

3000

La
te
nc
y
(m

s)

VQQ
DREAM
Greedy

Fig. 3. Effect of number of MIoT on latency.

5 10 15 20 25 30
Number of MIoT

0

20

40

60

80

100

120

140

160

En
er

gy
 C

os
t (

J)

VQQ
DREAM
Greedy

Fig. 4. Effect of number of MIoT on time cost.

At the beginning of each time slot, the offloading policy and

linking policy are chosen according to the random probability

ǫ−greedy (line 4-line 7). Then, the tasks are offloaded to the

selected UAV or vessel according to the action (line 9-line

10). Based on (21) and (25), the reward and loss function are

calculated for this time slot t (line 11). Finally, the value of the

next state is updated (line 12-line 13).

IV. SIMULATIONS AND PERFORMANCE ANALYSIS

Simulations are conducted in the following scenario: 3 ves-

sels, 10 UAVs and I MIoTs are evenly distributed in a region of

5km×5km. The vessels and MIoTs heights are set as 0 and the

UAV’s height set is 100m. Python is employed to implement

the proposed algorithm VQQ. In addition, other parameters are

set as: T = 100, l0 = 1s, lmi (t) ∈ [2.4, 2.6]Mbits, dmi (t) ∈ [2.4,

3.6]Mbits, B0 = 1Mhz, ζL = 2.3, ζNL = 34, α = 5.0188, β =
0.3511, Pa = 10W, NG = -114dBm, fc = 1Mhz, fu

j = 1MHz,

fv
k = 1GHz, ςuj = 1.87J/Mb, ςvk = 1.87J/Mb, ϕt

max = 0.99,

ϕe
max = 0.99, Smax

j = 20Mbits, Nmax
k =5, φ ∈ [0,1], ψ ∈

[0,1], and V max
j =12m/s [5], [14].

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al
ize

d
Ti
m
e
Co

ns
um

pt
io
n

30 marine buoys
20 marine buoys
10 marine buoys

Fig. 5. Normalized time consumption v.s. episode.

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

er
gy

 C
os
t

30 marine buoys
20 marine buoys
10 marine buoys

Fig. 6. Normalized energy cost v.s. episode.

To evaluate the performance of VQQ, the optimization results

for VQQ, the algorithm Dream from [14] and greedy algorithm

are compared in Fig. 3 and Fig. 4. It is obvious that the latency

and energy cost increase with the increment number of MIoT.

Besides, compared with the Dream and greedy algorithm, both

the latency and energy cost of VQQ are lower. It is explained

that Dream does not take into account the location change of

UAVs, and the greedy algorithm always offloads the task to

the nearest UAVs. At 30 MIoTs, the latency and energy cost

depends mainly on the speed of task transmission. The VQQ

performs slightly better than Dream and significantly better than

the greedy algorithm. Thus, the effectiveness of the VQQ is

proved from Fig. 3 and Fig. 4. Additionally, Fig. 5 and Fig. 6

show the convergence at I ∈ {10, 20, 30}. With the influence

from the environment and the reward from an action, VQQ can

quickly converge and gradually become stable. Thus, the fast

convergence reveals the efficiency of VQQ.

V. CONCLUSIONS

In this paper, we investigate the cooperation between UAVs

and vessels in offloading decisions for maritime communica-

tions. Then, we focus on minimizing the total execution time

and energy cost. However, the problem is in the form of mixed-

integer programming, and NP hard to solve. Hence, to optimize

the problem of offloading under uncertain tasks. We decouple

the long-term constraints and use them as a reward for Q-

learning. Then, we design the algorithm of VQQ to efficiently

obtain the optimal solution. Finally, the simulation results verify

the efficiency and convergence of VQQ by compared with two

reference algorithms.

REFERENCES

[1] C. Zhu, W. Zhang, Y.-H. Chiang, N. Ye, L. Du, and J. An, “Software-
defined maritime fog computing: Architecture, advantages, and feasibil-
ity,” IEEE Netw., vol. 36, no. 2, pp. 26–33, Mar. 2022.

[2] Z. Jia, Q. Wu, C. Dong, C. Yuen, and Z. Han, “Hierarchical aerial
computing for internet of things via cooperation of HAPs and UAVs,”
IEEE Internet Things J., Feb. 2022, early access.

[3] C. Dong, Y. Shen, Y. Qu, K. Wang, J. Zheng, Q. Wu, and F. Wu, “UAVs as
an intelligent service: Boosting edge intelligence for air-ground integrated
networks,” IEEE Netw, vol. 35, no. 4, pp. 167–175, Aug. 2021.

[4] Z. Jia, M. Sheng, J. Li, D. Niyato, and Z. Han, “LEO-satellite-assisted
UAV: Joint trajectory and data collection for Internet of remote things in
6G aerial access networks,” IEEE Internet Things J., vol. 8, no. 12, pp.
9814–9826, Jun. 2021.

[5] Y. Wang, W. Feng, J. Wang, and T. Q. S. Quek, “Hybrid satellite-UAV-
terrestrial networks for 6G ubiquitous coverage: A maritime communi-
cations perspective,” IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp.
3475–3490, Nov. 2021.

[6] Z. Jia, M. Sheng, J. Li, D. Zhou, and Z. Han, “Joint HAP access and
HAP satellite backhaul in 6G: Matching game-based approaches,” IEEE

J. Sel. Areas Commun., vol. 39, no. 4, pp. 1147–1159, Aug. 2021.
[7] T. Yang, S. Gao, J. Li, M. Qin, X. Sun, R. Zhang, M. Wang, and

X. Li, “Multi-armed bandits learning for task offloading in maritime edge
intelligence networks,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp.
4212–4224, Apr. 2022.

[8] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, and D. Niyato, “Multi-agent deep
reinforcement learning for task offloading in UAV-assisted mobile edge
computing,” IEEE Trans. Wirel. Commun., vol. 21, no. 9, pp. 6949–6960,
Sep. 2022.

[9] Z. Ning, P. Dong, M. Wen, X. Wang, L. Guo, R. Y. K. Kwok, and H. V.
Poor, “5G-enabled UAV-to-community offloading: Joint trajectory design
and task scheduling,” IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp.
3306–3320, Nov. 2021.

[10] A. Sacco, F. Esposito, G. Marchetto, and P. Montuschi, “Sustainable
task offloading in UAV networks via multi-agent reinforcement learning,”
IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5003–5015, May 2021.

[11] K. Shuai, Y. Miao, K. Hwang, and Z. Li, “Transfer reinforcement learning
for adaptive task offloading over distributed edge clouds,” IEEE Trans.

on Cloud Comput., Jul. 2022, early access.
[12] A. A. Al-Habob, O. A. Dobre, S. Muhaidat, and H. V. Poor, “Energy-

efficient information placement and delivery using UAVs,” IEEE Internet

Things J., Aug. 2022, early access.
[13] S. Zhu, L. Gui, D. Zhao, N. Cheng, Q. Zhang, and X. Lang, “Learning-

based computation offloading approaches in UAVs-assisted edge comput-
ing,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 928–944, Jan. 2021.

[14] Z. Jia, Z. Zhou, X. Wang, and S. Mumtaz, “Learning-based queuing
delay-aware task offloading in collaborative vehicular networks,” in IEEE

International Conference on Communications, Montreal, QC, Canada,
Jun. 2021.

	I Introduction
	II SYSTEM MODEL AND PROBLEM FORMULATION
	II-A Communication Model
	II-B Computation Model
	II-B1 UAV based computation model
	II-B2 Vessel based computation model

	II-C Energy Model
	II-D Problem Formulation

	III DEEP REINFORCEMENT LEARNING-BASED TASK OFFLOADING
	III-A Problem Transformation
	III-B Algorithm Design

	IV SIMULATIONS AND PERFORMANCE ANALYSIS
	V CONCLUSIONS
	References

