
On Learning Intrinsic Rewards for Faster
Multi-Agent Reinforcement Learning based MAC

Protocol Design in 6G Wireless Networks
Luciano Miuccio∗, Salvatore Riolo∗, Mehdi Bennis†, and Daniela Panno∗

∗ Department of Electrical, Electronics and Computer Engineering, University of Catania, Italy
† Centre for Wireless Communications, University of Oulu, Finland

emails: luciano.miuccio@phd.unict.it, {salvatore.riolo, daniela.panno}@unict.it, mehdi.bennis@oulu.fi

Abstract—In this paper, we propose a novel framework for
designing a fast convergent multi-agent reinforcement learning
(MARL)-based medium access control (MAC) protocol operating
in a single cell scenario. The user equipments (UEs) are cast as
learning agents that need to learn a proper signaling policy to
coordinate the transmission of protocol data units (PDUs) to the
base station (BS) over shared radio resources. In many MARL
tasks, the conventional centralized training with decentralized
execution (CTDE) is adopted, where each agent receives the
same global extrinsic reward from the environment. However,
this approach involves a long training time. To overcome this
drawback, we adopt the concept of learning a per-agent intrinsic
reward, in which each agent learns a different intrinsic reward
signal based solely on its individual behavior. Moreover, in order
to provide an intrinsic reward function that takes into account
the long-term training history, we represent it as a long short-
term memory (LSTM) network. As a result, each agent updates
its policy network considering both the extrinsic reward, which
characterizes the cooperative task, and the intrinsic reward that
reflects local dynamics. The proposed learning framework yields
a faster convergence and higher transmission performance com-
pared to the baselines. Simulation results show that the proposed
learning solution yields 75% improvement in convergence speed
compared to the most performing baseline.

Index Terms—6G, Intrinsic reward learning, MARL, Protocol
learning.

I. INTRODUCTION

The emergence of data-driven medium access control
(MAC) protocols can provide a cost-effective, flexible ap-
proach to boost the performance of beyond 5G (B5G) and 6G
networks. To address this problem, multi-agent reinforcement
learning (MARL) methods enable agents to learn an optimal
policy by interacting in the same environment [1]. Current
works, such as [2], [3], have studied the MAC protocol
learning in a single cell scenario, where user equipments (UEs)
need to deliver MAC protocol data units (PDUs) to the base
station (BS) sharing the same radio channel. UEs are cast as
reinforcement learning (RL) agents that are trained to learn
a new MAC protocol from their partial observations of the
global state.

However, despite the good performances shown at the end
of the training procedure, learning efficient and robust MAC
protocols consisting of multiple agents acting and learning
in the same shared environment requires very long training
time. This aspect prevents the applicability of this approach

to a dynamic wireless environment that requires retraining
to adapt the MAC protocol to changing environments. The
main causes of slowness in training stem from the partial
observability and non-stationarity of the MARL problem (i.e.,
transitions from a state to another depend on the actions of
all agents) [4]. In addition to this, [2], [3] are based on the
conventional centralized training and decentralized execution
(CTDE) paradigm and parameter sharing technique [5] that
further slows down the convergence time.

Specifically, on the one hand, CTDE allows agents to
learn their local policies in a centralized way while retaining
the ability of decentralized execution. During the training
phase, the environment assigns the same global reward to
all agents without distinguishing their own contributions. As
a consequence, only a subset of agents contributes to the
reward, and so, during training an agent may be punished
even if it has acted optimally, or rewarded even if it has acted
wrongly. Clearly, this approach induces slow and unstable
policy learning.

On the other hand, the parameter sharing technique consists
in simultaneously learning a single shared policy for multiple
agents, which boosts scalability. However, UEs may compete
at the same time to transmit their own packets in the same
shared channel. In other words, even if two UEs have the same
observation, the action taken by one UE should be different
from the action taken by the other one to avoid interference.
Updating the same policy for every agent can create adverse
actions that slow down convergence during learning.

In light of the above considerations, the main contribution
of this paper is to propose a novel framework that provides
faster convergence to the MAC protocol learning problem.
Specifically, we consider the same communication scenario
studied in [2], [3] and introduce our innovative learning
framework with the following features.

First, we adopt an enhanced version of the CTDE paradigm,
which in addition to the global reward signal, leverages for
each agent, a different local intrinsic reward signal based on
its individual behavior. This idea is inspired by intrinsic reward
learning introduced in [6], [7] for a single-agent environment.
Different from the global reward given by the environment
(termed as “extrinsic reward”) that is hand-designed, the
intrinsic reward is automatically learned by each agent.

ar
X

iv
:2

30
2.

14
76

5v
1

 [
cs

.N
I]

 2
8

Fe
b

20
23

Second, the proposed solution avoids the use of the param-
eter sharing technique and, instead, considers that each agent
has two independent modules, namely, a policy network and
an intrinsic reward network. The policy network learns the
optimal policy per agent, while the intrinsic reward network
provides additional reward signal to the policy network.

Simulation results show that in complex scenarios and
adopting the multi-agent proximal policy optimization
(MAPPO) algorithm, the proposed learning framework yields
a 75% improvement in convergence speed, and about 4%
improvement in transmission performance compared to con-
ventional CTDE without parameter sharing technique, and
even better results with respect to a baseline consisting of
both CTDE and parameter sharing.

The rest of the article is organized as follows. The sys-
tem model and the formalization of the cooperative MARL
problem are described in Section II. The proposed approach
is detailed in Section III. Finally, the numerical simulation
results and conclusions are drawn in Section IV and Section
V, respectively.

II. SYSTEM MODEL AND MARL FORMULATION

Consider a single BS serving a set N of N homogeneous
UEs needing to deliver P MAC PDUs to the BS. The network
nodes exchange control messages encapsulated inside signal-
ing PDUs (sPDUs) through the downlink (DL) and uplink
(UL) control channels, which are assumed to be dedicated
and error free. As regards data transmission, UEs send data
PDUs (dPDUs) using the same physical uplink shared channel
(PUSCH) operating according to a time division multiple
access (TDMA) scheme, which leads to possible collisions.
Specifically, for each time step t a UE can send one dPDU,
and this dPDU is successfully received by the BS only if a
single UE out of N has transmitted it.

Control plane: let MUE,s = {0, 1} be the set of possible
messages sent by the UEs, and MBS = {0, 1, 2} be the set
of DL messages. At each time step t, the BS can send to
each UE i ∈ N only one message mt

i ∈ MBS, and each UE
i can send one signaling message ati,s ∈ MUE,s to the BS.
Specifically, mt

i = 2 represents an acknowledgement (ACK)
message that confirms that a dPDU sent from UE i has been
correctly received at the BS in the previous time step t − 1,
mt
i = 1 refers to a scheduling grant message to UE i, and

mt
i = 0 to indicate that no access is granted for UE i. As

for UEs, ati,s = 1 means sending an access request to reserve
time step t+ 1 for transmission, while ati,s = 0 means do not
transmit any signaling message.

Data plane: each UE i has a dPDUs storage capability,
modeled as a buffer with first-in first-out (FIFO) policy, which
contains at most P dPDUs. We denote with bti ∈ B =
{0, 1, . . . , P} the buffer status at time t, and we assume that
the buffer starts full. For each time step t, UE i is able to
transmit a dPDU or to delete it. Specifically, the data plane
action is denoted as ai,u ∈MUE,u = {0, 1, 2}, where ai,u = 1
means that the UE transmits the first dPDU in its buffer (if

any), ai,u = 2 means it deletes the first dPDU in the buffer,
and ai,u = 0 to do nothing.

We assume that the BS is a MAC expert agent, i.e., it adopts
a MAC protocol that is not learned. In detail, at each time step
t, if the BS receives more scheduling requests from the UEs,
then it chooses one of the requesting UEs at random and a
scheduling grant is sent in response. If the UE has made a
successful data transmission concurrently with the scheduling
request, then the BS will ignore this scheduling request and
send only an ACK message to it.

A. Multi-Agent Reinforcement Learning Formulation

The goal is to find the optimal MAC protocol adopted by
UEs that maximizes the number of unique dPDUs successfully
received by the BS, while minimizing the time spent to do so.
To effectively reach this goal, we propose to cast the UEs
as MAC learning agents and the protocol learning problem
as a cooperative and multi-agent partially observable Markov
decision process (MPOMDP). The system can be described as
a tuple as 〈N , A, S, O, πi, Rext,γ〉. Let N denote the set of N
homogeneous learning agents (i.e., UEs). Each agent i ∈ N
at time step t has a partial observation of the global state de-
fined as oti = (bti, b

t−1
i , at−1i ,mt−1

i , . . . , bt−Mi , at−Mi ,mt−M
i),

where M is the memory length. Accordingly, let ati =
(ati,u, a

t
i,s) indicate the action taken by agent i, which involves

both data and control plane. Each agent i shares the same
observation and action space, denoted as O and A, respec-
tively. Clearly, A = MUE,u ×MUE,s = {A1, . . . , A|A|}. Let
πi (a

t
i | oti) : O×A → [0, 1] be a stochastic policy for agent i,

that is, the probability of choosing a given action ai given that
agent i is observing oi. For sake of clarity, we also introduce
ot = [ot1, . . . , o

t
N], at = [at1, . . . , a

t
N], and π = [π1, . . . , πN].

At time step t, each agent i observes oti and selects an action
ati according to its own policy πi. At time step t+1, in conven-
tional MPOMDP, each agent receives from the environment
an extrinsic reward Rt+1

ext , which is the same for all agents
and quantifies the benefit of the joint actions performed by
all the N agents. This design decision reflects the objective
of optimizing the performance of the whole network, rather
than that of individual agents. We define an episode as a finite
sequence of agent-environment interactions lasting Tep time
steps. For each episode, we define the episodic cumulative
extrinsic return as

Gep,ext =

Tep−1∑
t=0

γtRt+1
ext , (1)

where γ is a discount factor. Since maximizing Gep,ext rep-
resents the goal of the reinforcement learning problem, the
values of Rt+1

ext in each time step t should be properly
designed. Here, we leverage the simple approach [2], where
Rt+1

ext ∈ {−1, 0}, with Rt+1
ext equal to 0 only if a dPDU

has been received correctly at time step t or if all dPDUs
sent by each UE have been already received correctly in
the previous time steps. This means that Gep,ext reaches its
maximum value (i.e., 0) when all packets have been received
at minimum time, and the minimum value of Gep,ext is assumed

when no packets have been received correctly. We emphasize
that the selection of extrinsic reward functions are typically
hand-designed. However, finding a good reward function is
not straightforward and requires a high expertise and domain
knowledge of the designer. Moreover, the extrinsic reward is
strongly goal or task-specific, which limits its applicability to
other use cases and goals. Let Jep,ext(π) denote the expected
episodic cumulative extrinsic return obtained when each agent
i follows its own policy πi ∈ π, i.e.,

Jep,ext(π) = Eo0,a0,...oTep−1,aTep−1 [Gep,ext] , (2)

where ati ∼ πi (a
t
i | oti) ,∀i ∈ N . The objective of the

MARL problem is to find optimal policies π∗ that maximize
Jep,ext. For doing this, we adopt the CTDE paradigm. Several
MARL techniques can be used, ranging from simple value-
based approaches (e.g., tabular Q-learning [8]) to on-policy
algorithms (e.g., MAPPO [9]). In general, all approaches
consider an independent policy parameterized by θi for each
agent i and denoted as πθi . Each agent updates independently
its own parameter θi by maximizing the expected extrinsic
reward. In addition to this, thanks to the homogeneous nature
of UEs and the use of the same cumulative extrinsic reward
Jep,ext, another possible approach is to learn a shared optimal
policy π∗ by leveraging the concept of parameter sharing [5].

III. PROPOSED APPROACH

In this section, we formally present our approach that aims
to automatically speed up the convergence time by adopting
both the concept of extrinsic reward empowered by an intrinsic
reward [6] and the concept of lifetime [7]. Specifically, in
[6] the authors investigated in the case of a single agent
environments the advantages of using an intrinsic reward
function parameterized by η in addition to the conventional
extrinsic reward. Differently from the hand-designed extrinsic
reward, the intrinsic reward function is automatically learned
by each agent to improve its learning dynamics. In this
case, both the policy and intrinsic reward parameters are
learned within a single episode. Conversely, in [7], the authors
propose to learn an intrinsic reward over a lifetime consisting
of Nep episodes, instead of a single episode, to take into
account the system dynamics. In detail, the policy parameter
θ is still updated episode-by-episode by considering only the
cumulative episodic intrinsic reward, while the intrinsic reward
parameter η is updated within every lifetime to maximize the
cumulative extrinsic reward over an entire lifetime.

Therefore, inspired by these works, we propose a new
approach that incorporates the multi-agent intrinsic reward
function in our system model. For the sake of clarity, we first
define some terminologies.
• Intrinsic reward function for agent i. Defined as a

function related to agent i and parameterized by ηi. At
the end of time step t, Rt+1

in,ηi is a scalar reward that takes
into account the history of the entire lifetime of agent
i until time step t, including all its partial observations
([o0i , . . . , o

t
i]), its selected actions ([a0i , . . . , a

t
i]), and ex-

trinsic reward values [R1
ext, . . . , R

t
ext]).

UE 1

UE N

BS
Shared TDMA channel

Data plane

Control plane

Time slot

Dedicated communication channel

dPDU2
dPDU3

dPDU1

sPDU

sPDU

sPDU

sPDU

dPDU1

Control plane
Dedicated communication channel

Fig. 1. High-level depiction of the system model.

• Overall reward function for agent i. Defined as a
function related to agent i made of two contributions.
First, the extrinsic reward value Rt+1

ext received from
the environment, which is the same for all agents and
quantifies the benefit of joint actions performed by N
agents. Second, the intrinsic reward value Rt+1

in,ηi that is
learned independently by each agent i. For each agent i
and time step t+ 1, the overall reward is given as

Rt+1
ov,i = Rt+1

ext + λRt+1
in,ηi , (3)

where λ ∈ [0, 1] is a hyper-parameter that balances the
weighted summation between the extrinsic reward and the
intrinsic reward.

• Episodic overall return. For each episode k, we define
the episodic overall return of agent i as

G
(k)
ep,ov,i =

Tep−1∑
t=0

γtRt+1
ov,i . (4)

• Lifetime extrinsic return. At the end of a lifetime, we
define the lifetime extrinsic return as

Glife,ext =

T−1∑
t=0

γtRt+1
ext , (5)

where T is the number of steps per lifetime, i.e., T =
NepTep. Using the lifetime return Glife,ext as the objective
instead of the conventional episodic return Gep,ext allows
exploration across multiple episodes.

A. Architecture of the multi-agent framework

Each agent i ∈ N is equipped with two neural networks,
as depicted in Fig. 2. The first one represents the policy
function πi, and the second one represents the related intrinsic
reward function. The policy network (see Fig. 2a) is a multi-
layer perceptron (MLP) with weights θi. The intrinsic reward
function is represented by a neural network providing as
output a scalar reward that takes into account the long past
history of agent i. For this reason, instead of adopting a
conventional MLP, we exploit the characteristics of recurrent
neural networks (RNNs). Unlike MLP, in RNNs the output
from previous step is fed as input to the current step creating
a feedback loop. As a consequence, the output provided at
step t takes into consideration not only the current input, but

also what the network has learned from the previous inputs,
involving internal memory capabilities. However, conventional
RNNs are not able memorize data for long time and tend to
forget its previous inputs. To overcome this problem, we use
an LSTM, which is a type of recurrent neural network that
expands the memory capacity for long period of time [10].
The proposed LSTM is parameterized by ηi for representing
the intrinsic reward function, as shown in Fig. 2b.

B. Algorithm overview

A high level description of the proposed training algorithm
related to each agent i is presented in Pseudo-code 1 and
depicted in Fig. 3. As shown, the updates of the policy
network and the intrinsic rewards network are carried out with
a different periodicity, corresponding to one episode and one
lifetime, respectively. The periodicity of a lifetime permits to
update the intrinsic reward network taking into account the
long-term system dynamics.

Pseudo-code 1 Network updates for agent i
Inputs: learning parameters α and β, balancing parameter λ,

discount factor γ
1: Initialize a policy network with random weight θ(0)i and

an intrinsic reward network with random weight ηi.
2: repeat
3: for k = 1, 2, . . . , Nep do
4: Interact with the environment for one episode

using π
θ
(k−1)
i

.
5: Store the experience within the episode rollout

T
(k)
E,i (6) and the lifetime rollout TL,i (7)

6: Update the policy parameter θ(k−1)i by exploiting
T

(k)
E,i as described in Section III-C

7: end for
8: Update the intrinsic reward network with parameter ηi

by exploiting TL,i as described in Section III-D.
9: Set θ(0)i ← θ

(Nep)
i .

10: until the intrinsic reward network converges.

At each episode k, each agent i generates an experience
interacting with the environment for Tep time steps using its
policy and its intrinsic reward network. In detail, at each time
step t, the experience of agent i is stored inside the episode
rollout

T
(k)
E,i =

{(
oti, a

t
i, πθ(k−1)

i

(
ati | oti

)
, Rt+1

ext , R
t+1
in,ηi

)}Tep−1

t=0
, (6)

and the lifetime rollout

TL,i =
{
T

(k)
E,i

}Nep

k=1
. (7)

Episode-by-episode, each agent i updates its policy parameter
θ
(k−1)
i following the procedure is described in Section III-C.

At the end of a lifetime, each agent updates the intrinsic reward
network parameter ηi following the procedure described in
Section III-D. The overall procedure is carried out until the
intrinsic reward network reaches convergence.

i

Fig. 2. Learning networks inside each agent i. a) is the policy network
parameterized by θi that, given the current observation oti , outputs the
probability of choosing the action Aj , for j ∈ {1, . . . , |A|}. b) is the
intrinsic reward network parameterized by ηi that receives as input the current
observation and the selected action (oti, a

t
i) and is conditioned on the previous

hidden state and cell state (hti, c
t
i). It gives as output the intrinsic reward value

Rt+1
in,ηi

and generates the next tuple (ht+1
i , ct+1

i).

C. Updating the Policy Parameter θi
In this subsection, we describe how to update the policy

parameter of each agent i. Specifically, at the end of episode
k, the update of θ(k−1)i is performed so as to maximize the
expected episodic cumulative overall return of episode k − 1

J
(k−1)
ep,ov,i = E

o0i ,a
0
i ,...o

Tep−1

i ,a
Tep−1

i

[
G

(k−1)
ep,ov,i

]
, (8)

where ati ∼ πθ(k−1)
i

(ati | oti). This update can be done by using
a simple policy gradient method, as follows

θ
(k)
i = θ

(k−1)
i + α∇

θ
(k−1)
i

J
(k−1)
ep,ov,i . (9)

The policy gradient theorem [11] shows that, given the episode
rollout T (k)

E,i , the update can be computed as1

θ
(k)
i ≈ θ(k−1)i + αG

(k−1)
ep,ov,i∇θ(k−1)

i
log π

θ
(k−1)
i

(
ati|oti

)
. (10)

D. Updating the Intrinsic Reward Parameter (ηi)

Given a lifetime and the updated policy parameters at the
end of the lifetime

(
θ
(Nep)
i

)
, we update the intrinsic reward

network parameter for each agent i with the aim of maximizing
the expected lifetime extrinsic return

Jlife,ext = Eo0i ,a0i ,...oT−1
i ,aT−1

i
[Glife,ext] , (11)

where ati ∼ πθ(Nep)
i

(ati | oti). Similarly as the policy parameters
update, this update can be done by using a simple policy
gradient method, as follows

η′i = ηi + β∇ηiJlife,ext. (12)

Intuitively, updating ηi requires estimating the effect such a
change would have on the extrinsic value through the change

1Other approaches exploiting other policy gradient methods (REINFORCE
[12], PPO [13], TRPO [14]) can be used.

Episode
1

Episode
𝑘

Episode
𝑁

Lifetime Lifetime Lifetime

A

Agent i

Update intrinsic reward
network parameter

Compute
meta-gradient
𝛻 Jlife,ext

𝜂

A

Agent i

𝑇 ,
Compute

𝜃
Update Policy network
parameter

Episode
𝑁

Episode
1

𝑇 ,

A A A A

𝛻𝜃 Jep,ov, i

𝑘 1

Fig. 3. Training algorithm overview: for each episode k, each agent i updates its policy parameter θ(k−1)
i by exploiting the episode rollout T (k)

E,i in the

direction of the gradient of expected lifetime overall return J(k−1)
ep,ov,i . At the end of each lifetime, agent i updates the intrinsic reward network parameter ηi

in the direction of the gradient of the expected lifetime extrinsic return Jlife,ext, by exploiting its lifetime rollout TL,i.

in the policy parameters. To obtain this, we compute the meta-
gradient ∇ηiJext,life exploiting the chain rule as follows:

∇ηiJlife,ext = ∇
θ
(Nep)
i

Jlife,ext∇ηiθ
(Nep)
i . (13)

Moreover, the first gradient can be approximated by means
of the policy gradient theorem [11] as

∇
θ
(Nep)
i

Jlife,ext ≈ Glife,ext∇θ(Nep)
i

log π
θ
(Nep)
i

(
ati|oti

)
. (14)

We note that a new lifetime should be computed with the
updated policy parameters θ(Nep)

i to calculate this gradient. For
avoiding this, we reuse the lifetime generated by the original
policy parameters θ(k)i , with k = 1, . . . , Nep, by means of the
importance sampling ratio [15]. Hence, we exploit the lifetime
rollout TL,i, and rewrite the gradient computation as follows:

∇
θ
(Nep)
i

Jlife,ext ≈ Glife,ext

∇
θ
(Nep)
i

π
θ
(Nep)
i

(ati|oti)

π
θ
(k)
i

(ati|oti)
. (15)

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we examine the convergence performance
of the proposed learning framework in terms of percentage
of successfully delivered dPDUs vs. the number of training
episodes. The list of the simulation parameters is reported in
Table I.

The results of the proposed method are compared against
the following baselines.
• Extrinsic-NPS: An independent policy is trained for each

agent i to maximize the expected episodic cumulative
extrinsic return (Jep,ext).

• Extrinsic-PS: A shared policy is trained among all the
agents to maximize Jep,ext, as in [2].

• Random Uniform (RU): Regardless of the observation
oti, each agent i select its action uniformly from A.

Fig. 4 plots the percentage of successfully delivered packets
vs. training episodes with respect to baselines averaged over
10 independent training sessions. After assessing the training

TABLE I
TRAINING ALGORITHM PARAMETERS

Parameter Symbol Value
Number of UEs N 2
Discount factor γ 0.99
Memory length M 3
Duration of episode Tep 32
Number of episodes per lifetime Nep 250
Number of dPDUs to deliver P {1, 2}
Balancing parameter λ 1
Act. function, intrinsic reward network {i, t}a

Learning rate, intrinsic reward network β 7 · 10−4

Neurons per layer, intrinsic reward network 128
Act. function per layer, policy network {t, t, s}a

Learning rate, policy network α 3 · 10−4

Neurons per layer, policy network 64
a i = identity function, t = tanh function, s = softmax function.

phase, we select the best trained instance for each solution in
terms of average percentage of successfully delivered packets.
Then, we test them in 1000 episodes and show the related
statistics by using boxplots.

Specifically, Fig. 4a shows the simulation results in the case
of P = 1 packet to deliver. We observe that the proposed
algorithm and Etrinsic-NPS require 5.1 · 103 iterations to
reach convergence. Conversely, Etrinsic-PS has not converged
within 7 · 103 episodes. This shows that the introduction
of additional features (intrinsic reward and lifetime update),
does not introduce any significant improvement in the case
of a simple transmission scenario. In Fig. 4b we show the
performances when P = 2 packets need to be delivered.
Therein, the proposed method reaches convergence in almost
2 · 104 training episodes, which is 75% less than the number
of episodes required for the Extrinsic-NPS method. This is
because, in this more complex scenario, the proposed method
provides additional information with the correct periodicity
to the policy update process. Fig. 4b shows also that the
proposed method achieves a maximum service success rate of
81%, that is 4% better than the maximum performances of the
Extrinsic-NPS one. As regards the other baseline, Extrinsic-

Test

0 1000 2000 5000 6000 70003000 4000
Training episode

0

20

40

60

80

100

Av
er

ag
e

pe
rc

en
ta

ge
 o

f p
ac

ke
ts

 s
uc

ce
sf

ul
ly

 d
el

iv
er

ed

Train

convergence

(a) P = 1.

convergence

convergence

(b) P = 2.

Fig. 4. Convergence curves of all the considered algorithms varying the number of packets to deliver and testing results. In the boxplots, the circle is the
median, the colored box represents the interquartile range (IQR) from the first quartile (Q1) to the third quartile (Q3), the vertical lines represent the minimum
(Q1-1.5 IQR) and the maximum (Q3+1.5 IQR) values, the diamonds are outliers.

PS does not reach convergence within the considered training
interval. As concerns the testing phase, our solution exhibits
an interquartile range between 75% and 100% of packet
successfully delivered, which is the best result, as show in
Fig. 4b.

Summarizing, the proposed method yields better conver-
gence speed with better transmission performances in the case
of a complex scenario in which the additional information is
key for policy parameter tuning.

V. CONCLUSIONS

We have proposed a novel multi-agent reinforcement learn-
ing framework for MAC protocol learning, which in addition
to using the classical extrinsic team reward, learns an indi-
vidual intrinsic reward for each agent based on its history.
Each agent uses two modules, namely a policy network and
an intrinsic reward network. These two modules are updated
with a different periodicity to obtain better learning results in
terms of convergence speed. Specifically, the policy network is
trained within an episode, while the intrinsic reward network
is trained over a fixed number of subsequent episodes, called
lifetime. We formulated an optimization problem that seeks to
maximize the number of successfully transmitted packets. Our
results demonstrate that exploiting these two modules with two
different learning periodicities induces a faster convergence
speed compared to several baseline solutions.

ACKNOWLEDGMENTS

This work was partially supported by the European Union
under the Italian National Recovery and Resilience Plan
(NRRP) of NextGenerationEU, partnership on “Telecommuni-
cations of the Future” (PE00000001 - program “RESTART”),
by the Italian MUR PON 2014-2020 under Project “reCITY
- Resilient City - Everyday Revolution” (cod. ARS01 00592,
CUP B69C21000390005), and by the European Union’s Hori-
zon Europe program through the project CENTRIC.

REFERENCES

[1] A. Lazaridou and M. Baroni, “Emergent multi-agent communication in
the deep learning era,” 2020. [Online]. Available: https://arxiv.org/abs/
2006.02419

[2] A. Valcarce and J. Hoydis, “Toward joint learning of optimal MAC
signaling and wireless channel access,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 4, pp. 1233–1243, 2021.

[3] L. Miuccio, S. Riolo, S. Samarakoon, D. Panno, and M. Bennis, “Learn-
ing generalized wireless MAC communication protocols via abstraction,”
in GLOBECOM 2022 - 2022 IEEE Global Communications Conference,
2022, pp. 2322–2327.

[4] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht, “Dealing
with non-stationarity in multi-agent deep reinforcement learning,” 2019.
[Online]. Available: https://arxiv.org/abs/1906.04737

[5] X. Chu and H. Ye, “Parameter sharing deep deterministic policy
gradient for cooperative multi-agent reinforcement learning,” 2017.
[Online]. Available: https://arxiv.org/abs/1710.00336

[6] Z. Zheng, J. Oh, and S. Singh, “On learning intrinsic rewards for policy
gradient methods,” in Proceedings of the 32nd International Conference
on Neural Information Processing Systems, ser. NIPS’18, 2018, pp.
4644–4654.

[7] Z. Zheng, J. Oh, M. Hessel, Z. Xu, M. Kroiss, H. van Hasselt,
D. Silver, and S. Singh, “What can learned intrinsic rewards capture?”
2019. [Online]. Available: https://arxiv.org/abs/1912.05500

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[9] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. M. Bayen, and Y. Wu, “The
surprising effectiveness of MAPPO in cooperative, multi-agent games,”
CoRR, vol. abs/2103.01955, 2021.

[10] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[11] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, S. Solla, T. Leen,
and K. Müller, Eds., vol. 12. MIT Press, 1999.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 2004.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[14] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on Machine Learning. PMLR, July 2015, pp. 1889–1897.

[15] R. Marini, S. Park, O. Simeone, and C. Buratti, “Continual meta-
reinforcement learning for UAV-aided vehicular wireless networks,”
2022. [Online]. Available: https://arxiv.org/abs/2207.06131

https://arxiv.org/abs/2006.02419
https://arxiv.org/abs/2006.02419
https://arxiv.org/abs/1906.04737
https://arxiv.org/abs/1710.00336
https://arxiv.org/abs/1912.05500
http://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2207.06131

	I Introduction
	II System Model and MARL Formulation
	II-A Multi-Agent Reinforcement Learning Formulation

	III Proposed approach
	III-A Architecture of the multi-agent framework
	III-B Algorithm overview
	III-C Updating the Policy Parameter i
	III-D Updating the Intrinsic Reward Parameter (i)

	IV Simulation Results and Analysis
	V Conclusions
	References

