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Abstract—Digital twins have shown a great potential in sup-
porting the development of wireless networks. They are virtual
representations of 5G/6G systems enabling the design of machine
learning and optimization-based techniques. Field data replica-
tion is one of the critical aspects of building a simulation-based
twin, where the objective is to calibrate the simulation to match
field performance measurements. Since wireless networks involve
a variety of key performance indicators (KPIs), the replication
process becomes a multi-objective optimization problem in which
the purpose is to minimize the error between the simulated and
field data KPIs. Unlike previous works, we focus on designing
a data-driven search method to calibrate the simulator and
achieve accurate and reliable reproduction of field performance.
This work proposes a search-based algorithm based on mixed-
variable particle swarm optimization (PSO) to find the optimal
simulation parameters. Furthermore, we extend this solution to
account for potential conflicts between the KPIs using α-fairness
concept to adjust the importance attributed to each KPI during
the search. Experiments on field data showcase the effectiveness
of our approach to (i) improve the accuracy of the replication,
(ii) enhance the fairness between the different KPIs, and (iii)
guarantee faster convergence compared to other methods.

Index Terms—digital twins, particle swarm optimization, α-
fairness, mixed-variable, multi-objective optimization

I. INTRODUCTION

Future wireless generations (i.e., beyond 5G) promise to
provide faster connectivity to support novel data-intensive
applications like extended reality and metaverse. Artificial in-
telligence (AI) serves as one of the core technologies for these
future networks. In this context, reliable virtual representations
of the wireless system or digital twins (DTs) are crucial to
designing and assessing AI-based solutions for future field
deployment [1]. DTs can emulate the physical wireless system
and estimate its future behavior for other downstream tasks,
such as reinforcement learning (RL) [2]. They also support
the industrial management and automation of wireless network
systems [3], [4].

As the name “twin” suggests, DTs need to be as consis-
tent with their physical counterparts as possible in terms of
observed data and performance measurements [5]. Achieving

this consistency is the primary purpose of the data replication
problem. For the rest of the paper, we focus on a simulation-
based twin where a simulator replicates all the low-level
components of a radio access network. The data replication
problem involves calibrating the simulator input parameters
(e.g., traffic parameters, user-specific parameters, modulation,
coding scheme) to minimize the discrepancies between the
simulated key performance indicators (KPIs) and the field
ones. This problem is challenging for two main reasons: (i) the
parameter search space is in high dimension and potentially
with mixed variable types (i.e., discrete and continuous), and
(ii) with multiple KPIs of interest, the replication task takes
the form of a multi-objective problem with potential conflicts
amongst the KPIs. This work mainly focuses on the second
challenge, where we propose a solution to ensure a fair
replication of the different KPIs. A fair replication means
that replication errors for all KPIs are reduced with similar
consideration. We base our solution on a recent particle swarm
optimization (PSO) algorithm, coined mixed-variable PSO [6],
that handles mixed search space, unlike the standard PSO
algorithm [7]. Machine learning has been widely used for
different types of real-world application [?], [8]–[15]. It has
also been application to different types of communication use
cases [16]–[18]. With the proposed method in this work, we
can better support the training of machine learning models.

Multi-objective problems are typically solved using scalar-
ization. Scalarization is a technique where the different ob-
jectives are weighted according to a predefined preference.
The preference over the objectives may not be known prior
to the learning process. We argue that hand-picking the
preference is challenging and can hinder the final replication
performance. A KPI with a higher weight will skew the
replication process by introducing heavy bias that favors that
particular KPI over the others—like in the network resource
allocation problem, maintaining fairness across the system
is critical [19]. Ignoring KPIs with limited preference might
harm the field application of DTs. To overcome this issue,
we use α-fairness, a generalized framework that controls the
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trade-off between the replication error and fairness [20] (i.e.,
proportional fairness and max-min fairness depending on the
value of α). Therefore, given a preference, the data replication
problem involves optimizing the α-fairness objective function.

To assess the effectiveness of our approach, we conducted
extensive experiments using field data from different geo-
graphic areas. We evaluated our solution using metrics such as
replication error, fairness, and convergence rate. The proposed
framework outperforms different baselines regarding replica-
tion accuracy and convergence rate while guaranteeing better
fairness between objectives. To summarize, this paper has the
following contributions:

• We model the data replication for DTs as a multi-
objective optimization problem;

• We propose a novel and general solution based on mixed-
variable PSO to handle hybrid search spaces and α-
fairness to balance the performance between KPIs;

• We validate our approach on field performance data
and showcase that the proposed framework improves the
replication performance, the fairness between KPIs, and
the convergence rate.

The remainder of this paper is organized as follows. Section
II gives a brief survey about works in related areas. Section
III formalizes the problem in terms of mathematical represen-
tations. Section IV introduces the methods proposed in this
paper. Section V describes the setup for the experiments and
baseline methods. Section VI concludes the idea and results
of the paper.

II. RELATED WORK

Digital Twins. The original idea of DTs was introduced
decades ago [21]. Researchers described DTs as a virtual
representation of an actual physical instance [22]. Although the
concept has existed for a long time, the trend of applying DTs
in industries has proliferated only in recent years [23]. DTs’
applications often require large-scale autonomous systems to
keep them practical and productive [22]. It is introduced in [1]
how DTs enable the research and deployment of 6G networks.
The authors also reviewed DTs’ taxonomy, challenges, and
opportunities in wireless network systems. The work offered
a comprehensive survey and overview of DTs’ key concepts
and applications. Notably, they highlighted the importance of
reliable field data replication for adopting DTs in the industrial
domain.

Particle Swarm Optimization. The PSO algorithm was
introduced by [7] in 1995, and the standard format is simple
in its velocity update functions. It is an effective method used
in many applications. Further improvements to the original
algorithm and its applications are proposed in [24], [25] by
the original authors. Subsequently, a different line of work
suggested improvements and extensions to tackle different
shortcomings of the standard PSO algorithm. In particular,
a mixed-variable variant of PSO was recently proposed [6]
to handle both discrete and continuous variables in the search
space since the original PSO only works for continuous search

spaces. We refer the reader to [26] for an extensive survey of
the different PSO variants and their area of applications.

Fairness. Fairness in network engineering ensures equitable
distribution of resources to the connected users [27]. In re-
search problems such as network resource allocation, fairness
is an essential metric that needs consideration. Reference
[28] presented an overview of the use of fairness in wireless
networks. There are two main approaches to incorporating
fairness. The first one relies on fairness measures that map
resource allocation vectors to a real number, such as Jain’s
index [29] or an entropy function. The second approach con-
sists of constructing a fairness function that can be integrated
into the optimization objective. α-fairness, for instance, is
one of the more popular fairness objective functions. It was
introduced to the network research community by [30], [31].
Reference [32] presented five axioms of fairness measures
to unify these approaches for incorporating fairness. It also
explained the properties and usage of α-fairness, especially the
effect of chosen α value on the trade-off between efficiency
and fairness.

III. PROBLEM FORMULATION

We consider a simulation-based twin that aims to replicate
5G wireless network system state and behavior. The simulator
emulates a homogeneous multi-band downlink Orthogonal
Frequency Division Multiple Access (OFDMA) cellular net-
work consisting of B 3-sector macro-gNodeBs (gNBs) spaced
by an inter-site distance d. Each sector of the gNB operates
over K frequency bands. A user is served by a single fre-
quency band k from a given sector j of a particular macro-gNB
b. We assume that the frequency bands and their associated
bandwidths are homogeneous for the whole network. The
virtual gNBs are configured to match their real counterparts
regarding transmission powers, antenna gains, bandwidths, etc.
Other parameters can be set according to the available field
data, such as the channel parameters (the 256 QAM usage
ratio and the average number of codewords). In addition to
the aforementioned parameters, other simulation parameters
must be determined to reduce the gap between the simulated
and field KPIs.

Physical object

Simulator

Field data

Simulated data

Compare

Simulator input

Update & Optimize

Fig. 1: The pipeline of field data replication for a simulation-
based twin

Note that this paper assumes the simulator to be a black box
system in terms of its inputs and outputs. No prior knowledge
of the dynamics in the field data is assumed within the design



of the data replication procedure illustrated in Fig. 1. Formally,
the data replication problem is given by:

min
x

G = [g(f(x)1, y1), . . . , g(f(x)n, yn)]

s.t. x ∈ S.
(1)

where x represents the vector of simulation parameters, y
represents the vector of field KPIs, f represents the simulator
as a black box function, f(x) is the vector of simulated KPIs,
g represents the evaluation function, S represents the search
space of x and n is the number of KPIs.

This paper uses the scalarization method to simplify the
problem into a single-objective one. One way to consider the
weights for scalarization is simply the no-preference method,
which assumes no preference exists for different KPIs (i.e.,
KPIs are weighted equally). However, provided by the deci-
sion makers in actual scenarios, preference exists for some
KPIs over others. The decision makers might fail to provide
particular and realistic normalized weights over the different
KPIs but an expression of the preferences. Assuming that the
preferences could be formulated as a vector p = [p1, . . . , pn],
the scalarized approach consists in multiplying the objectives
with p as follows:

min
x

p ·G =

n∑
i=1

pi · g(f(x)i, yi) s.t. x ∈ S. (2)

To solve the problem in (2), we start by presenting the
adopted search algorithm. Afterward, we will detail the α-
fairness solution to achieve a good trade-off between the
replication performance and the fairness between KPIs.

IV. PROPOSED METHOD

A. Search Algorithms

1) Standard PSO: The standard PSO algorithm [7] uses
Xi = (x1i , x

2
i , ..., x

D
i ) to denote the position of the ith particle

in a D-dimensional search space. The velocity of particle i is
written as Vi = (v1i , v

2
i , ..., v

D
i ). The velocity update function

of the standard PSO algorithm is then formulated as follows:

Vi(t+ 1) = w · Vi(t) + c1r1(pbi(t)−Xi(t))

+ c2r2(gb(t)−Xi(t))
(3)

where pbi represents the personal best position of particle
i, and gb represents the global best position that has been
explored by all of the particles. Through the configuration of
c1 and c2, the PSO algorithm could be modified to achieve
the trade-off between cognitive behaviors and social behaviors.
After the velocity update, the position vector of the particles
is updated as follows:

Xi(t+ 1) = Xi(t) + Vi(t). (4)

Although the standard PSO algorithm has been applied
in many fields, it still suffers several drawbacks. It can be
used only for continuous search spaces and does not show
outstanding performance in exploitation. Research endeavors
extended the algorithm to work for binary selection problems

[24], but mixed-variable search spaces remain a tricky problem
for PSO-based algorithms. In this paper, we do not restrict the
search space to be continuous and consider both continuous
and discrete simulation parameters. We utilize a recent exten-
sion of the PSO algorithm called mixed-variable PSO.

2) Mixed-variable PSO: Mixed-variable PSO introduces a
new encoding scheme and reproduction method to handle
both continuous and discrete variables [6]. To do so, they
assume that the search space contains Z continuous parameters
and L discrete ones, and the position of a particle i can be
encoded as in Xi = (x1i , x

2
i , ..., x

Z
i , x

Z+1
i , xZ+2

i , ..., xZ+L
i ).

This representation means that different input parameters of
the particle i are still integrated into only one position vector
Xi. However, the continuous parameters and discrete parame-
ters are organized in different parts. Therefore, mixed-variable
PSO can handle the update process through this encoding
scheme without introducing additional vectors. Fig. 2 illus-

Parents pool

Offspring

Continuous Variable 
Reproduction

Discrete Variable 
Reproduction

Fig. 2: Illustration of the reproduction method in mixed-
variable PSO algorithm

trates the reproduction method based on the mixed-variable
encoding scheme previously introduced. First, the parents pool
includes the position of all particles, which consists of two
parts - the blue part represents the continuous parameters
x1i , x

2
i , ..., x

Z
i and the green part represents the discrete param-

eters xZ+1
i , xZ+2

i , ..., xZ+L
i . Since both continuous-specific

and discrete-specific reproduction methods are implemented
with different implementations, the reproduction processes are
conducted separately. The reproduced segments are combined
into new complete offspring, which stands for the updated
positions of the particles in the mixed-variable PSO algorithm.
The reproduction processes can also be done simultaneously,
enabling better efficiency in the optimization process.

The mixed-variable PSO algorithm enables the ability to
find the simulation parameters through several update iter-
ations in our dataset that has both continuous and discrete
variables. The following section explains how we augmented
this search algorithm to account for the trade-off among the
different KPIs.

B. Data replication with Fairness

Fairness in the network research area is usually conducted
in two different ways — the first consists of evaluating the data
or the solution to a problem with available fairness metrics.
The second technique uses a composition function that defines



a new objective function for the optimization problem. In this
paper, we adopt the second approach.

To mitigate the unfairness emerging from optimizing dif-
ferent KPIs, this paper proposes a simple and easily deployed
idea based on α-fairness. To do so, we extend the standard data
replication problem in (2) to jointly optimize for the replication
performance and fairness. We use Ti = pi · g(f(x)i, yi) to
denote the objective value in (2).

min
x

n∑
i=1

Uα(Ti)

where Uα(Ti) =

{
T 1−α
i

1−α , α ≥ 0, α 6= 1

log Ti, α = 1
.

(5)

This new problem formulation transforms the objective
function depending on the chosen α value within [0,∞).
Choosing the correct value of α is important when applying α-
fairness, as a larger α prioritizes fairness over efficiency [32].
In this paper, we choose α = 1 to achieve proportional fair-
ness, meaning that increasing a certain proportion of one value
cannot be based on decreasing a more significant proportion
of other values. After applying the concept of α-fairness to the
scalarized multi-objective problem in (2), the overall fairness
of objectives on different KPIs is improved.

V. EXPERIMENTS

A. Setup

In this paper, we consider 5 sites located in different
geographic areas. A full buffer traffic model is assumed,
as in 3GPP TR.36814. The packet size and the mean of
the inter-file arrival distribution at time t is denoted by st
and µt respectively. At the beginning of the simulation, the
user equipment (UEs) are uniformly distributed geographically
across the gNBs. During the simulation, they either remain
static or undergo a random motion with a constant velocity.
We also consider three different UE states: idle, inactive, and
active. Only active UEs receive data transmissions from the
gNBs. Without loss of generality, we evaluate our method on
the central sector of the gNB. We optimize for two frequency
bands f1 and f2 where f1 < f2 and report the results for these
specific bands. Table I lists the set of simulation parameters
that remain constant across all the experiments.

TABLE I: Simulation parameters

Parameters Values

Path-loss 128.1 + 37.6 log10(d)
Traffic model Full Buffer
Scheduler Proportional Fair
UE velocity 3 m/s
UE mobility model Static/random motion
Thermal noise −174 dBm/Hz

B. Dataset

The field datasets contain KPI measurements collected over
a span of 24 hours broken into intervals δt = 15 mins. We
consider the following KPIs for each carrier frequency:

• Active UEs: is the average number of active UEs over
the period δt;

• Cell load: is the physical resource block utilization ratio
of a given band;

• Downlink volume: is the average amount of successfully
transmitted data packets in the downlink.

C. Search Space

Our search space includes the traffic parameters st, µt and
the number of UEs per cell (i.e., a cell refers to a sector
and frequency pair). Table II summarizes the parameters, their
type, and the search boundaries. Note that we consider both
continuous and discrete parameters.

TABLE II: Search Space

Parameter Type Range

Packet size st Continuous [0.05, 30] kbytes
Inter-file arrival mean µt Continuous [0, 300] ms
Number of UEs per cell Discrete [3, 50]

D. Baselines

In this work, we consider three search-based baselines.
All methods are repeated for 50 iterations. The PSO-based
methods use 5 particles as the swarm, and w = 1.1, c1 = 1.1,
c2 = 0.8 as values of hyperparameters.

• Random search [33]: is a common approach in which
the parameters are selected randomly and independently.
It is simple and easy to implement. However, it can be
time-consuming;

• Bayesian Optimization (BO) [34], [35]: is an iterative
approach where the next parameters are determined based
on the previous evaluations. BO algorithms consist of two
main components: (i) a surrogate function that models
the posterior distribution of the objective function (e.g.,
g) using the observed data points, and (ii) an acquisi-
tion function that suggests the next parameters evaluated
based on the surrogate function while maintaining a trade-
off between exploitation and exploration;

• Standard PSO [7], [24]: is the traditional PSO method as
explained in Section IV-A1. We use a round-off method
for discrete parameters.

E. Evaluation Procedure

To investigate the impact of the choice of the prefer-
ences on the replication outcome, we consider three different
weight vectors: p1 = [0.8, 0.1, 0.1], p2 = [0.1, 0.8, 0.1] and
p3 = [0.1, 0.1, 0.8]. Note that each weight vector places more
emphasis on one of the KPIs. We expect that the performance
of the baselines will be biased towards the KPI with more
weight, whereas our method will reach a better trade-off
between all KPIs. For a more comprehensive comparison, we
consider three evaluation metrics to assess different aspects of
the proposed method and the baselines:

• Replication accuracy: to assess the quality of the replica-
tion, we use the mean absolute percentage error (MAPE)



(a) Active UEs (0.8) (b) Cell load (0.1) (c) Downlink Volume (0.1)

Fig. 3: An illustrative example of the simulated and field KPIs using p = [0.8, 0.1, 0.1]. A higher weight on the active UE
KPI led to a better replication at the expense of the other KPIs.1

as the metric to calculate the closeness of simulated KPIs
to field target ones.

MAPE =
100%

n

n∑
i=1

|f(x)i − yi
yi

|. (6)

• Jain’s index [29]: to measure the fairness between the
different KPIs and show the advantage of taking fairness
into consideration during the optimization process.

J (T = p ·G) =
(
∑n
i=1 Ti)

2

n ·
∑n
i=1 Ti

2 . (7)

• convergence rate: to quantify the efficiency of the com-
peting methods. It is the number of iterations needed for
the objective value to be close to the optimal value.

VI. RESULTS

A. Replication accuracy

We first examine the average accuracy across the different
sites, frequencies, and preferences. From Table III, we observe
that our proposed method outperforms the baselines. The
random search method has the worst performance in terms of
MAPE, especially its standard deviation. BO yields a better
replication than the standard PSO algorithm.

TABLE III: Average MAPE of different methods

Method MAPE

Random 35.34±33.44

BO 20.76±8.36

Standard PSO 22.54±5.43

Mixed-variable PSO with fairness 20.39±6.92

Table IV breaks down the detailed MAPE results of each
KPI for three different preference vectors. We observe that the
performance of all baselines is biased towards the KPI with
the highest importance weight. However, mixed-variable PSO
with fairness achieves a trade-off between the MAPE of the
preferred one and the other two KPIs, which shows that our
proposed method focuses more on optimizing the KPIs that

1The data presented is a variation of the field data. Y-axis labels are removed
due to confidentiality requirements.

are not preferred. Fig. 3 shows the comparison among all the
methods and the field target data using one of the experiment
settings. Note that preference vector p was set to [0.8, 0.1, 0.1],
lending a higher emphasis on optimizing for Active UEs.

TABLE IV: MAPE of different KPIs

MAPE
Method Active UEs Cell load Downlink Volume

p1 = [0.8, 0.1, 0.1]
Random 12.25 64.25 88.02
BO 7.08 62.30 84.75
Standard PSO 11.59 66.30 83.35
Mixed-variable PSO with fairness 10.29 45.76 68.92

p2 = [0.1, 0.8, 0.1]
Random 54.02 15.68 73.73
BO 44.66 15.72 74.62
Standard PSO 53.37 14.98 82.18
Mixed-variable PSO with fairness 40.93 13.67 71.67

p3 = [0.1, 0.1, 0.8]
Random 62.24 61.00 10.41
BO 54.10 53.14 4.95
Standard PSO 59.26 49.02 6.73
Mixed-variable PSO with fairness 44.85 42.29 8.04

B. Fairness metric

Table V shows the fairness achieved by the different meth-
ods measured by Jain’s fairness index. From the results, we
conclude that our proposed method shows a better capability
of balancing the trade-off among the different KPIs leading to
solutions with greater fairness.

TABLE V: Fairness results of different methods with Jain’s
index

Method Jain’s index

Random 0.77±0.11

BO 0.74±0.05

Standard PSO 0.75±0.04

Mixed-variable PSO with fairness 0.80±0.02

C. convergence rate

The convergence rate of the different methods is shown
in Fig. 4. Standard PSO starts with a lower objective value
and converges in the 8th iteration. Mixed-variable PSO with
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Fig. 4: Comparison of objective values of different methods
over 50 iterations in a specific setting. BO and random search
have identical objective values for 14 iterations.

fairness has an even faster convergence rate – it converges
in the 7th iteration. One reason PSO-based methods work
well in terms of convergence rate is that multiple particles
in PSO-based search significantly help the exploitation aspect
of the search, enabling it to find the optimal value within fewer
iterations.

VII. CONCLUSION

Field data replication for simulation-based twins is a multi-
objective problem with different KPIs. The main contributions
of this paper are in three aspects: (i) formulating the problem
mathematically to clarify, (ii) using α-fairness to address this
multi-objective optimization problem for simplification, and
(iii) applying a mixed-variable version of PSO to increase
the performance. This paper validates the proposed approach
by conducting experiments on field measurement datasets.
According to the results, our proposed method outperforms
the three baseline methods in terms of MAPE with field target
data, fairness metrics, and convergence rate. In this paper,
the formulation and experiments focused on different KPIs
averaged over all UEs, which can be extended to the UE level
in future works. More search methods can also be applied to
increase the capability of exploration during the optimization
process.
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