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Abstract—Inferring geographic locations via social posts is
essential for many practical location-based applications such
as product marketing, point-of-interest recommendation, and
infector tracking for COVID-19. Unlike image-based location
retrieval or social-post text embedding-based location inference,
the combined effect of multi-modal information (i.e., post images,
text, and hashtags) for social post positioning receives less
attention. In this work, we collect real datasets of social posts
with images, texts, and hashtags from Instagram and propose a
novel Multi-modal Representation Learning Framework (MRLF)
capable of fusing different modalities of social posts for location
inference. MRLF integrates a multi-head attention mechanism
to enhance location-salient information extraction while sig-
nificantly improving location inference compared with single
domain-based methods. To overcome the noisy user-generated
textual content, we introduce a novel attention-based character-
aware module that considers the relative dependencies between
characters of social post texts and hashtags for flexible multi-
model information fusion. The experimental results show that
MRLF can make accurate location predictions and open a new
door to understanding the multi-modal data of social posts for
online inference tasks.

Index Terms—Social geographic location, multi-modal social
post dataset, multi-modal representation learning, multi-head
attention mechanism.

I. Introduction
Determining the location of posts is vital for various online

social network applications, such as targeted product market-
ing, user privacy protection [1], crisis/disaster detection, and
epidemic investigation (e.g., COVID-19). In the last decade,
understanding users’ behavior (e.g., mobility and trajectory)
and identifying their location by online social media have
attracted increasing attention from both academicians and the
industry [2]. However, publicly available and accessible social
media data with geo-tags is scarce, e.g., less than 1% of
the Tweet posts come with geolocation tags [3]. Moreover,
inferring social post location differs from the user or home
location localization [4], whose input is all the posts of a
particular user – the former, in contrast, needs to determine
the location based on only one user post.

Therefore, focusing on the specific social post, recent ap-
proaches of post location inference are based on the textual
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content of positions [5], the network of relationships such
as friendship, or hybrid relations [6] containing content, net-
work, time while lacking considering images of posts. With
the flourishing development of social media platforms and
intelligent handset techniques, images have become essential
for social posts, from which we can extract useful geographic
information. Despite all this, there are no public social network
datasets with rich images available for social post location
inference. In addition, as social platforms are usually informal
communication platforms, frequently but casually posting is
encouraged, inevitably producing noisy messages with abbre-
viated words, misspellings, and emoji characters. It also brings
many challenges in research on post-localization. In order to
learn meaningful representations from much social informa-
tion, some studies utilize multiple sources of information for
user’s location inference [7]. However, the previous methods
concerning post’s location inference focus on each modality
and use single-modal features, which may ignore important
relations between different modalities.

To address the aforementioned problems, in this paper, we
propose a novel multi-modal representation learning frame-
work, which utilizes multi-head attention fusion to capture
inter-modal interaction of different content in social posts for
location estimation. We begin by collecting real datasets of
social posts with images, texts, and hashtags, then model the
features representation learning of each modality. In partic-
ular, to extract features hidden in the noisy textual content,
we introduce a new attention-based character-aware module
that employs character-aware embedding and multi-head self-
attention for joint learning together with the word-level rep-
resentation. Since people, objects, and landscapes are usually
mixed in social images, which makes location estimation more
difficult, we extract geospatial information by matting and
inpainting the coverings that may degenerate the location
inference performance. Finally, we integrate a multi-head
attention mechanism to enhance location-salient information
extraction and jointly learn a multi-modal representation for
social-post location inference. The main contributions of this
work are as follows:

• We propose a novel multi-modal representation learning
framework (MRLF) that considers the interactions between
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multi-modal features when performing multi-head attention
fusing and feature aggregation. It enables our framework to
perform cross-modal fusion before obtaining the indepen-
dent feature representation of each mode. We will demon-
strate that MRLF performs better than existing methods that
manipulate fusion after obtaining the features.

• We introduce an attention-based character-aware module
that models the relative dependencies between characters
and combines the word-level representation to jointly learn
the textual representation of social post texts and hashtags.
Compared to the existing social post-location inference
approaches, MRLF can considerably improve prediction
accuracy while freeing from the computationally intensive
steps of building the user relationship map.

• As the first attempt to study the problem of inferring loca-
tions from multi-modal social post representation learning,
we release a new dataset with social post texts, hashtags, and
images from Instagram. We hope our effort can foster future
studies in online social media localization. We conduct
extensive experiments to evaluate the performance of our
model on real-world datasets. The results show that our
method significantly outperforms the baselines.

II. RelatedWork

According to the type of source media, existing localization
solutions can be classified into three categories: text-based,
image-based, and multi-modal methods.
Text-based Methods. Textual post content, such as texts
and hashtags, has been widely used in location inferences.
Early work [8] typically used various classification models
and probabilistic models to infer the geolocation with the
location-relevant words or the meaningful indicative words.
Due to the lack of location annotations in social posts, deep
learning approaches have been applied to learn social post
representation by various end-to-end models [5], [9], [10].
Ozdikis et al. [5] analyzed the geographical distribution of
tweet texts using kernel density estimation and a set of kernel
functions for every term. Tagivisor [9] adopted a random forest
classifier to exploit the hashtags in the posts and analyze user-
posted locations in a city at a grid level. A recent work [10]
proposed a method combining Bi-LSTM neural network with
conditional random field to identify geo-entities, showing
promising performance in detecting location information using
deep neural networks.
Image-based Methods. The images of social posts play
an essential role in many location inference tasks, such as
recognizing points of interest (POIs) [11] and trip recommen-
dation [12]. However, few studies explore the abundant infor-
mation behind social images to predict the locations of social
posts. An earlier work [13] collected the geo-tagged images
and corresponding geographic information to create indexes
with existing scenes in the dataset, such that the location
can be predicted through feature detection and comparison.
With the development of deep learning techniques in computer
vision, researchers have utilized various deep learning models
to capture the correlation of different content in social images,

such as visual content and text tags [14], towards learning
latent features for image location prediction.
Multi-modal Inference Methods. Recently, a few efforts have
been focused on inferring the locations of posts by exploiting
the multi-modality of social posts. However, for the user’s
location [15]–[17], the user’s context has been sufficiently
analyzed to extract direct and indirect location information
for user localization. For example, the work [15] fused user
posts, user profiles, user timelines, and even user timezone
to infer user locations. Another work [16] used communities
of users to figure out the physical places. A recent study [17]
modeled user relations with hierarchical graph neural networks
and used influence functions to explain the geolocation results.
However, previous methods do not focus on inferring the
geographical location of posts and without model the rich
information of user-generated images.

As images become an essential accessory of social posts and
may imply location information, the social post localization
task requires more effort to explore the social post content.
Since the existing fusion methods consider the single-modal
feature, what separates our work from them is that we focus
on learning relationships among multiple modals effectively.
In this work, we initiate the first attempt to learn social post
representations using multi-modal information extracted from
text, hashtags, and images for more accurate localization.

III. Method

Problem Definition. The problem of multi-modal location
inference can be formalized as follows. Assume each post
p = (H,T, I) is composed of 1) a set H = (h1,h2, ...,hn) of
n hashtags (e.g.,#outdoor), 2) a set T =

(
t1, t2, ..., tq

)
of the

text containing q sentences, and 3) a set I = (i1, i2, ..., im) of m
images. With the notations provided above, the problem can be
formalized as: Given a post pi = (Hi,Ti, Ii), the model needs
to learn the multi-modal feature representations and infer the
location li.
Overview of MRLF. As illustrated in Fig. 1, MRLF ag-
gregates the feature representations of images, hashtags, and
texts so as to infer the post’s locations. Images are pro-
cessed with a VGG19-based model. Meanwhile, an attention-
based character-aware network is proposed to extract the
implicit representations of both hashtags and texts, while a
convolution-based network is used to capture the explicit
representations at the word level. In contrast to prior ap-
proaches that use the attention mechanism to capture cross-
modal features in the final stage, we advance the fusion stage
to the convolutional layer. Finally, we use multi-modal feature
representations to infer a post’s location.

A. Hashtag and Text Feature Representation Learning

Users often inadvertently reveal their posting location
through text or hashtags, both of which may conceal inferable
location information. Given a cluster of characters, we use one-
hot to build a vocabulary for all characters or words encoded
as vectors with a fixed dimension l. To capture the implicit
meanings of the low-frequency and informal words of the post,



Fig. 1. The architecture of MRLF. MRLF takes images, hashtags, and
texts related to social posts as input. Images are processed with VGG19.
The features of the hashtags and texts are captured with an attention-based
network. A convolution layer is then employed to fuse cross-modal features
and obtain the multi-modal representations of social posts, as shown in the
red part.

we add a character-aware embedding combined with the word
embedding, which is also used to infer the explicit meaning of
hashtags and texts. Here, we use a convolution-based model
to extract the feature of word embedding. At the same time,
we adopt a multi-head self-attention-based module to model
the character-level features.

1) Character-level feature representation: Attention-based
models usually perform well in extracting correlations by
quantifying the interdependence among the inputs. However,
it will cause intensive computations in our model. To capture
the significant property while reducing the sequence length, we
address the computation issue by applying a 1-D convolution
neural network and, subsequently, a maximum pooling layer
over a small window to extract the information. Given the
character matrix C, each element of the result matrix Hmax is
calculated as:

hconv
i j =C (i− k : i+ k)Wconv

j +bconv
j , (1)

hmax
in =max

(
Hconv (l− k : l+ k, j)

)
, (2)

where k is half of the kernel size, i is the index of the character
sequence ranging from 1 to the character length m, j is the

index of the filter ranging from 1 to the number of filters,
bconv

j is the bias, hconv
i j is the each element of matrix Hconv,

l= i (2k−1), n rangs from 1 to m/ (2k−1), and hmax
in is the each

element of matrix Hmax. After obtaining Hmax, we utilize a
linear function to transform the matrix Hmax into query matrix
Q, key matrix K and value V , and split each matrix to h parallel
heads:

Oi = so f tmax


(
QiW

Q
i

) (
KiWK

i

)
√

d/h

(ViWV
i

)
, (3)

O = concat [O1, · · ·,Oi, · · ·,Oh] , (4)

where i ∈ (1,h), O is the attention score matrix, and d is the
dimension of the matrix. Finally, the character representation
Fc can be computed with Wc

1 , Wc
2 , where bc

1 and bc
2 are all

learnable parameters:

Fc =max
(
OWc

1 +bc
1,0
)
Wc

2 +bc
2, (5)

2) Word-level feature representation: To obtain explicit
feature representations, we transform each text and hashtag
sequence into a vector sequence at the word level and generate
the matrix representations of text and hashtag sequences. It is
worth noting that we remove low-frequency hashtags since
the meaning of these hashtags would significantly mislead the
geolocation information extraction, which we will discuss in
detail in Sec. IV-F. Similar to the regular operation in computer
vision, we also employ convolution and max-pooling to learn
the word-level feature representations of hashtag sentences and
texts.

B. Image Feature Representation Learning
Images consist of noise or location-irrelevant information

(e.g., selfies and pet photos), which contributes less and even
negatively to location inference. To alleviate the adverse im-
pact of image noise, we recognize portraits [18] in images and
perform image fill inpainting [19]. In Sec. IV-E, we provide
the detailed experimental results of deleting image noise and
its impact on the model predictions. When implementing
MRLF, we use a pre-trained VGG19 model [20] to generate
image feature representation, which adopts a combination of
small filter convolution layers. In particular, we freeze all pre-
training parameters in the convolutional layer and apply a fully
connected layer following a global average pooling layer to
adjust the size of the image feature representation vector.

C. Multi-modal Representation Learning
Humans usually infer location by the same words in text

and hashtags. To mimic this nature of humans, we advance
the fusion of text and hashtags character features to the
convolutional layer. Based on the output matrix Hmax

text and
Hmax

tag of texts and hashtags in the convolution layer, we obtain
the eventual multi-modal feature fusion as

Ocro = so f tmax


(
Hmax

tag WQ
tag

) (
Hmax

text WK
text

)
√

dtext

(Hmax
text WV

text

)
, (6)

Acro =max
(
OcroW1

cro+b1
cro,0
)
W2

cro+b2
cro, (7)

Fcro = LayerNorm (Acro) , (8)



where Fcro is the fused representation of text and hashtags. We
explain the reasons for not fusing image features in Sec. IV-D.
Lastly, we obtain the multi-modal geographic information
feature representation by concatenating the representations
derived from the different modals mentioned above:

Fp = concat
[
Fc

text,F
w
text,F

c
tag,F

w
tag,Fimg,Fcro

]
, (9)

where Fc
text and Fc

tag are the character-level representations
of texts and hashtags, Fw

text and Fw
tag are the word-level

representations of texts and hashtags, Fimg are the feature
representations of images.

D. Location Inference

By applying transformation matrix Wp to shape the output
dimension, we could get the vector for prediction:

V = FpostWp, (10)

where V ∈ Rml and ml is the location size. We then apply the
softmax function to calculate the probability for each location:

pi =
ei∑ml
j=1e j

, (11)

where ei is the i−th element of V and i is ranging from 1 to
ml. The prediction of location l′ is the label with the highest
probability:

l′ = argmax
(
p1, · · ·, pi, · · ·, pml

)
. (12)

Loss Function. During training, we use cross entropy as the
loss function:

Loss =
1
ml

ml∑
i

li log
(
l′i
)
, (13)

where l′i is denotes the probability of i−th location and li are
binary indicators.

IV. Experiments

A. Experimental Settings

Data Collection. For multi-modal localization method evalu-
ation, it is necessary to use social post data with rich images,
text, and hashtags information. Therefore, we curate three
multi-modal datasets from Instagram, the most popular online
social networking platform for image sharing. Specifically,
we select three popular cities on Instagram: New York,
Melbourne, and Hong Kong. Detailed statistics of the three
datasets are summarized in Table I.

TABLE I
Dataset Statistics.

Category New York Melbourne Hong Kong
#Posts 137,676 43,656 43,393
#Locations 40 20 27
#Images 16,357 12,956 38,414
#Hashtags 137,676 33,296 33,525
#Text 116,961 30,529 37,235

Data Preprocessing. We find the locations of popular
check-ins in each city using top-pick search results through
Foursquare. Then we collect the Instagram data using the In-
staloader library1. As social media data is always irregular and
cluttered, several filtering strategies are applied to the collected
data. First, we remove the hashtags that appear less than 50
times in each city. In image segmentation and recognition,
we set a parameter η to filter out pictures with excessive noise
information, such as selfies. In the experiments, we set η = 0.5
to delete useless photos. In each city, we only keep geographic
locations with at least 100 check-in posts, which excludes
the POIs that people rarely visit or mention. Specifically, we
selected English posts that contain text, hashtags, and images
in the dataset for MRLF training.
Baselines. We compare MRLF with two categories of base-
lines. The first category consists of text-based or hashtag-based
methods, including:
• Tagvisor [9] utilizes the random forest model to mine the

potential connections between hashtags and user locations
for predictions.

• Deepgeo [21] uses a Bi-LSTM with the attention mechanism
to learn the relationships between different indicative word
vectors and discriminate the locations of the posts.

• LocTwi [22] treats subwords as a feature and further im-
proves the representation learning of informal language on
social networks.
The second category consists of image-based methods.

Location inference for images can be treated as a classification
task, but few works have been done in the literature. We
choose several representative image classification models for
comparison, including:
• ResNet50 [23] is a variant of ResNet, which has 48 Con-

volution layers along with 1 MaxPool and 1 Average Pool
layer.

• ResNet101 [23] is a deeper modal based on ResNet50.
• DenseNet121 [24] connects each convolution layer to every

other layer in a feed-forward fashion.
Evaluation metrics. We use two metrics to evaluate all
methods following previous related works [6], [17]: (1) Mean
is the averaged errors between the predicted cluster centers
and the ground-truth geolocations, and (2) Acc measures the
accuracy of the classification results.
Parameter setting. We set the maximum number of hashtags
and text characters to 100. Besides, the embedding dimensions
of text and hashtags are set to 100. We apply convolutions on
both character-aware and word representation learning. The
filter sizes are (3,4,5,6) and (1,2,3,4), respectively, and the
filter number is set as 100. We set the number of heads in the
multi-head self-attention mechanism to 8. When proceeding
to the feedforward layer, we also add a dropout to stabilize
the training of our model, whose parameter is set to 0.5. We
adopt the Rmsprop optimizer to train the model with a learning
rate of 0.001, and the weight decays by 0.8 per time with

1https://instaloader.github.io



patience after 10 epochs. The model converges after we train
100 epochs. All the neural network models are implemented
using Tensorflow. All experiments are conducted on a machine
with an Intel(R) Xeon(R) Silver 4110 CPU and two GeForce
RTX 3090 GPUs.

TABLE II
Performance comparisons on three datasets.

Model
New York Melbourne Hong Kong
Acc Mean Acc Mean Acc Mean

Tagivisor [9] 0.681 2.385 0.652 0.724 0.523 1.745
Deepgeo [21] 0.738 1.804 0.742 1.243 0.654 1.522
LocTwi [22] 0.724 1.921 0.734 1.220 0.644 1.582
ResNet50 [23] 0.669 2.785 0.694 1.257 0.811 0.767
ResNet101 [23] 0.644 3.608 0.718 1.368 0.809 0.730
DenseNet121 [24] 0.553 3.927 0.604 1.608 0.538 1.892
MRLF 0.828 1.510 0.860 0.512 0.847 0.715

B. Performance Comparison

The overall performance comparison of all methods across
three datasets is presented in Table II, from which we
have the following observations. First, MRLF consistently
outperforms baselines on all metrics, e.g., the performance
gains of MRLF over the best baseline method in terms of
Accuracy and Mean are 9.0% and 0.294km in New York,
11.8% and 0.212km in Melbourne, and 3.6% and 0.015km
in Hong Kong, respectively. It further demonstrates that the
fusion of multi-modal features helps improve social content
location inference performance. Next, we can observe that
different components play distinct roles in different datasets,
as the POIs of each dataset have various visual distinctions,
and people in other regions have different habits of using
social networks. Third, models achieving higher Accuracy
performance do not mean smaller Mean results, e.g., Tagivisor
and Deepgeo in Melbourne, ResNet50 and ResNet101 in Hong
Kong, and ResNet101 and VGG16 in New York. For the
Mean metric, incorrectly predicting two POIs far from each
other may counteract the contribution made by multiple correct
predictions.

C. Ablation Study

We conduct an ablation study to quantify the effect of each
component in our MRLF. As shown in Fig. 2, we study
all three critical features in our model: the text, hashtags,
and the image representations. Text and hashtags are less
important in Melbourne and Hong Kong datasets, but MRLF
still outperforms other methods. The result also suggests that
the performance of MRLF depends on all the components, i.e.,
the three modalities contribute to the final prediction, which
proves the effect of multi-modal information fusion for geo-
graphic prediction. More importantly, the image information
contributes more than the other two – an important finding
that may inspire future work in online content localization.
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Fig. 2. The ablation results investigating the influence of different compo-
nents. We only report accuracy results due to space limits, but the same trend
is also hold for Mean evaluations.

D. Multi-modal Fusion Study
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Fig. 3. Comparative experimental results of fusing different components.

Since many existing methods are based on attention mech-
anisms for cross-modal feature fusion, we now investigate the
influence of different fusion methods. As shown in Fig. 3,
we compare the performance of hashtags and text fusion
before and after getting each feature, which corresponds to
the MRLF and text-tag-end in Fig. 3, respectively. MRLF
achieves better performance due to the cross-modal fusion
before getting isolated features, which encourages the con-
volution layer to pay more attention to the commonality of
the two components. This result is like humans usually infer
location by the same word in both hashtags and text. An
important finding is that the fusion of different components
and concatenation simply has similar results. Even the fusion
of text and images performs slightly higher than MRLF on the
Melbourne dataset. However, MRLF outperforms all fusion
methods in all datasets in terms of Mean evaluation because
only a small percentage of images in social networks have
road signs, which may reduce the performance of fusing the
image with other components.

E. Influence of Noisy Images

Generally, social media images consist of much personal
information that is geographic-free. Therefore, user-generated
contents usually include a variety of close-ups of individual
items. For example, selfies are a kind of noise for capturing
geographical information. In Table III, we compared the



performance before and after removing noisy images with
a portrait ratio greater than 0.5. In particular, we use all
the posts in the dataset and only adopt the image feature
representation learning part in MRLF for training. As the
results demonstrated, after removing noisy images, the Mean
performance is significantly improved on all datasets, and
higher accuracy is also achieved on the Melbourne dataset.
This result verifies our motivation for removing geographic-
free noise in multi-modal fusion and post-localization.

TABLE III
Comparison of performance before and after noise image removal.

Method
New York Melbourne Hong Kong
Acc Mean Acc Mean Acc Mean

Image (all) 0.579 3.755 0.676 1.399 0.600 1.708
Image (remove) 0.579 3.695 0.697 1.261 0.600 1.669

F. Influence of Low-frequency Hashtags

As shown in Fig. 4, we quantify the influence of filtering
the low-frequency hashtags. After filtering, the model performs
better under the two metrics. This phenomenon suggests that
word vectors that are insufficiently trained may mislead the
extraction of valid knowledge and, therefore, deteriorate the
prediction performance. Removing these data that do not have
access to sufficient training can improve the performance of
the model prediction.

0.6 0.8
Accuracy

(a)NY

0.5 0.6 0.7
Accuracy

(b)MB

0.5 0.6 0.7
Accuracy

(c)HK

1 2 3
Mean

(d)NY

0 1 2
Mean

(e)MB

0 1 2
Mean

(f)HK

unfiltered filtered

Fig. 4. The impact of low-frequency hashtags on prediction performance.

V. Conclusions

This paper exploits just one social post for the geolocation
prediction task. To the best of our knowledge, this is the
first post-localization study that leverages complete post infor-
mation, including texts, hashtags, and images. The proposed
model MRLF integrated a multi-head attention mechanism
to enhance location-salient knowledge for multi-modal repre-
sentation fusion. In addition, we presented an attention-based
character-aware module that not only perceives the relative
dependency of character-level features but also fuses the
character-level features before obtaining the text and hashtag
features to learn the textual representation better. Further, we
improved the model’s performance by removing the effect of

noise from both hashtags and images. Experimental results
on real-world datasets curated from Instagram verified the
effectiveness of our solution. It is interesting to use neural
networks for multi-modal fusion in our future work.
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