2302.09888v1 [cs.DC] 20 Feb 2023

arxXiv

Multiple Resource Allocation in Multi-Tenant Edge
Computing via Sub-modular Optimization

Ayoub Ben-Ameur, Andrea Araldo, Tijani Chahed
SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
{first_name}.{last_name} @telecom-sudparis.eu

Abstract—Edge Computing (EC) allows users to access com-
puting resources at the network frontier, which paves the way for
deploying delay-sensitive applications such as Mobile Augmented
Reality (MAR). Under the EC paradigm, MAR users connect to
the EC server, open sessions and send continuously frames to
be processed. The EC server sends back virtual information to
enhance the human perception of the world by merging it with the
real environment. Resource allocation arises as a critical challenge
when several MAR Service Providers (SPs) compete for limited
resources at the edge of the network. In this paper, we consider
EC in a multi-tenant environment where the resource owner,
i.e., the Network Operator (NO), virtualizes the resources and
lets SPs run their services using the allocated slice of resources.
Indeed, for MAR applications, we focus on two specific resources:
CPU and RAM, deployed in some edge node, e.g., a central
office. We study the decision of the NO about how to partition
these resources among several SPs. We model the arrival and
service dynamics of users belonging to different SPs using Erlang
queuing model and show that under perfect information, the
interaction between the NO and SPs can be formulated as a
sub-modular maximization problem under multiple Knapsack
constraints. To solve the problem, we use an approximation
algorithm, guaranteeing a bounded gap with respect to the optimal
theoretical solution. Our numerical results show that the proposed
algorithm outperforms baseline proportional allocation in terms
of the number of sessions accommodated at the edge for each SP.

Index Terms—Resource allocation, multi-tenant edge comput-
ing, mobile augmented reality, multi-dimensional knapsack prob-
lem, queuing model.

I. INTRODUCTION

Mobile Augmented Reality (MAR) has become one of the
most emerging applications, accompanied by the development
of mobile devices and wireless communication. In MAR, the
human perception of the world can be enhanced by merging
virtual information (generated from object detection, classi-
fication, or tracking) with the real environment via mobile
devices [1l]. However, it is difficult for a mobile device to
offer the abundant computation and energy required by MAR
applications.

While the production of AR/VR dedicated hardware seems
very effective to run AR/VR applications properly, it is costly
in the sense that only big players can afford producing their
own devices. Hence, multi-tenant EC is particularly interesting
for all the other players, as it is probably the only way for
small or medium AR Service Providers (SPs) to run their

applications at the edge of the network. The development of
EC and 5G has eliminated the obstacle to deploying the MAR
service. In the concept of EC [2], computing and storage
resources are deployed at the edge of the access network.
Several MAR clients on mobile devices can send MAR requests
that contain original data captured by sensors and cameras
to the Edge Computing (EC) server. Furthermore, dedicated
computing hardware (e.g., Graphics Processing Unit (GPU) and
Central Processing Unit (CPU)) and software (e.g., computer
vision-based algorithms) process these data and then return
the results, such as object classification or space coordinate
information, to the mobile devices.

The use of the EC for MAR has attracted extensive attention
from the research community and industry recently [3], [4],
which mainly focus on architecture design and deployment.
However, scheduling the MAR requests received from several
competing MAR clients on one EC server is critical and
challenging. We address in this work the issue of resource
allocation to competing, heterogeneous SPs in the case of
multiple, limited resources at the Edge. We first model the
arrivals and service dynamics of the flows using Erlang queuing
model. We then formulate the resource allocation problem
to each of the SPs using sub-modular maximization under
Knapsack constraints. We next propose an implementation
of the so-called streaming algorithm to solve the allocation
problem, and obtain a (3555 — €)-approximate optimal value,
where d is the number of resource types and € is a controllable
error term. We eventually provide numerical results to show
that the resulting system performance significantly outperforms
baseline resource allocation policies.

The remainder of this paper is organized as follows. In
Section we discuss most relevant work related to ours.
We introduce in Section [III] our system model. We formulate
the sub-modular maximization problem under Knapsack con-
straints in Section and describe the proposed algorithm to
solve it. In Section [V} we show our simulation results. We draw
conclusions in Section [V1l

II. RELATED WORK

Recently, much research effort has been made to develop
MAR applications under the EC paradigm. In addition to
studies on efficient EC architecture design for MAR [J3],
[6], in preliminary studies, researchers concentrated on the

resource allocation problem in the MAR service [[7]], [8]. Some
researchers began to notice the trade-off between processing
latency and accuracy. They aimed to develop acceleration
mechanisms to reduce processing latency [9] or characterize
the relation between computational complexity and the image
size [10]]. Based on these studies, the adaptation of the client
configuration (image size and frame rate), and the resource
allocation scheme were jointly considered in a centralized
manner [[11], [12]. However, in both studies, the researchers
ignored the characteristics of dedicated computing devices (i.e.,
using batch processing to improve the GPU utility) for MAR
tasks. Moreover, their solutions centrally controlled each client
configuration, which is challenging to apply to a realistic MAR
system.

In [13], the authors consider an edge computing system
under network slicing in which the wireless devices generate
latency sensitive computational tasks. The allocation of wire-
less and computing resources to a set of autonomous wireless
devices in an edge computing system is considered in [14].
A main common assumption of the papers above is that user
devices submit tasks to the NO. Contention in these works
is modeled among user devices. However, we consider that
these models are not appropriate for EC in our vision, since
all traffic between devices and service providers is encrypted
to maintain confidentiality and the NO does not have control
over it. Therefore the contention for resources is, in our vision,
between SPs and not between tasks submitted by users. In our
assumption, the NO can only decide how to allocate resources
among SPs and then users device interact directly with SPs,
outside the control of the NO. In [15], authors consider the in-
terplay between latency constrained applications and function-
level resource management in EC. A game theoretic model of
the interaction between rate adaptive applications and a load
balancing operator is developed under a function-oriented pay-
as-you-go pricing model. In our approach, we assume that the
NO does not require any payment from the SPs. The NO aims
to maximize his own utility by allocating resources to SPs at
the edge. In our vision, an important part of MAR providers
cannot afford the payment for resources at the edge.

III. SYSTEM MODEL AND OPTIMIZATION PROBLEM

We consider a setting with one NO, owning a set of resources
R and willing to share them between P different SPs. Each SP
can then use its assigned share as if it had a dedicated hardware
deployed in the edge.

A. Request Pattern

MAR users of SP p arrive to the EC server following a
Poisson process with rate)\, expressed in users/s. Once a user
of any SP p is connected to the edge server, a session is created.
This session is valid for a period of time denoted 7}, during
which the user can perform a sequence of interactions within
that MAR application. A single session can contain multiple
activities all of which are stored in the session temporarily

while the user is connected. Each SP runs in the edge a virtual
server, e.g., a Kubernetes POD [16]. A MAR user establishes
a session with the virtual server of the respective SP. Within
that session, it sends a stream of image processing requests.
When users point their MAR device toward an object, raw
video from the MAR device cameras are fetched and clipsed
into frames with specific image format, such as JPEG and
PNG and sent to the edge server [S]. The video frames are
delivered to the AR tracker to determine the user’s position
with respect to the physical surroundings. Given the tracking
results, virtual coordinate of the environment can be established
by the mapper. Then, the internal objects in video frames are
identified by the object recognizer with robust features. The
MAR device finally downloads information about the object
from the edge server. The AR information is presented in a 3-D
“experience” superimposed on the object. What users see, then,
is part real and part virtual. Since MAR needs high data rates,
ultra-low latency and the possible use of lightweight devices,
performing processing at the edge of 5G mobile networks can
help guarantee the requirements of MAR applications (Section
HI-F of [1]).

We assume that a session of a single user of SP p requires
a certain amount of resource 7 denoted z;. If the SP does not
have at the edge such amount of resources available, the user
will establish a session with the cloud, suffering longer delay.
Once a user of SP p is served by the edge, his session will
be closed and he leaves the EC system. Please note that users
can leave the system when they decide, this does not deny that
we can define an average service rate for SP p expressed in
users/s denoted by 11, = 7-.

B. Resources Partitioning

The NO owns CPU and RAM at the edge of the network,
for instance, in a server co-located with a (micro) base station
or central offices at the metropolitan scale. It allocates a total
capacity K"V of CPU and a total capacity K**M of RAM
among the P SPs. Tllgz allocation is a vector 6 = (OCPU, ORAM)
where each vector 6" is the allocation of resource r. More

precisely, the allocation has a form as follows:
6= (657, 05V, ORAM L M))

We define the set of all possible allocations as:

P

TE {§|Zeggm,9;ez+,reﬂz} @)
p=1

C. Service Model

We model our system as an Erlang queue [17] which models
Poisson arrivals, exponentially distributed service time, and a
number of servers equal to the number of places in the system,
i.e., users are either directly served at the edge or directed to the
cloud. In our case, users of SP p arrive to the edge according
to a Poisson distribution with mean arrival rate), they remain
in the system for an exponentially distributed duration, 7},. The

number of servers in our case refers to the maximum number
of sessions that the edge can accommodate for each SP, as
determined next. Each user of SP p has fixed requirements
(Z;)pzlnpyregg and fixed allocation ((0;),4691) during service.
We denote by np(ﬁ) the maximum number of users that can
be served at the edge for a SP p when the resource allocation
decided by the NO is 6 = (0)),cx. Each user of each SP p

will receive an amount z; of the resource r for their session.

Hence the maximum number of sessions 7,,(8) each SP p can
establish at the edge when the allocation from the NO is 6

must satisfy:

50

)z <O, p=1...PreR 3)

Therefore, n, (5) is:

- 0,
6) = |min (= =1...P 4
np(9) {ggjg (Zg)Jm)
where |.| is the floor function giving as output the greatest
integer less than or equal to (Z—‘Z)
Let us denote by N, the number of users of SP p served at
the edge if all the resources are allocated only to this SP p.

KT‘
o= (5))» ®

D. Utility Model

A user of SP p is served directly by the edge if the
latter can satisfy the requirements ngM and ngU. Otherwise,
the corresponding session is not accepted (we say that it is
“blocked”, following the terminology from queuing theory) and
directed to a remote cloud server. Using Erlang (equation (3.45)
of [I17]), the probability for a user of SP p to be blocked is

n, ()1
an(é) ﬂ

=0 4!

B,(0) = p=1...P (6)

where A, = Z—P The probability for a user of SP p to have
his/her session established with the edge is thus:

By(6) =1 — B,(6). (7)

The utility perceived by a user who establishes a session
directly in the edge is Ug, while if the session is with the cloud,
the utility is Uc. Such utilities take into account the impact on
the Quality of Experience (QoE) of the delay to process every
user request, accounting for a larger delay to reach the cloud.
Hence, U > Uc > 0. For simplicity, we assume that Ug
and Uc are the same for all SPs. Since 1 — B, indicates the
fraction of users of SP p establishing sessions with the edge,

the expected value of the utility perceived by a user of SP p
is, by the theorem of total probability:

EUp(é) = P(session established with the edge) - Up
+ P(session established with the cloud) - Ux
= B,(6)-Up + (1 B,(6)) - Uc
= (Up — Uc) - B,(6) + Uc

By the theorem of total expectation, the utility perceived by
a generic user is

®)

Up(é) - P(new user is for SPp)
v ©)

<
=
=
I
(]
S

J— >\P
where w, = SINEWE

E. Optimization Problem

The NO aims to maximize the expected value of the utility
perceived by a generic user:

max EU(6)
[
P (10)
st. Y 0 <K"Wre®
p=1

-

Replacing EU,, (6) with its value found in (8) and observing
that (Ug —Uc¢) and Ug are positive constants, the optimization
problem becomes:

P
max w,B,(6)
p (11)
st. Y 0p <K".Vre®R
p=1
Thanks to (@) and (6), we can express the problem in terms
of i = (ny,...,np) instead of :

P
max f(3) = D w, By ()
p=1

. (12)
s.t. an . z; <K'.VrekR
p=1
AP
= N np!
where Bp(n)él—LiA;,pzl...P (13)

2o

Observe that f(ii) is the probability for a generic user to
be served with a session with the edge node. This shows
that improving the expected user utility (I0) is equivalent to
maximizing the probability of establishing a session with the

edge (12).

IV. SUB-MODULAR OPTIMIZATION

To describe our problem (12) in terms of sub-modular
optimization, we interpret a user session established with the
edge node as an item. Let V, = {1,2,...,N,} be the set of
candidate sessions of SP p that could coexist in the edge if all
resources were given to this SP p. Since in reality resources
at the edge are not given to one SP only, we need to choose
a subset of sessions §, C 'V, to allocate to each SP p. This
choice induces a certain probability of establishing a session
with the edge:

8]
Ap?
18p]!

Z'Sﬁpl ﬂ
=0 4!

With slight abuse of notation, in the formula above we use the
notation B,(-) as in (T3), to emphasize that the two quantities
are Conceptually the same thing, by setting n, = |§,|. Let V = =
U 1 Vp the set of all candidate sessions and § = Uf: Sp C
v the set of sessions allocated. Set § is our decision Variable.

For each SP p, we define a non-negative set function f,, taking
as input all possible subsets 8 of V, as follows:

fp(8) Zwp - Bp(8NV,) €

Function f, represents the probability, for a user that arrives,
to be of SP p and to be served with a session at the edge. We
define f(8) = 25:1 [p(8). It indicates, for any arriving user,
the probability to be served with a session at the edge.

For any subset 8 of V, we denote the characteristic vector
of § by rg = (x,sl’l, ey L8 Nyse+yL8p,1ye-- ,.TSP’NP)T,
where for any j € [1,N,] andp=1,..., P:

By(8,) =1— (14)

[0,1]

L

mspﬂ = {0
bl

For 8 CV and v € V, the marginal gain in f when adding
v to set 8 is defined as Af(v[8) £ f(8 U {v}) — £(8).

We introduce now the d-knapsack constraint where d = |R|.
Let k = (K , KT be the resource capacity vector and
Z, = (z %, 7) denote a d x N, matrix, whose (r,j)-th entry
z,; > 0 is the weight of the j-th item of V, in terms of
resource r. Since we have assumed (§III-C)) that all users of
a SP p require the same amount of each resource, Z;,j = z;
for all the items in V,,. Therefore, the constraint in can
be expressed by Z - xs < k, where Z = (Z1,...,Zp) €
R*%» Ne and &g € {0,1}%» 7> 1. Problem (T2) becomes:

if the j-th item of V,, is in §,,

otherwise

P
max f(8) = pr(gp)
p=1 (15)
st. ZXg<k

Without loss of generality, for 1 < ¢ < d,1 < 7 < N,
we assume that z; < K. That is, no item has a larger weight

than the corresponding knapsack budget, since otherwise such
an item would never be selected into S.

We are now ready to study the properties of formulation (I5).
To do so, we recall two common definitions from set-function
theory [18]].

Algorithm 1: Streaming Algorithm for sub-modular
maximization problem under Knapsack constraints

Data: d, z,, K", Ay, fip
Result: $*
m <+ 0;
Q< {[1+ (1+2d)e!|l € Z};
for v € Q do
8y 0
for 1 <i<ddo
| m o max{m, f({j})/z;};
end
Q<+ {[1+(1+2d)'|l € Z,
i < 1+ (1+2d)e)! < 2Km};
for 1 <j<ndo
if i € [1,d], 2, > & and LU0 > -
then :
Sy« {ih
break;
end

if v@ € [1,d), Yiesugy) 0 < K and 22050 >

K<1+2d> then
|8y 8, U{j}:
end

+2d>

end
end
8* +— argmaxs, veo [(Su);

Definition IV-.1. A function f is sub-modular if it satisfies that
Ar(v|B) < Ay(v|A), forany ACB CVandveV\B.

Definition IV-2. A function f is monotone if for any § C 'V
and v €V, Ap(v|8) > 0.

Theorem IV-.3. Function f in (I3) is monotone and sub-
modular.

Proof. Let 8§ C V and v € V. Suppose in particular that
v € Vp/.

Ap(v]8) =f(8U{v}) — f(8)

=3 f(8p

p#p’
:fp’(sp: U{v}) — fr (Spr) B
By (8 U{v}) —wp - By (8yr)

)+ for (8 U{v}) —

=
nMw
N
;ﬁ
o

:wp/
>0

)

where the last inequality can be obtained by simple calculus
from (T4). This shows that function f is monotone.
Let us consider sets A C B C V and a vector v € V \ B.

Af(v|B) = Ap(v|A) =[f(BU{v}) — f(B)]-
[F(AU{v}) = F(A)]
=[f(BU{v}) = FLAU{v})]+
[f(A) = F(B)]
Having A C B, we can write 39 C V/B = A U Q. Hence:
[F(BU{v}) = fLAAU{v})] + [f(A) — f(B)]
= [f(AVQU{v}) — fFAU{v}] + [f(A) - f(AUQ)]
< [f(A) + fF(QU{v}) = f(A) — F({v})]
+[f(A) = f(AUQ)]
< [FQU{v}) = F{vh)] + [f(A) = f(A) = f(Q)]
= fQu{v}) — [f({v}) + (9] <0
Therefore, the function f is sub-modular. O

Now that we have proved that our objective function f is
monotone and sub-modular, we can use well known results
from sub-modular optimization. IN particular, we adopt the
algorithms proposed in [19]], which we report in Algorithm
The main idea of the algorithm is for every potential new user
for each SP p, we compare the increase in f when we add
this user to the set of users 8. We add the user providing the
most increase in f. The algorithm guarantees the following
sub-optimality gap (Theorem 1 of [19]).

Theorem 1V-4. Algorithm [I] outputs 8 that satisfies f(8) >
(1357 — ©)OPT and has O(leeEmax) K"”")) computational com-
plexity per element, d being the number of resources, 0 < € <
ﬁ, Kiax = maxi<i<q K and OPT the value of f obtained
by the optimal solution.

Note that the hyper-parameter e impacts the behavior of the
algorithm as well as the quality of the optimality gap. The
smaller is ¢, the larger is our f(8).

V. NUMERICAL RESULTS

We now evaluate the performance of Algorithm [I] via a
numerical model developed in Python and compare it to the
proportional allocation where 6, is proportional to the arrival
rate \, of users of each SP p. We set € = 0.01.

A. Setting

We focus on an edge node co-located with a central offices
serving 2 SPs. We set arrival rates A\; and Ay at 20 and 5
users/s, respectively and departure rates pq and ug at 1 and
10 users/ s, respectively. Motivated by Amazon EC2 instances,
such as G4dn [20], designed to support machine learning
inference for applications like adding metadata to an image,
object detection, recommendation systems, automated speech

1.00 0.5
0.95 M\ — f x—x B)H/
) =y \ 0.4
0.90 . — forap e B
0.85 . 03

. 080 \\ <
0.75 o ‘ 0.2
0.70 . ' o
0.65 S 0.1 /
0.60 - /
055510 15 20 25 30 35 40 "0 576" 15 20 25 30 35 40

At AL

(a) Objective function f vs. A1 (b) Blocking probability By, vs. A1

Fig. 1: Performance of the streaming algorithm w.r.t \;

recognition, and language translation, we consider an edge
server similar to the G4dn.metal with K®*M = 384 GB of total
RAM capacity and a 2nd Generation Intel Xeon Scalable CPU:
Cascade Lake P-8259L with total capacity of CPU KV = 96
vCPU. Taking in consideration AR applications similar to
Pokemon GO [21], we set RAM and CPU requirements for
SP 1 and SP 2 at: 284M = 2 GB, 2PV = 1 vCPU, 28M = (.5
GB and z$PY = 4 vCPU, respectively.

B. Results

We plot in Fig. [la] our solution obtained with Algorithm
the objective function f, which is the probability for a user
to establish a session with the edge (12) and we compare
our solution with the baseline fprp, i€., the probability of
establishing sessions with the edge obtained when allocating
resources to SPs proportionally to their users arrival rates. In
Fig. we show the variation of the blocking probabilities for
each SP when varying A;. The increase in A; results higher
blocking probability for SP 1, which is expected as more users
will consume more resources at the edge and less resources are
left. Higher \; will also affect SP 2 but much less significantly.
As for resource utilization, we plot Fig.[2| The results show that
the CPU is totally utilized by the two SPs (Fig. 2b), while the
RAM is not fully exploited (less than 20% as shown in Fig. 2a)).
Despite having more than 80% of RAM free, we cannot expect
better performance since the blocking comes always from the
CPU, which is the scarcer resource. Having higher arrival rate,
the algorithm does not allow yet SP 1 to have more CPU as
this resource is almost 80% used by SP 2. We can explain this
by looking to the values of z$PV and 2§PY, we can see that SP
2 is CPU-greedy: users of SP 2 consume 4 times more CPU
than users of SP 1.

In Fig[3] we plot a heat-map describing the global objective
function f with respect to the variations of the two arrival rates.
Obviously, the performance of the algorithm under lower arrival
rates is better (dark red region f > 0.95). But what is more
interesting in the figure, is that even for high arrival rates for
SP 2 (A2 > 35), the algorithms keeps performing well up to
A1 = 20 (orange region f > 0.85), no matter the arrival rate
Ao of SP 2. The opposite is not the same: for any value of Ao,
even small ones, the performance highly depend on ;. We can

60 100

Al Al CPU CPU
sol || mmm o2V g pRaM | El 71 6
m 40 2
8 & 60
=30 >
5 = 40
2220 5.
10 20
0 510 15 20 25 30 35 40 45 05510 15 20 25 30 35 40 45
AL AL

(a) RAM allocation vs. A1 (b) CPU allocation vs. A1

Fig. 2: Resource utilization vs. \;

0
0.95
10 0.90
0.85
- 0.80
<20 075“*
0.70
30 0.65
0.60
0 10 20 30
A

Fig. 3: Objective function f w.r.t A; and A,

explain that by the fact that the users of SP 2 consume a lot of
CPU (the blocking resource) which means every new admission
of SP 1 would degrade the performance of the algorithm.

Since the CPU is the blocking resource, we evaluate in
Fig. 4 the sensitivity of the system with respect to the required
amount of CPU by each user of the two SPs. First, we plot
in Fig. [4a] the objective functions: f, fi and f, obtained by
the algorithm and fyrop. The results show that the streaming
algorithm outperforms the baseline allocation whatever users
of SP 1 require in term of CPU. In Fig. @b we plot the
heat-map describing the global objective function f obtained
with the streaming algorithm with respect to the variations of
the CPU requirements. The algorithm maintains a satisfying
performance (dark red to light green region) up to requirements
around 5 vCPU at most and then the performance rapidly
decrease with the higher CPU requirements.

VI. CONCLUSION AND FUTURE WORK

We tackled in this paper resource allocation at EC between
heterogeneous, MAR-oriented SPs competing over multiple,
limited resources. We modeled the users dynamics in terms
of an Erlang-type queuing model, we formulated the resource
allocation problem as a sub-modular maximization problem
subject to multiple knapsack constraints and solve it via an
approximation algorithm with provable optimality gap. Our
numerical results quantified the performance of our algorithm
in terms of the probability that users get served by the Edge,
as opposed to being blocked and re-directed towards the
Cloud which entails larger delay and hence lesser QoE. We
showed the resulting resources partitioning between the SPs.

0.9 0 0.96
0.8 0.90
0.7 T 5 0.84
0.6 R et L 0.78

“~ 0.5 . 5 0.72%
o4 : <10 0.66
03 0.60

: — < nl 15 0.54
0.2 e S| 0.48
01 0 10 15

2 3 4 5 6 7 8 9 5
cPU
21

cPU
2y

(@) f vs. 257V () f wrt 25V and 25V

Fig. 4: Sensitivity w.r.t 257V, p = 1,2

We showed the algorithm outperforms a baseline resource
allocation, proportional to users arrival rates. Finally, we in-
cluded a sensitivity analysis with respect to individual user
requirement of a given resource. Our next work perspective
would focus on the case where users arrival rates as well as
resource requirements are unknown, the NO shall implement
learning in order to be able to allocate resources in this case.

REFERENCES

[1] Y. Siriwardhana et al, “A survey on mobile augmented reality with
5G mobile edge computing: Architectures, applications, and technical
aspects,” IEEE Communications Surveys & Tutorials, 2021.

[2] Y. Mao et al., “A survey on mobile edge computing: The communication
perspective,” IEEE communications surveys & tutorials, 2017.

[3] M. Erol-Kantarci et al., “Caching and computing at the edge for mobile
(AR/VR) in 5G,” Ad Hoc Networks, 2018.

[4] A. B. Ameur et al., “On the deployability of augmented reality using
embedded edge devices,” in IEEE CCNC, 2021.

[5] J. Ren et al., “An edge-computing based architecture for mobile aug-
mented reality,” IEEE Network, 2019.

[6] T. M. Ferndndez-Caramés et al., “A fog computing and cloudlet based
augmented reality system for the industry 4.0 shipyard,” Sensors, 2018.

[71 W. Liu et al., “Data offloading and sharing for latency minimization in
augmented reality based on mobile-edge computing,” in JEEE VTC, 2018.

[8] M. Jia and W. Liang, “Delay-sensitive multiplayer augmented reality
game planning in mobile edge computing,” in ACM ICMASWMS, 2018.

[9]1 N. Lane er al, “Deepx: A software accelerator for low-power deep

learning inference on mobile devices,” in ACM/IEEE IPSN, 2016.

Y. He et al., “Optimizing the learning performance in mobile augmented

reality systems with cnn,” ToWC, 2020.

Q. Liu et al., “An edge network orchestrator for mobile augmented

reality,” in IEEE INFOCOM 2018, 2018.

Q. Liu and T. Han, “Dare: Dynamic adaptive mobile augmented reality

with edge computing,” in /JEEE ICNP, 2018.

S. Josilo et al., “Joint wireless and edge computing resource management

with dynamic network slice selection,” IEEE/ACM ToN, 2022.

——, “Wireless and computing resource allocation for selfish computa-

tion offloading in edge computing,” in /EEE INFOCOM, 2019.

F. Tiitiinciioglu et al., “Online learning for rate-adaptive task offloading

under latency constraints in serverless ec,” IEEE/ACM ToN, 2022.

T. K. Authors. Kubernetes documentation. [Online]. Available: https:

//kubernetes.io/docs/concepts/workloads/pods/

L. Kleinrock, Queuing Systems. Wiley-Interscience, 1975, vol. 1.

S. Fujishige, Submodular functions and optimization. Elsevier, 2005.

Q. Yu et al., “Submodular maximization with multi-knapsack constraints

and its applications in scientific literature recommendations,” in /EEE

GlobalSIP, 2016.

(2022) Types of instances in amazon EC2.

https://aws.amazon.com/fr/ec2/instance- types/|

(2022) Pokemon GO requirements. [Online].

Available: https://support.pokemon.com/hc/en-us/articles/

-Pokemon-GO-Plus-system-requirements-and-compatibility

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]
[19]

[20] [Online]. Available:

[21]

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://aws.amazon.com/fr/ec2/instance-types/
https://support.pokemon.com/hc/en-us/articles/-Pokemon-GO-Plus-system-requirements-and-compatibility
https://support.pokemon.com/hc/en-us/articles/-Pokemon-GO-Plus-system-requirements-and-compatibility

	I Introduction
	II Related Work
	III System Model and Optimization Problem
	III-A Request Pattern
	III-B Resources Partitioning
	III-C Service Model
	III-D Utility Model
	III-E Optimization Problem

	IV Sub-modular Optimization
	V Numerical Results
	V-A Setting
	V-B Results

	VI Conclusion and Future work
	References

