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Abstract—Reconfigurable intelligent surfaces (RISs) are

considered as an enabling technology for the upcoming sixth
generation of wireless systems, exhibiting significant potential
for radio localization and sensing. An RIS is usually treated
as an anchor point with known position and orientation when
deployed to offer user localization. However, it can also be
attached to a user to enable its localization in a semi-passive
manner. In this paper, we consider a static user equipped with
an RIS and study the RIS localization problem (i.e., joint
three-dimensional position and orientation estimation), when
operating in a system comprising a single-antenna transmitter
and multiple synchronized single-antenna receivers with known
locations. We present a multi-stage estimator using time-of-
arrival and spatial frequency measurements, and derive the
Cramér-Rao lower bounds for the estimated parameters to
validate the estimator’s performance. Our simulation results
demonstrate the efficiency of the proposed RIS state estimation
approach under various system operation parameters.

Index Terms—Localization, reconfigurable intelligent sur-
faces, orientation, multi-carrier transmission, OFDM, time of
arrival.

I. Introduction
Reconfigurable intelligent surfaces (RISs) are recently

considered as a promising paradigm shift for 6G wireless
systems [1], [2]. An RIS is a thin planar surface comprising
multiple low-cost metamaterials whose response when ex-
cited from impinging electromagnetic waves is dynamically
programmable [3]. This feature renders RISs as enablers of
programmable signal propagation, motivating the concept
of smart wireless environments [4], which can be exploited
for offering coverage extension as well as localization and
mapping [5]. In most cases, RISs are deployed as anchors
with known locations and orientations, and can support
or enable user localization; this is called RIS-aided or RIS-
enabled localization [6]. In addition, RISs can be carried
by a user to enable its semi-passive localization [7]. In this
case, the RIS state is unknown and needs to be estimated;
this problem is known as RIS localization or RIS state
estimation.

In terms of RIS-aided and RIS-enabled localization,
a large number of studies have been conducted rang-
ing from two-dimensional (2D) [8] to three-dimensional
(3D) [9] cases, far-field (FF) [10] to near-field (NF) [11]
propagation conditions, as well as from indoor [12] to
outdoor [13] scenarios. In [8], the authors proposed a

method to discriminate the FF from NF targeting the
minimization of the user localization error in an RIS-
assisted positioning setup. In [9], the Cramér-Rao lower
bounds (CRBs) on the 3D position and orientation of a
user for both the NF and FF cases were derived for an
RIS-assisted joint communication and localization system.
Considering user mobility and the spatial-wideband effect,
an efficient localization method was presented for the
FF scenario in [10]. An RIS-aided multi-user localization
method for an indoor scenario was proposed in [12],
where a particle swarm optimization was deployed for
the RIS phase profile design. Joint communication and
user localization with an RIS mounted on an unmanned
aerial vehicle was presented in [13], where the vehicle’s
trajectory and the RIS phase shifts were jointly optimized.
Collectively, all the above works showcase that RISs can
boost, or even enable in certain cases, localization, offering
improved estimation accuracy with reduced infrastructure
cost.

In contrast to RIS-aided or RIS-enabled localization, the
problem of RIS state estimation is more challenging as a
typical passive RIS has no local estimation capabilities,
and the problem has received only limited attention. As
shown in [7], [14], the localization of an RIS can be
formulated as a bi-static sensing problem. In [14], an RIS
localization method was developed for a 2D scenario. By
using measurements for the time of arrival (TOA), a 3D
RIS localization algorithm was proposed in [7]. However,
the RIS orientation cannot be estimated from TOA
measurements. Note that an RIS contains a planar array
of metamaterials, hence, the angle of arrival (AOA) and/or
the angle of departure (AOD) information can be exploited
for the surface’s orientation estimation. However, for an
RIS without sensing capabilities and unknown position
and orientation, these angles are hard to estimate.

In this paper, we study the RIS joint 3D position and
orientation estimation problem under a generic FF channel
for the case of a static RIS in the vicinity of multi-
carrier transmissions from a single-antenna transmitter
(TX) to multiple synchronized single-antenna receivers
(RXs). We present a low-complexity estimator based on
the measurements at RXs, including the TOA and spatial



Fig. 1: The considered system model comprising a single-antenna TX,
M single-antenna RXs (here, M = 2 for illustrational simplicity), and
an RIS with unknown 3D position and 1D orientation α (w.r.t. the
z axis).

frequencies at the RIS. To validate its efficiency, we
derive the theoretical CRBs for the estimated parameters,
which are shown to be achieved under certain operating
conditions. We compare the proposed method with that
in [7] that only uses TOA measurements to show the
benefits of exploiting the spatial frequency at the RIS
for its orientation estimation.

Notation: Vectors and matrices are indicated by lower-
case and uppercase bold letters, respectively. The element
in the ith row and jth column of matrix A is denotes by
[A]i,j . The sub-index i : j determines all the elements
between i and j. The complex conjugate, Hermitian,
transpose, and Moore–Penrose inverse operators are rep-
resented by (.)

∗, (.)
H, (.)

⊤, and (.)
†, respectively. ∥.∥

calculates the norm of vectors or Frobenius norm of
matrices. By ⊙ and ⊗, we indicate the element-wise and
Kronecker products, respectively. ȷ =

√
−1 and 1K is a

column vector comprising all ones with length K. The
functions atan2(y, x) and acos(x) are the four-quadrant
inverse tangent and inverse cosine functions, respectively.

II. System Model

In this section, we present the considered wireless
system and signal model for the proposed RIS localization
problem.

A. System Setup

We consider the multi-carrier downlink transmission
system illustrated in Fig. 1, which comprises a single-
antenna TX with a known location ptx, M RXs with
known locations p1, . . . ,pM , and an RIS with an unknown
state, defined as its 3D position pris together with its 1D
orientation angle α. Note that in this work, We assumed
that the RIS only has one orientation degree of freedom.
By considering the following rotation matrix:

Rα ≜

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (1)

the direction vectors from the RIS to the TX and to
each mth RX in the RIS local coordinate system can be
obtained as follows:
atr = Rα

ptx − pris
∥ptx − pris∥

, and arm = Rα
pm − pris

∥pm − pris∥
.

(2)
The RIS is a uniform planar array with Kr and Kc

elements in each row and column, respectively. The inter-
element space should be less than half-wavelength ∆ ≤
λ/2, with λ being the signal wavelength. By assuming that
the TX and RXs are synchronized under LOS blockage
conditions 1, each RX receives the signals from the TX via
the RIS. We assume that the RXs send their measurements
to a fusion center [4] to estimate the 3D position and 1D
orientation of the RIS.
B. Signal and Channel Models

The TX transmits T orthogonal frequency division
multiplexing (OFDM) symbols over time via Nc sub-
carriers. We select T sufficiently small such that the
considered channel is constant during each transmission
interval. Without loss of generality, we assume that all
the transmitted symbols over all sub-carriers have unit
power. In addition, RIS is programmed to change its phase
profile randomly during each discrete time instant t. The
RIS phase profile is denoted by vector γt ∈ CK×1, where
|[γt]k| = 1 ∀k and K ≜ KrKc.

After removing the cyclic prefix and computing the fast
Fourier transform (FFT), the baseband received signal
Ym ∈ CNc×T can be mathematically expressed as:2

Ym ≜ gm
√
Ptd( τm)b⊤(θm,ϕ)Γ+Wm, (3)

where gm ≜ ρmeȷφm is an unknown channel gain, and
θm ≜ [[θm]el, [θm]az]

⊤ and ϕ ≜ [[ϕ]el, [ϕ]az]
⊤ are the AOD

from the RIS to the mth RX and the AOA at the RIS
from the TX, respectively. In fact, θm is the angle in the
direction of vector arm, where

[θm]el = acos([arm]3) (4)
[θm]az = atan2([arm]2, [arm]1). (5)

Similarly, ϕ is the angle associated with vector atr. In
addition, Pt denotes the transmission power and Wm ∈
CNc×T is the noise matrix containing zero-mean circularly-
symmetric independent and identically distributed Gaus-
sian elements with variance3 σ2. The delay steering vector
d(·) is defined as follows:

d( τm) ≜ [1, e−ȷ2π∆fτm . . . , e−ȷ2π(Nc−1)∆fτm ]⊤, (6)
1Note that, when the LOS path is present, the requirement on

TX-RX synchronization can be removed and the approach in [7]
can be used for separating the LOS and RIS paths, resulting in
this paper’s simplified LOS-blockage assumption. However, for the
considered synchronized TX and RXs, the LOS path does not convey
any information.

2For convenience, we don’t consider the LOS path, which, if it is
present and resolvable, can be removed from the observation. Since
TX and RXs are synchronized, the LOS path provides no additional
information.

3We assume that the noise variances at the all RXs are the same.
The extension to distinct values for the variances is straightforward.



where ∆f is the sub-carrier spacing. The delay of the prop-
agation path is τm ≜ (∥ptx −pris∥+∥pm−pris∥)/c with c
being the speed of light. In (3), Γ ≜ [γ(0), . . . ,γ(T )]⊤ and
b(·) ∈ CK×1 is the Hadamard product of the RIS array
responses from both propagation sides, which is defined
as:

b(θm,ϕ) ≜ a(θm)⊙ a(ϕ ) , (7)

where for an arbitrary elevation and azimuth pair ψ, we
define a(ψ) ≜ ar(ψ)⊗ac(ψ). The nth element of vectors
ar and ac are defined as follows:
[ar(ψ)]n ≜ e−ȷ 2πn∆

λ sin [ψ]el cos [ψ]az , n = 0, . . . ,Kr−1 (8a)

[ac(ψ)]n ≜ e−ȷ 2πn∆
λ sin [ψ]el sin [ψ]az , n = 0, . . . ,Kc−1. (8b)

Considering the latter definition of a(ψ) and given (7)–
(8), the following expression is deduced:

b(θm,ϕ) = a0(θm,ϕ)⊗ a1(θm,ϕ) , (9)
where the nth element of a0(·) and a1(·) can be expressed
as:

[a0(θm,ϕ) ] n = e−ȷ 2πn∆
λ ω0( θm,ϕ) , (10a)

[a1(θm,ϕ) ] n = e−ȷ 2πn∆
λ ω1( θm,ϕ) , (10b)

where we have defined the spatial frequencies
ω0(θm,ϕ) ≜ sin [ϕ]el cos [ϕ]az + sin [θm]el cos [θm]az

(11a)
ω1(θm,ϕ) ≜ sin [ϕ]el sin [ϕ]az + sin [θm]el sin [θm]az.

(11b)
To ease notation, we hereafter define ωm

0 ≜ ω0(θm,ϕ) and
ωm
1 ≜ ω1(θm,ϕ). Accordingly, b(θm,ϕ) can be written as

a function of ωm = [ωm
0 , ωm

1 ]⊤, i.e., as b(ωm).
Based on the observations (3), we next present an

analysis for the considered parameter estimation problem
(i.e., the RIS’s 3D position and 1D orientation) together
with a low-complexity estimation scheme.

III. Proposed Estimation Methodology
In this section, we describe how to estimate the RIS

position and orientation from (3), starting with a Fisher
information analysis.

A. Fisher Information Analysis
We derive the Fisher information matrix (FIM) and the

CRB for the unknown channel (i.e., τm, ωm
0 , ωm

0 , ρm, and
ϕm) and RIS-state parameters (i.e., pris and α). To this
end, we introduce the noise-free part of the observation
stacked at the fusion center, say M ∈ CNcM×T given (3),
(9), (11a), and (11b) as M ≜ [M⊤

1 , . . . ,M⊤
M ]⊤, where

Mm ≜ gm
√
Ptd( τm)b⊤(ωm)Γ ∀m. We also introduce

the 5M × 1 vector with the unknown channel parameters
ηch ≜ [η⊤,ρ⊤,φ⊤]⊤, η ≜ [τ⊤,ω⊤

0 ,ω
⊤
1 ]

⊤ ∈ R3M×1,
and the 4 × 1 vector with the RIS state ζ ≜ [p⊤

ris, α]
⊤,

where τ ≜ [τ1, . . . , τM ]⊤ , ω0 ≜ [ω1
0 , . . . , ω

M
0 ]⊤, ω1 ≜

[ω1
1 , . . . , ω

M
1 ]⊤, ρ ≜ [ρ0, . . . , ρM ]⊤, and φ ≜ [φ0, . . . , φM ]⊤.

Based on [15, Sec. 3.9], the FIM Jηch ∈ R5M×5M is defined
as follows:

Jηch ≜ 2

σ2

T∑
t=1

ℜ
{(∂[M ]:,t

∂ηch

)H ∂[M ]:,t
∂ηch

}
. (12)

We can then respectively derive the CRB related to τm,
ωm
0 , and ωm

1 at mth RX, namely, the time error bound
(TEBm), the first spatial frequency bound (WEBm

0 ), and
the second spatial frequency bound (WEBm

1 ) as:√
E[(τm − τ̂m)

2
] ≥ TEBm ≜

√
[J−1
ηch ]m,m , (13)

and for i ∈ {1, 2},√
E[
(
ωm
i−1 − ω̂m

i−1

)2
] ≥ WEBm

i−1 ≜
√
[J−1
ηch ]m+iM,m+iM

(14)
where m ∈ {1, . . . ,M}, and τ̂m, ω̂m

0 , and ω̂m
1 are the

estimations of the true parameters τm, ωm
0 , and ωm

1 ,
respectively. To derive the FIM of the RIS state, we apply
a transformation from the channel parameter vector η to
the variables in the state vector ζ. Then, we obtain the
equivalent FIM (EFIM) of η as Jη = [[J−1

ηch
]1:3M,1:3M ]−1.

Accordingly, the FIM of RIS states is defined by means of
the transformation matrix T ∈ R3M×4 (i.e., the Jacobian)
as Jζ = T⊤JηT. The ℓth row and qth entry of T is defined
as [15, eq. (3.30)]:

[T]ℓ,q ≜ ∂[η] ℓ
∂[ ζ] q

. (15)

The derivations of Jη and T are provided in the Appendix.
Capitalizing on (12) and (15), the desired position error

bound (PEB) and orientation error bound (OEB) are
computed:√

E[∥pris − p̂ris∥2] ≥ PEB ≜
√

tr([J−1
ζ ]1:3,1:3), (16a)√

E[(α− α̂)2] ≥ OEB ≜
√

[J−1
ζ ]4,4, (16b)

where p̂ris and α̂ are the estimates of the true RIS position
and orientation, respectively.

B. Maximum Likelihood Estimator

We stack all observations at each RX in the matrix Y,
i.e., Y ≜ [Y1

⊤, . . . ,YM
⊤]⊤ and define g ≜ [g1, . . . , gM ]⊤.

By using the definition of M and (3)–(11b), we can define
the maximum likelihood estimator (MLE) as follows:

[ĝ, α̂, p̂ris] ≜ arg max
g,α,pris

f (Y|g, α,pris) (17)

= arg min
g,α,pris

∥Y −M(g, α,pris) ∥2.

To solve (17), we can adopt gradient descent methods
(e.g., Newton’s method). However, this is challenging since
the objective function is non-convex having many local
optima. In addition, the gradient descent methods are
sensitive to the initial point, i.e., they can get trapped in
local optima without appropriate initial points. To this
end, we next present a low-complexity estimator to find
a proper initial guess.



C. Low-Complexity Estimator
The estimator first estimates the TOA and spatial fre-

quencies at each RIS. Then these estimates are combined
to determine the RIS state.

1) TOA Estimation at each RX: Let F ∈ CNF×Nc

be the inverse FFT matrix, defined as [F]ℓ,q =
(1/NF )e

ȷ2πℓq/NF . By computing Zm = FYm at each
RX, we can coarsely estimate the TOA as k̃m ≜
argmaxk ∥f⊤k Zm∥, where fk is a vector comprising all
zeros and a one at its kth entry. Next, by solving δ̃m ≜
argmaxδm∈[0,1/(NF∆f)] ∥f⊤k F

(
Ym ⊙ d (δm)1⊤

T

)
∥ via the

quasi-Newton method using δm = 0 as the initial point, a
refined TOA estimate τm can be obtained [7]:

τ̂m =
k̃

NF∆f
− δ̃m. (18)

2) Estimating ωm at each RX: One can remove the
effect of τm from Ym to obtain the following expression:

Yr
m = Ym ⊙

(
d(−τ̂m)1⊤

T

)
(19)

≈ gm
√

Pt1Ncb
⊤(ωm)Γ+Wd

m,

where Wd
m ≜ Wm ⊙

(
d (−τ̂m)1⊤

T

)
. Next, summing Yr

m

over its rows, and then, computing the transpose, yields:
yr
m = Yr

m
⊤1Nc = Ncgm

√
PtΓ

⊤b(ωm) +wt
m. (20)

Finally, ωm can be obtained from the MLE estimator:
ω̂m = argmin

ωm
∥yr

m −Nc

√
Ptĝm(ωm)Γ⊤b(ωm) ∥2, (21)

where ĝm(ωm) ≜ yr
m(Γ⊤b(ωm))†/(Nc

√
Pt). This prob-

lem can be solved via a 2D search over the interval [−2, 2],
providing a coarse estimation for ωm. The estimation can
be then refined via the quasi-Newton method using the
latter coarse estimate as the initial point.

3) RIS 3D Position and 1D Orientation Estimation:
Using the estimation τ̂m, the RIS is constrained to lie on
the intersection of M spheroids defined as ∥pris − ptx∥+
∥pris − pm∥ = cτ̂m. In the general case, the intersection
of M > 2 spheroids can be found by the method from [7,
eq. (16)–(18)]. However, for M = 2, this method does not
apply, as there is a one-dimensional manifold of solutions.
To characterize these, we first mesh the surface of one of
the spheroids and then calculate the distances between
each of the points on the mesh with the other spheroid,
using the technique given in [16, Sec 3]. We finally select
the candidate RIS points as the intersections, which have
a distance less than a threshed dth, which is manually set.
The resulting set of candidate positions is denoted by P
(where for M > 2, this set contains a single point).

By considering that (2) depends on the RIS position and
orientation, and substituting the definitions of elevation
and azimuth angles (4), (5) in (11), we notice that for a
given p̃ris ∈ P , ωm is solely a function of α. Hence, α(p̃ris)
can be found by a line search

α̂(p̃ris) = arg min
α∈[0,2π)

M∑
m=1

∥ω̂m − ωm(α)∥2. (22)

For M = 2, we finally find a unique estimate of the
position via solving the following optimization problem:

p̂ris = arg min
p̃ris∈P

∥yr −m0( p̃ris, α̂(p̃ris)) ∥2, (23)

where yr ≜
∑M

m=1 y
r
m, m0(pris, α) ≜∑M

m=1 Ncĝm(pris, α)
√
PtΓ

⊤b(pris, α) , ĝm(pris, α) =
yr
m(Γ⊤b(pris, α))

†/(Nc

√
Pt). Note that this state

estimation can serve as an initial guess the optimization
in (17).

IV. Numerical Results
In this section, we evaluate the proposed estimator for

M = 2 receivers, and compare it with the corresponding
bound. In particular, we compare the root mean square
error (RMSE) of the estimated parameters with the
derived CRBs, using 500 noise realizations. The number of
RIS elements was set to K = 17×17, and the phase profile
of each of them was drawn from the uniform distribution
[0, 2π). The channel gain gm ≜ ρmeȷφm modeled with
φm ∼ U [0, 2π) and amplitude [17, eqs. (27) and (29)]:

ρm =
λ2( cos [θm]el cos [ϕ]el)

0.285

16π∥ptx − pris∥∥pm − pris∥
. (24)

The rest of the simulation parameters are given in Table
I.

A. Results and Discussion
1) Impact of Transmission Power and Bandwidth: In

Fig. 2, we study the effect of the transmitted power Pt on
the performance of the proposed estimator. As shown, the
RMSE of channel parameters (τ̂1, τ̂2, ω̂m

0 , and ω̂m
1 ) and

the RIS state (p̂ris and α̂) are decreasing functions of Pt,
and the CRB of the RIS state estimation is attained when
Pt ≥ 24 dBm. It can be also seen that the bottleneck for
the RIS state estimation is the TOA estimation at lower
transmit power, where a small TOA error leads to a large
positioning error. To verify this behavior, we study the
effect of the signal bandwidth (BW) in Fig 3. It is observed
that, for low BW values, the localization algorithm fails,
whereas more BW yields more accurate TOA estimation.

TABLE I: Simulation Parameters.

Parameter Symbol Value
Wavelength λ 1 cm
RIS element spacing ∆ 0.25 cm
Light speed c 3× 108 m/sec
Number of sub-carriers Nc 128
Number of transmissions T 100
Sub-carrier spacing ∆f 120 kHz
Noise PSD N0 −174 dBm/Hz
RX’s noise figure nf 5 dB
IFFT Size NF 4096

The first RX position p1 [−3m, 5m,−1m]⊤

The second RX position p2 [3m,−3m, 0m]⊤

TX position ptx [0m, 0m, 0m]⊤

RIS position pris [4m, 1m,−4m]⊤

RIS orientation α π/6 rad
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Fig. 2: The evaluation of the RMSE of the estimated channel parameters and RIS state versus the transmit power Pt: (a) RMSE of the
RIS position and PEB; (b) RMSE of the RIS orientation (deg) and OEB; (c) RMSE of the TOA and TEB; and (d) RMSE of the ωm and
WEB.
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Fig. 3: The effect of the bandwidth (BW) on the estimation accuracy
for Pt = 20dBm: (a) RMSE of the RIS position/TOA and PEB; and
(b) RMSE of the RIS orientation (deg) and OEB.
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Fig. 4: The comparison of the PEB using only TOA and using
TOA along with AOA/AOD information to/from the RIS versus
the number of RXs. The RXs are equally distributed on a circle
centered at the TX position with a radius equal to 5m; this circle
lies on the plane z = 0.

2) Gain of Spatial Frequency Estimation over [7]: In
Fig. 4, we compare with the scenario presented in [7],
which only estimates the RIS 3D location using TOA.
As can be seen, using spatial frequency estimation, which
contains AOA/AOD information, along with TOA at RIS,
results in a more accurate RIS localization than that
using only the TOA. Besides, the estimator proposed in
[7] cannot estimate the RIS location with only M = 2
RXs, while the proposed method renders the problem
indentifiable and provides an accurate solution.

3) Coverage Analysis: We assess the RIS localization
coverage and performance through contour plots of the
PEB and OEB in Fig. 5, when the x and y coordinates
of the RIS are varying, while its orientation and z
coordinate are fixed; we particularly set z = −1m. Two
RIS orientations were considered, namely α = 0◦ and 30◦,
and the RXs were located on the ceiling (i.e., the plane
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Fig. 5: The contour plots of the PEB and OEB versus the RIS
location for one random RIS phase profile and Pt = 34 dBm. The
TX, first RX, and second RX positions are marked by a red ellipse,
green square, and black square, respectively.

z = 0) in [0m,−5m, 0m]⊤ and [0m, 5m, 0m]⊤, respectively.
It can be observed that high accurate localization can be
obtained when the RIS is close to the TX, due to the high
signal-to-noise ratio (SNR). However, one can estimate
the RIS orientation with high accuracy when the RIS is
located on a line connecting one of the RXs with the TX.

V. Conclusion

In this paper, we presented a multi-stage estimator
for the 3D position and 1D orientation estimation of an
RIS in a multi-carrier system with a single-antenna TX
and multiple single-antenna RXs. The proposed estimator
leverages the TOA and spatial frequency measurements
to estimate the unknown parameters. We showed that the
RMSEs of the estimations attain the corresponding CRBs
within a specific SNR range. We also demonstrated that
using additional measurements, specifically the spatial
frequency at the RIS, not only improves the localization
accuracy compared to methods using only TOAs, but
makes the RIS orientation estimation feasible with even



two RXs. In future work, we will investigate the robustness
of the estimator to the multipath.
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Appendix
A. Derivation of FIM Jη

We calculate the term ∂[M ]:,t/∂η, using (12), to
derive J. We first define vector e(m−1)M+1:mM with
length M , whose entries from (m − 1)M + 1 to
mM are equal to one and the others are equal to
zero. To ease notation, we express (m − 1)M + 1 :
mM via m, i.e., em. Given the definition of M ,
we have ∂[M ]:,t/∂ρm = eȷφm

√
Ptd( τm)b(ωm)γtem,

∂[M ]:,t/∂φm = ȷgm
√
Ptd( τm)b(ωm)γtem, and

∂[M ]:,t
∂τm

= gm
√
Pt

∂d( τm)

∂τm
b(ωm)γtem , (25)

where ∂d( τm) /∂τm = −ȷ2π∆fgm (Lc ⊙
d( τm) )

√
Ptb(ω

m)γtem and Lc ≜
(
[ 0, . . . ,M − 1]⊤. In

addition, for i = 0 and 1, we have the derivatives:
∂[M ]:,t
∂ωm

i

= gmd( τm)
√
Pt

∂b⊤(ωm)

∂ωm
i

γtem, (26)

where ∂b(ωm)/∂ωm
0 = −ȷ2π∆/λ(L ⊗ 1) ⊙ b(ωm) ,

∂b(ωm)/∂ωm
1 = −ȷ2π∆/λ(1 ⊗ L) ⊙ b(ωm) , and L ≜

[−M−1
2 , . . . , M−1

2 ]⊤.

B. Derivation of Jacobian Matrix T

To calculate T, we first define the auxiliary variables
uA ≜ (ptx − pris)/∥ptx − pris∥ and uD,m ≜ (pm −
pris)/∥pms − pris∥, as well as Rα = [r1, r2, r3]

⊤ in (1)
with r1 ≜ [cosα,− sinα, 0]⊤, r2 ≜ [sinα, cosα, 0]⊤, and
r3 ≜ [0, 0, 1]⊤. Using these variables, we can rewrite AOA
and AODs as follows [18, Appendix A]:

ϕ = [ atan2( r⊤2 uA, r
⊤
1 uA) , acos( r⊤3 uA) ]

⊤, (27a)
θm = [ atan2( r⊤2 uD,m, r⊤1 uD,m) , acos( r⊤3 uD,m) ]⊤,

(27b)
In the sequel, we compute the derivatives:

∂uA

∂pris
= (uAu

⊤
A − I3) /∥ptx − pris∥, (28a)

∂uD,m

∂pris
= (uD,mu⊤

D,m − I3) /∥pm − pris∥, (28b)

∂[ϕ]az
∂uA

=
( r⊤1 uA) r2 − ( r⊤2 uA) r1
( r⊤1 uA) 2 + ( r⊤2 uA) 2

, (28c)

∂[ϕ]el
∂uA

=
−r3√

(1− r⊤3 uA)
, (28d)

∂[θm]az
∂uD,m

=
( r⊤1 uD,m) r2 − ( r⊤2 uD,m) r1
( r⊤1 uD,m) 2 + ( r⊤2 uD,m) 2

, (28e)

∂[θm]el
∂uD,m

=
−r3√

(1− r⊤3 uD,m)
, (28f)

∂[ϕ]az
∂α

=
( r⊤1 uA) r

′
2
⊤
uA − ( r⊤1 uA) r

′
1
⊤
uA

( r⊤1 uA) 2 + ( r⊤2 uA) 2
, (28g)

∂[θm]az
∂α

=
( r⊤1 uD,m) r′2

⊤
uD,m − ( r⊤1 uD,m) r′1

⊤
uD,m

( r⊤1 uD,m) 2 + ( r⊤2 uD,m) 2
,

(28h)
where r′1 ≜ [− sinα,− cosα, 0]⊤, r′2 ≜ [cosα,− sinα, 0]⊤,
and r′3 ≜ [0, 0, 0]⊤. Using (11a) and (11b), we
can easily find ∂ωm

0 /∂[ϕ]az, ∂ωm
0 /∂[ϕ]el, ∂ωm

1 /∂[ϕ]az,
∂ωm

1 /∂[ϕ]el, ∂ωm
0 /∂[θm]az, ∂ωm

0 /∂[θm]el, ∂ωm
1 /∂[θm]az,

and ∂ωm
1 /∂[θm]el , which we have not brought in the

paper due to page limit. Using the variables in (27a)–
(28h), results in:

Tm,1:3 =
∂τm
∂pris

=
uA + uD,m

c
∀m = {1, . . . ,M}, (29a)

Tm,1:3 =
∂ωm

0

∂pris
=

(
∂ωm

0

∂[ϕ]az

∂[ϕ]az
∂uA

+
∂ωm

0

∂[ϕ]el

∂[ϕ]el
∂uA

)
∂uA

∂pris

+

(
∂ωm

0

∂[θm]el

∂[θm]el
∂uD,m

+
∂ωm

0

∂[θm]el

∂[θm]el
∂uD,m

)
∂uD,m

∂pris

∀m = {1 +M, . . . , 2M}, (29b)

Tm,1:3 =
∂ωm

1

∂pris
=

(
∂ωm

1

∂[ϕ]az

∂[ϕ]az
∂uA

+
∂ωm

1

∂[ϕ]el

∂[ϕ]el
∂uA

)
∂uA

∂pris

+

(
∂ωm

1

∂[θm]el

∂[θm]el
∂uD,m

+
∂ωm

1

∂[θm]el

∂[θm]el
∂uD,m

)
∂uD,m

∂pris

∀m = {1 + 2M, . . . , 3M}, (29c)
Finally, considering (28g)–(28h), we have:

Tm,4 =
∂ωm

0

∂α
=

∂ωm
0

∂[ϕ]az

∂[ϕ]az
∂α

+
∂ωm

0

∂[θm]az

∂[θm]az
∂α

∀m = {1 +M, . . . , 2M}, (30a)

Tm,4 =
∂ωm

1

∂α
=

∂ωm
1

∂[ϕ]az

∂[ϕ]az
∂α

+
∂ωm

1

∂[θm]az

∂[θm]az
∂α

∀m = {1 + 2M, . . . , 3M}, (30b)
and the remaining elements of T are zero.
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