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Abstract—Millimeter-wave and terahertz systems rely on beam-
forming/combining codebooks to determine the best beam direc-
tions during the initial access and data transmission. Existing
approaches suffer from large codebook sizes and high beam
searching overhead in the presence of mobile devices. To address
this issue, we utilize the similarity of the channel in adjacent
locations to divide the user trajectory into a set of separate regions
and maintain a set of candidate beams for each region in a
database. Due to the tradeoff between the number of regions and
the signalling overhead, i.e., the greater number of regions results
in a higher signal-to-noise ratio (SNR) but also a larger signalling
overhead for the database, we propose an optimization framework
to find the minimum number of regions based on the trajectory
of a mobile device. Using a ray tracing tool, we demonstrate that
the proposed method provides high SNR while being more robust
to the location information accuracy in comparison to the lookup
table baseline and fixed size region baseline.

Index Terms—Millimeter-wave systems, terahertz systems,
beamforming codebook, beam alignment.

I. INTRODUCTION

Millimetre-wave (mmWave) is one of the important tech-
nologies of the fifth-generation (5G) cellular networks, offering
a high rate due to the large availability of bandwidth and
underutilized spectrum [1]. The current release of 5G uses
mmWave bands between 24.25 GHz and 52.6 GHz, while
the future releases are expected to include the Terahertz band
too [2]. However, higher frequency bands impose harsher
propagation conditions and use large arrays of very small
antennas [3]. Hence, mmWave networks require to use of
large antenna arrays and employ directional communication to
maintain viable received signal power. As the directional links
are highly sensitive to blockage, finding and maintaining near-
optimal directions, i.e. beam alignment, including for non-line-
of-sight (NLoS) paths, is necessary. MmWave devices typically
use codebooks of indexed analog beams to allow the user
equipment (UE) to identify and feedback on good beams to
the base station (BS). These codebooks will contain much more
numerous and much narrower beams as higher frequencies are
adopted, making the latency and beam searching overhead of
the existing searching methods prohibitive. Therefore, beam
alignment will become an increasingly important bottleneck.

In the current release of 5G, beam alignment is based on
brute-force beam sweeping over the beam codebooks, measure-
ments and reporting [4], [5]. In the exhaustive beam sweeping,

the BS and UE need to sweep almost all the combinations
of beam pairs, which leads to a significant beam searching
overhead.

The beam alignment methods that utilize side information
such as the locations of the transmitter and receiver have been
explored to accelerate beam alignment. In [6], [7], the BS
divides the serving area to equal and uniform location bins and
stores the beam searching results in each bin in a lookup table.
Given the location of the UE, the BS selects the beams from the
lookup table. Although their solutions can reduce the searching
overhead, lookup table-based methods have several limitations.
First, the size of the lookup table increases linearly with the
number of location bins which leads to the high signalling
overhead for the lookup table. Second, uniform and equal
bins may result in a high sensitivity to location information
inaccuracy due to the GPS’s limited accuracy. Furthermore,
the optimal directions as the output of beam alignment are
not merely a function of the location but also depend on the
environment geometry, blockage, etc.

Authors in [8], [9] used the sparsity and the similarity of
mmWave channels in adjacent locations and proposed their
methods for the stationary [8] or indoor scenarios [9]. Some
approaches such as [10], [11] apply machine-learning tools to
predict the optimal beams. However, they need an exhaustive
or hierarchical search over all beam pairs between the BS and
the UE for every location during the training phase, which may
increase the complexity of the training phase.

In this work, we utilize the channel similarity of mmWave
in adjacent locations and propose a beam alignment method
based on available trajectory information. Our method has two
phases: the training phase (offline measurement) and the run-
time phase. Some key features of the proposed method are
summarized as follows.

• Designed probing beams: The output of the training phase
is the probing beam directions based on the trajectory
information and environment geometry. Our proposed
method is based on dividing the UE trajectory into non-
overlapping (and probably non-uniform) regions. One ref-
erence point is assigned to each region and the candidate
beams will be measured in the reference points. The
probing beams contain the candidate beam directions for
each region of a specific trajectory.
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• Small number of measurements during the training phase:
Due to the tradeoff between the number of regions and sig-
nalling overhead, we propose an optimization framework
to find the minimum number of regions. The proposed
method only needs to run brute-force beam searching in
the reference location in each region during the training
phase. Unlike the existing works based on a lookup table,
our proposed solution provides the minimum number of
regions.

• High SNR and less sensitive to the location accuracy:
During the run-time, our method can provide high SNR.
Another interpretation of the regions is the maximum
tolerance of noisy location input in the reference points.
Hence, our method by defining the optimal size of regions
provides higher robustness to the imperfect location infor-
mation in comparison to the existing lookup table-based
methods with predefined uniform small regions.

• Empirical Evaluation: We apply a ray tracing tool with
real building map data as an input. Simulation results
demonstrate the effectiveness of our proposed method in
the SNR along the trajectory and lower sensitivity to the
location information accuracy.

The rest of the paper is organized as follows. We introduce
the system model in Section II. In Section III, we propose our
method and in Section IV, we present the numerical results.
We conclude our work in Section V.

Notation: Sets, vectors, matrices, random variables and their
realizations are denoted by calligraphic, bold small, bold
capital, capital and lower case letters, respectively. The set
{1, . . . , n}, for some integer n, is denoted by [n].

II. SYSTEM AND CHANNEL MODELS

We consider a downlink mmWave network where each BS
has a uniform planar array (UPA) of NBS antennas and each
UE has a UPA of NUE antennas. We assume the UE is
moving along a trajectory. We consider a quantized trajectory
with length M and reference location indices x ∈ [M ]. The
trajectory length can be defined based on the coverage area of
the BS. Analog beamforming with a single RF chain on both
sides is assumed. Note that the beam alignment method in this
paper can also be applied in hybrid architectures.

With constant block fading in the channel response during
a coherence interval (CI), the channel matrix H ∈ CNUE×NBS

between the BS and UE in location x ∈ [M ] is [12]:

Hx =

√
NBSNUE

L

L∑
`=1

hx,`a(φ
UE
x,`, θ

UE
x,`)a

H(φBS
x,`, θ

BS
x,`),

where L is the number of available paths. Each path ` has
horizontal and vertical angles of arrival (AoAs), φUE

x,`, θ
UE
x,`, and

horizontal and vertical angles of departure (AoDs), φBS
x,`, θ

BS
x,`,

respectively. hx,` ∼ N(0, βx,`) is the small scale fading, where

βx,` is the channel gain. The half-wavelength array steering
vector in the yz-plane can be written as

a(φSx,`, θ
S
x,`) =

1√
NS

[1, ..., ejπ[nx sin(θSx,`) sin(φ
S
x,`)+ny cos(φS

x,`)], ...]T
(1)

where 1 ≤ nx ≤ Nx − 1, 1 ≤ ny ≤ Ny − 1 and Nx and Ny
are the number of columns and rows of the UPA and NS =
Nx ×Ny , S ∈ {BS,UE}.

The signal-to-noise ratio (SNR) in location x is defined as
p|wHHxf |2/σ2, where p and σ2 are the transmit and noise
power, respectively. To maximize SNR, we can design beam-
forming vector (f ∈ CNBS ) and combining vector (w ∈ CNUE )
from maximizef∈F,w∈W |wHHf |2, where F and W are the
transmit codebook and the receive codebooks, respectively. We
define f = a(φ, θ), where (φ, θ) is the steering angle and a(.)
is as (1). The same definition is applied for w as well.

Definition 1 (Path skeleton): The path skeleton (PS) between
the UE in location index x and the BS is defined as

PS(x) :=
(
φBS
x,`, θ

BS
x,`, φ

UE
x,` , θ

UE
x,`

)L
`=1

where φBS
x,`,θ

BS
x,` and φUE

x,`,θ
UE
x,` are horizontal and vertical AoD

and AoA of the `-th path between the BS and a UE in
location index x, respectively, and L is the number available
strong paths. Note that PS(x) is a set of steering directions of
candidate beams in the location index x.
The path skeleton can be found based on the beam-sweeping
method similar to 5G. Note that due to the sparsity of the
mmWave channel, the number of NLoS paths is quite small,
e.g. 1 to 2 [13]. Therefore, we consider the maximum size of
the path skeleton equal to 3 (L = 3).

III. PROPOSED METHOD

In this section, we present our method to design a database
of candidate beams during the offline phase. First, we start with
the problem definition. Then we present the solution.

A. Problem Formulation

In this paper, we seek a means to decrease the beam search
space and choose f and w such that the frequency of running
coarse beam searching decreases while keeping UE’s quality
of service in terms of SNR along the UEs trajectory. Note
that our proposed method is an ad-hoc method that does not
necessarily yield the optimal SNR. However, as we will show
in the numerical results, it provides high SNR with less beam
searching overhead along the trajectory. We use the correlation
of path skeletons in adjacent locations and divide the trajectory
into K separate regions. The region Rk is defined as

Rk := {αk−1 + 1, . . . , αk} k ∈ [K],

where αk ∈ [M ] denote the location index of the end of the
region k and 0 = α0 ≤ α1 ≤ · · · ≤ αK = M . For region Rk,
the path skeleton of one and only one reference point xk ∈
Rk ∪ {αk−1} has been measured, and all the locations in the
region use the strongest path (main beam) of the path skeleton
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Fig. 1: An example of a BS and a UE trajectory where x ∈ [10]
denotes the location index. The regions are R1 = {1, 2, 3, 4},
R2 = {5, 6}, and R3 = {7, 8, 9, 10}, with reference locations
x1 = 2, x2 = 5, and x3 = 9, respectively.

of xk as the transmission beam. Hence, the candidate beams
with steering directions PS(xk) for each region Rk are stored
in the database. You can find an illustration in Fig. 1. There
is a tradeoff between the number of regions and the signalling
overhead, i.e, the number of running brute-force beam sweeping
along the trajectory. The higher number of regions leads to
higher SNR but also a large signalling overhead and updating
of the database. Hence, we define an optimization problem to
determine the regions and reference points. To this end, first, the
reference points are determined. Then, the regions are defined
based on the reference points and their measured path skeleton
as

minimize
α1,...,αK−1,
x1,...,xK

K (2a)

s.t. Pr
{
d(x, xk) ≤ γ | (ps(xk))Kk=1

}
≤ ε,

∀x ∈ Rk, ∀k ∈ [K], ∀ (ps(xk))Kk=1 (2b)
α1 ≤ · · · ≤ αK−1 (2c)
αk ∈ [M ], ∀k ∈ [K − 1] (2d)
xk ∈ Rk ∪ {αk−1}, ∀k ∈ [K], (2e)

where d(x, y), for some x, y ∈ [M ], is defined as (3) on the top
of next page.Rk = {αk−1+1, . . . , αk} with α0 = 0, αK =M ;
In (2b), we use pre-determined parameters γ and ε to measure
if the path skeleton at reference location xk is valid for any
location x ∈ Rk for any possible set of path skeleton of the
reference points. The higher value of d(·, ·) means that the
selected angles are close to the path skeleton in location index
x. Note that constraint (2e) is equivalent to

xk ∈ {αk−1, αk}, ∀k ∈ [K] (4)

because if αk−1 < xk < αk, we can divide Rk to R′k from
αk−1 into xk and R′′k from xk + 1 to αk. In this case, each
new region satisfies (4) without changing the other part of the
problem.

Each reference point is determined based on the path skeleton
of the previous reference points. Note that the reference points
are not necessarily chosen in ascending order. Hence, we define

x̃1, . . . , x̃K as a permutation of x1, . . . , xK such that x̃i is
chosen as a reference point before x̃j for any i < j. Precisely,
for choosing the k-th reference point x̃k, the set of previous
reference points Xk := {x̃1, . . . , x̃k−1} ⊆ [M ] and their path
skeletons {PS(z) : z ∈ Xk} are known:{

(x̃q,PS(x̃q))
k−1
q=1 7→ x̃k ∈ [M ],

Xk+1 = {x̃k} ∪ Xk.
(5)

In the end, the regions Rk are determined after evaluating
all the reference points:

(xk)
K
k=1 7→ (αk)

K−1
k=1 . (6)

Therefore, the optimal regions R∗k and the corresponding
reference points x∗k, for k ∈ [K], are determined.

B. Proposed Solution

Since solving (2a) is difficult in practice, we assume a
Markov property to make it easier.

Assumption 1: For any x ≤ x′ ≤ x′′ ∈ [M ], we have the
Markov chain

PS(x)→ PS(x′)→ PS(x′′).

We define blocks and their state in the following definition.
Definition 2 (Blocks and states): The block B(xl, xh), for

0 ≤ xl ≤ xh ≤ M , is a number of adjacent location indices
{xl + 1, . . . , xh}. According to the measurement of the path
skeleton at the start and the end of the block, we define three
different blocks:
• Type 1: A block whose path skeleton at the beginning and

the end of the block is measured.
• Type 2: A block whose path skeleton at the beginning of

the block is measured.
• Type 3: A block whose path skeleton at the end of the

block is measured.
The state of the block B(xl, xh) is defined as
• S := (xl, xh,PS(xl),PS(xh)) for Type 1 blocks,
• S := (xl, xh,PS(xl)) for Type 2 blocks,
• S := (xl, xh,PS(xh)) for Type 3 blocks,

Note that, the whole trajectory is also a block with xl = 0 and
xh = M . We generalize (2a) and define the value of a block
as the minimum number of reference points in the block.

Definition 3 (Value of the block): For any block B(xl, xh)
with a given state s, we define the value of the block, as

minimize
α1,...,αK−1,
x1,...,xK

K (7a)

s.t. Pr
{
d(x, xk) ≤ γ | (ps(xk))Kk=1

}
≤ ε,

∀x ∈ Rk, ∀k ∈ [K], ∀(ps(xk))Kk=1 (7b)
α1 ≤ · · · ≤ αK−1 (7c)
αk ∈ B(xl, xh), ∀k ∈ [K − 1] (7d)
xk ∈ {αk−1, αk}, ∀k ∈ [K], (7e)

where d(·, ·) is defined in (3); and Rk = {αk−1 + 1, . . . , αk}
with α0 = xl, αK = xh. The reference points xk and regions
Rk are selected based on (5) and (6), respectively.



d(x, y) :=

L∑
`=1

∣∣aH(φUE
y,`, θ

UE
y,`)a(φ

UE
x,`, θ

UE
x,`)
∣∣ . ∣∣aH(φBS

y,`, θ
BS
y,`)a(φ

BS
x,`, θ

BS
x,`)
∣∣ , (3)

We denote the value of the block in (7a) by v(s), v′(s), or
v′′(s), for Type 1, Type 2, or Type 3 blocks, respectively.

The next lemma gives a recursive solution for the value of
Type 1 blocks based on the value of smaller Type 1 blocks.

Lemma 1: Having Assumption 1, for a Type 1 block B =
B(xl, xh) given the state s, we have that

v(s) = 0 (8)

if for some α ∈ B we have{
Pr {d(xl, x) ≤ γ | s} ≤ ε, ∀x ∈ {xl + 1, . . . , α},
Pr {d(x, xh) ≤ γ | s} ≤ ε, ∀x ∈ {α+ 1, . . . , xh}.

(9)
In this case, the regions areR1 = B(xl, α) andR2 = B(α, xh).
Otherwise,

v(s) = minimize
x∈B\{xh}

1 + v(S1) + v(S2), (10)

where S1 and S2 are the states of the blocks B1 = B(xl, x)
and B2 = B(x, xh), respectively. Further, in (8), there will
be no new reference point inside the block, while in (10), the
minimizer will be the next reference point inside the block.

Proof: See Appendix A.
The next lemma gives a recursive solution for the value of a

Type 2 block, based on the values of smaller Type 1 and Type
2 blocks. Similar equations are valid for Type 3 blocks, based
on the values of smaller Type 1 and Type 3 blocks.

Lemma 2: Having Assumption 1, for a Type 2 block B =
B(xl, xh) given the state s, we have that

v′(s) = 0 (11)

if we have

Pr {d(xl, x) ≤ γ | s} ≤ ε, ∀x ∈ B. (12)

Otherwise,
minimize

x∈B
1 + v(S1) + v′(S2), (13)

where S1 and S2 are the states of the blocks B1 = B(xl, x)
(Type 1) and B2 = B(x, xh) (Type 2), respectively; and v(s)
is the value of a Type 1 block with state s (see Lemma 1).
Further, in (11), there will be no new reference point inside the
block, while in (13), the minimizer will be the next reference
point inside the block. The idea of the proof is similar to the
idea of Lemma 1.

Now, we state a solution for (2a).
Theorem 1: Having Assumption 1, the solution of (2a) is

minimize
x∈[M ]

1 + v′′(S1) + v′(S2), (14)

where S1 and S2 are the states of the blocks B1 = B(1, x)
(Type 3) and B2 = B(x,M) (Type 2), respectively; and v′(s)

Fig. 2: Simulation environment in Kista, Stockholm. Buildings
are depicted in gray color.

Table I: Simulation parameters.

Parameter Value
BS transmit power 10 dBm
noise power (σ2) -94 dBm
Signal bandwidth 100 MHz
Carrier frequency 28 GHz
BS (UE) antennas 8× 8 (2× 2) UPA

ε 0.1
γ 0.2

and v′′(s) are the value of a Type 2 and Type 3 blocks with
state s, respectively (see Lemma 2). Further, the minimizer
of the optimization will be the first reference point inside
the trajectory. Note that S1 and S2 are random due to the
randomness of PS(x). The idea of the proof is similar to the
idea of the previous lemmas.

Remark 1 (Summary of proposed method): For a given
trajectory, during the training phase, the reference locations
and accordingly the regions are determined as in (14). The
path skeletons are only measured in the reference locations.
The output of the training phase is a database of probing
beams containing the candidate beam directions (reference path
skeleton) for each region. During the run-time, the location of
the UE is mapped to a specific region. The pilot signals are
sent along the candidate beam directions of the corresponding
region. Note that, if all the candidate beam directions of a
region are blocked or weakened due to the sudden blockage,
the conventional beam alignment methods can be applied.

Remark 2: To solve (2a), we assume the joint distribution of
the path skeletons in adjacent locations is available. However,
in practice, we may not have access to it. The ray tracing tool or
digital twins can be applied to find the distribution statistically.
Applying a machine learning tool is another approach, which
we will consider in our future work.

IV. NUMERICAL RESULTS

We evaluate the performance of the proposed method in an
urban environment using the ray tracing tool in the MATLAB
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toolbox. The output of ray tracing is the L available paths
between a BS and a UE in each location. As depicted in Fig. 2,
we extracted the building map of Kista in Stockholm city and
used it as the input for ray tracing simulation. The BSs’ height
is 6 m and the UEs’ is 1 m. We assumed the building material
is brick and the terrain material is concrete. We consider the
different lengths of trajectories. To find the solution of (14)
for a specific trajectory, we generated 500 trajectory samples
randomly in the environment with the same length but different
streets and directions. For each trajectory, we considered one
BS with a fixed position with respect to the trajectory (10
m above the middle of the trajectory). Hence, the location
of the points of the trajectory and the BS is fixed while the
environment is different.

We consider two baselines. To have a fair comparison, we
consider location-aided baselines with the training phase and
run-time phase. The baseline 1 is based on lookup table [7].
The BS divides its coverage area into a set of adjacent and equal
bins with specific IDs. During the training phase (offline), the
frequency of the selected beam in each bin is stored in a lookup
table. During the run-time, the BS maps the UE’s location to a
specific bin and selects the top-ranked beam from the lookup
table.
The baseline 2 is based on fixed size regions [9]. During the
training phase, the regions are defined based on a fixed distance
and the path skeleton of the first location of each region is
chosen as the reference path skeleton. During the evaluation,
the fixed size of regions is selected so that it has a similar
number of regions as our proposed method.

Fig. 3 shows the average number of K over 100 trajectory
samples with different lengths. Here, we consider the location
bin equal to 2 m in baseline 1. As is shown in this figure,
our method has less number of regions compared to baseline
1 which leads to less number of running beam searching and
signalling overhead during the training phase. Baseline 2 has
the same number of regions as our method.

We fix the trajectory length to 30 meters. Fig. 6, shows the
distribution of the 7 regions. We can observe that in location
indices near the BS, we have smaller regions in comparison
with the beginning and the end points of the trajectory. In
baseline 1, we consider the bin size equal to 2 meter. Hence
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during the training phase, it needs to run the brute-force beam
searching 15 times for the trajectory with a length of 30 meters
to find the optimal beam for each bin. In baseline 2, the fixed
size region is about 4.5 meter to have the same number of the
regions (K = 7) as our proposed beam alignment method.

During the run-time phase first, we consider the perfect
location information. Fig. 4 shows the average SNR along the
trajectory. We observe that our proposed method can provide
almost the same SNR value along the trajectory with about
half the number of measurements during the training phase as
compared to baseline 1 with higher measurements. In baseline 2
non-optimal selections of reference locations and regions cause
high SNR fluctuations along the trajectory.
Next, we consider noisy location information. Noise in GPS
coordinates due to the feedback latency and user mobility
causes imperfect knowledge of UE locations. Here, we model
it with an addictive zero-mean Gaussian noise with a standard
deviation of 2.04 meters to the Cartesian coordination of the
UE. The noise variance is selected so that the probability of
noise magnitude being higher than 5 meters is less than 5%(
the mean GPS accuracy on smartphones is about 4.9 meters)
[11]. Fig. 5 shows the SNR value in different locations of the
UE along the trajectory. We can clearly observe the sensitivity
of the methods to the location information accuracy is high in
the middle of the trajectory (when the UE is close to the BS).
Our method, however, by optimally selecting the size of the
regions and reference locations is less sensitive to the imperfect
location input compared with the baselines.



Fig. 6: A trajectory sample with length 30 m and 7 regions.
The blue signs show the 30 location indices every 1 m.

V. CONCLUSION

We proposed a beam alignment method that utilizes chan-
nel similarity in adjacent locations. Our method is based
on dividing the trajectory into separate regions. We propose
an optimization problem to find the number of regions and
proposed a solution for that. Simulation results verified the
better performance of our method in SNR with noisy location
information in comparison with the baselines.
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APPENDIX A
PROOF OF LEMMA 1

It is clear that if (9) is valid, there is no need to select any
other reference point inside the block; as a result, the solution
of (7a) is 0 and the regions are B(xl, α) and B(α, xh).

However, if (9) is not satisfied, it is required to have at least
one reference point inside the block due to the constraint (7e).
Let x̃1 ∈ {xl + 1, xh − 1} be the next reference point with
the path skeleton PS(x), which is random given s. The other
reference points are X ′ = {x̃2, . . . , x̃K}. Consider two blocks
B1 = B(xl, x̃1) and B2 = B(x̃2, xh). Define

X1 = {x(1)1 , . . . , x
(1)
K1
} := X ′ ∩ B1,

X2 = {x(2)1 , . . . , x
(2)
K2
} := X ′ ∩ B2,

where K1 and K2 are the number of reference points inside
the blocks B1 and B2, respectively. Therefore,

K = K1 +K2 + 1, (15)

where 1 is added because of x̃1. We also define the non-
overlapping regions R1

1, . . . ,R1
K1

and R2
1, . . . ,R2

K2
as the

optimal regions inside B1 and B2, respectively (Note that we
can do so because of (7e) stating that the reference point of any
region is at the beginning or the end of the region). Therefore,

{Rk}Kk=1 =
{
R1
k

}K1

k=1
∪
{
R2
k

}K2

k=1
,

where Rk was defined in Definition 3.
Hence, we can write the optimization problem (7a) as follows

min
x̃1

[
1 + minimize

α1,...,αK1−1,

x
(1)
1 ,...,x

(1)
K−1

K1 + minimize
αK1+1,...,αK1+K2

,

x
(2)
1 ,...,x

(2)
K−1

K2

]
(16)

s.t.: Pr
{
d(x, x

(1)
k ) ≤ γ |

(
ps(x

(1)
k )
)K1

k=1
,ps(xl),ps(x̃1)

}
≤ ε, ∀x ∈ R1

k,∀k ∈ [K1],

∀
(
ps(x

(1)
k )
)K1

k=1
,ps(xl),ps(x̃1) (17)

Pr

{
d(x, x

(2)
k ) ≤ γ |

(
ps(x

(2)
k )
)K2

k=1
,ps(xh),ps(x̃1)

}
≤ ε, ∀x ∈ R2

k,∀k ∈ [K2],

∀
(
ps(x

(2)
k )
)K2

k=1
,ps(xh),ps(x̃1) (18)

α1 ≤ · · · ≤ αK−1 (19)
αk ∈ B(xl, x̃1), ∀k ∈ [K1 − 1] (20)
αk ∈ B(x̃1, xh), ∀k ∈ {K1 + 1, . . . ,K − 1} (21)
xk ∈ {αk−1, αk}, ∀k ∈ [K], (22)

Thus, optimization problem (16) is decomposed to two inde-
pendent optimization problems and (10) follows, and the lemma
is proved. (17) and (18) follow from (7b) and Assumption 1
because for all z1 ∈ B1 and z2 ∈ B2, PS(z1) is independent of
PS(z2) given PS(x̃1).
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