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Abstract—In recent years, wireless networks are evolving com-
plex, which upsurges the use of zero-touch artificial intelligence
(AI)-driven network automation within the telecommunication
industry. In particular, network slicing, the most promising
technology beyond 5G, would embrace AI models to manage
the complex communication network. Besides, it is also essential
to build the trustworthiness of the AI black boxes in actual
deployment when AI makes complex resource management and
anomaly detection. Inspired by closed-loop automation and Ex-
plainable Artificial intelligence (XAI), we design an Explainable
Federated deep learning (FDL) model to predict per-slice RAN
dropped traffic probability while jointly considering the sensitivity
and explainability-aware metrics as constraints in such non-
IID setup. In precise, we quantitatively validate the faithfulness
of the explanations via the so-called attribution-based log-odds
metric that is included as a constraint in the run-time FL
optimization task. Simulation results confirm its superiority over
an unconstrained integrated-gradient (IG) post-hoc FDL baseline.

Index Terms—6G, classification, FL , game theory, proxy-
Lagrangian, SLA, stochastic policy, traffic drop, XAI, ZSM

I. INTRODUCTION

The most promising 6G network slicing technology insists
on adopting autonomous management and orchestration of the
end-to-end (E2E) network resources at the network domains
because the isolation of slices may induce a high cost in
terms of efficiency [1], [2]. So, ETSI standardized zero-touch
network and service management (ZSM) framework has been
considered [3].Here, zero-touch refers to the automation and
management of resources without human interference. Besides,
developing cognitive slice management solutions in 6G net-
works is essential to automatically orchestrate and manage
network slices, particularly network resources across different
technological domains (TDs), along with ensuring the end-
user’s QoE and QoS [4], [5]. Hence, the [6] has proposed an
AI-native network slicing management solution of 6G networks
to support emerging AI services. Also, AI algorithms should

Figure 1. RAN federated traffic drop classification in NS

be driven by the distributed nature of datasets to acquire the
full potential of network slicing automation, which will solve
the problematic behavior of the cloud-centric traditional ML
schemes. Thus, a decentralized learning approach is required
to handle distributed network slices efficiently. For this, we
choose Federated learning (FL) [7], [8] to handle distributed
network slices efficiently like our another research work [9].
Besides, even if DNN hold the state-of-the-art [10], [11], [12]
in solving resource allocation and orchestration problems of
network slicing, the black-box nature of such ML models
impedes understanding of their decisions, any flaws in the
datasets or the model’s performance behavior. Moreover, the
6G network is going to be "machine-centric" technology which
signifies that all the corresponding "smart things" in the 6G
network will operate intelligently but as a smart black box
[13]. Here, the smart black box is not transparent in its
action or decision-making processes and could have adverse
effects on the network’s operations of the 6G technology. In
this concern, XAI provides human interpretable methods to
adequately explain the AI system and its decisions for gaining
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the human’s trust in the loop. Also, [14] indicates that it is
a prerequisite of any ZSM-based AI models in 6G to enrich
translucency of their models. Viewing this fact, zero-touch
XAI-driven FL will be fetching a particular emphasis for its
automation and unique advantages, which are essential for end-
user trust and secured procedure. In contrast, the conventional
XAI focuses only on the interpretability and transparency of
any ML system. Some works of XAI [15], [16], [17] indicate
the importance of explainability and present some research
works on handover and resource allocation, etc., in the beyond
5G networks. In [18], XAI for physical/MAC layers in 6G
networks are focused. In comparison, the authors of [19]
present a trust-aware federated deep reinforcement learning-
based device selection technique in an autonomous driving
scenario. And, to evaluate the performance of XAI models,
the paper [20] introduces some essential metrics. So, in this
work, we will present a novel zero-touch Explainable Federated
learning (FL) as the decentralized approach for traffic drop
classification in 6G network slices [7].

A. Contributions
In this paper, we present the following contributions
• We introduce a novel iterative explainable federated learn-

ing approach, where a constrained traffic drop detection
classifier and an explainer exchange—in a closed loop
way— attributions of the features as well as predictions
to achieve a transparent zero-touch service management
of 6G network slices at RAN in a non-IID setup.

• We adopt the integrated gradients XAI method to show-
case features attributions.

• The generated attributions are then used to quantitatively
validate the faithfulness of the explanations via the so-
called log-odds metric which is included as a constraint
in the FL optimization task.

• We formulate the corresponding joint recall and log-odds-
constrained FL optimization problem under the proxy-
Lagrangian framework and solve it via a non-zero sum
two-player game strategy [21], while comparing with the
unconstrained integrated-gradient post-hoc FL baseline.

II. RAN ARCHITECTURE AND DATASETS

A shown in Fig. 1, we consider a radio access network
(RAN), which is composed of a set of K the base station (BSs),
wherein a set of N parallel slices are deployed. Each BS runs a
local control closed-loop (CL) which collects monitoring data
and performs traffic drop prediction. Specifically, the collected
data serves to build local datasets for slice n (n = 1, . . . , N),
i.e., Dk,n = {x(i)

k,n, y
(i)
k,n}

Dk,n

i=1 , where x
(i)
k,n stands for the input

features vector while y
(i)
k,n represents the corresponding output.

In this respect, Table I summarizes the features and the output
of the local datasets. These accumulated datasets are non-IID
due to the different traffic profiles induced by the heterogeneous

Table I
DATASET FEATURES AND OUTPUT

Feature Description
Average PRB Average Physical Resource Block
Latency Average transmission latency
Channed Quality SNR value expressing the wireless channel quality

Output Description
Dropped Traffic Probability of dropped traffic(%)

users’ distribution and channel conditions. Moreover, since the
collected datasets are generally non-exhaustive to train accurate
anomaly detection classifiers, the local CLs take part in a
federated learning task wherein an E2E slice-level federation
layer plays the role of a model aggregator.
III. EXPLAINABLE FDL FOR TRANSPARENT TRAFFIC DROP

CLASSIFICATION

Here, we describe the different stages of the joint explain-
ability and sensitivity-aware FDL as summarized in Fig. 2.

A. Closed-Loop Description

We propose a federated deep learning architecture where the
local learning is performed iteratively with run-time explanation
in a closed loop way as shown in Fig. 2. We design a deep
neural network FL model. For each local epoch, the Learner
module feeds the posterior symbolic model graph to the Tester
block which yields the test features and the corresponding
predictions ŷ

(i)
k,n to the Explainer. The latter first generates the

features attributions using integrated gradients XAI method.
The Log-odds Mapper then uses these attributions to select
the top p features that are then masked. The corresponding
soft probability outputs are afterward used to calculate the
the log-odds (LO) metric that is fed back to the Learner
to include it in the local constrained optimization in step 6.
Similarly, the Recall Mapper calculate the recall score ρk,n
based on the predicated and true positive values at stage 3
and 4 to include it in the local constrained optimization in
step 6. Indeed, for each local CL (k, n), the predicted traffic
drop class ŷ

(i)
k,n, (i = 1, . . . , Dk,n), should minimize the main

loss function with respect to the ground truth y
(i)
k,n, while

jointly respecting some long-term statistical constraints defined
over its Dk,n samples and jointly corresponding to recall and
explainability log-odds.

As shown in steps 1 and 7 of Fig. 2, the optimized local
weights at round t, W(t)

k,n, are sent to the server which generates
a global FL model for slice n as,

W(t+1)
n =

K∑
k=1

Dk,n

Dn
W

(t)
k,n, (1)



Local Model

Explainer

log-odds Mapper

Constrained
optimization



Attributions

Aggregation

Cloud Server1

2

4
5

7

6

Model

Graph

Model Tester
3

log-odds score

Recall
Mapper

3"

4"
Recall score

Figure 2. Explainable FDL building blocks

where Dn =
∑K

k=1 Dk,n is the total data samples of all datasets
related to slice n. The server then broadcasts the global model
to all the K CLs that use it to start the next round of iterative
local optimization. Specifically, it leverages a two-player game
strategy to jointly optimize over the objective and original
constraints as well as their smoothed surrogates and detailed
in the sequel.
B. Model Testing and Explanation

As depicted in stage 2 of Fig. 2, upon the reception of the
updated model graph, the Tester uses a batch drawn from the
local dataset to reconstruct the test predictions ŷ

(i)
k,n. All the

graph, test dataset and the predictions are fed to the Explainer
at stage 3. After that, at stage 4, Explainer generates the attri-
butions by leveraging the low-complexity Integrated Gradient
(IG) scheme [22], which is based on the gradient variation
when sampling the neighborhood of a feature. Attributions are a
quantified impact of each single feature on the predicted output.
Let a(i)k,n ∈ RQ denote the attribution vector of sample i, which
can be generated by any attribution-based XAI method.
C. Log-odds Mapping

To characterize the trustworthiness of the local model, we
calculate the log-odds metric, θk,n [23]. It measures the influ-
ence of the top-attributed features on the model’s prediction.
Specifically, the log-odds score is defined as the average differ-
ence of the negative logarithmic probabilities on the predicted
class before and after masking the top p% features with zero
padding [23]. In this respect, the log-odds Mapper at stage 5
of Fig. 2 starts by selecting top p% features based on their
attributions which is collected from stage 4 and replace them
with zero padding. That is,

θk,n = − 1

Dk,n

Dk,n∑
i=1

log
Pr

(
ŷ
(i)
k,n|x̂

(i)
k,n

)
Pr

(
ŷ
(i)
k,n|x

(i)
k,n

) , (2)

where, ŷ(i)k,n is the predicted class, x(i)
k,n are the features in the

original dataset and x̂
(i)
k,n denotes the features in the modified

dataset with top p% features zero-padded. Finally, the log-odds
Mapper reports the log-odds score, which is used as one of the
constraints for the constrained FL optimization task.

D. Joint Recall and Explainability-Aware Traffic Drop Classi-
fication

Besides the log-odds score used for explainability,as shown
in steps 3 and 4, we invoke the recall as a measure of the
sensitivity of the FL local classifier, which we denote ρk,n,
i.e.,

ρk,n = π+
(
Dk,n

[
ŷ
(i)
k,n = 1

])
(3)

Where, π+(Dk,n) defines the proportion of Dk,n classified
positive, and Dk,n[∗] is the subset of Dk,n satisfying expression
*.

In order to trust the traffic drop anomaly detection/classifi-
cation, a set of AI SLA is established between the slice tenant
and the infrastructure provider, where a lower bound αn is
imposed to the recall score, while an upper bound βn is set for
the log-odds score. This translates into solving a constrained
local classification problem in iterations specified by the epochs
as well as in FL rounds t (t = 0, . . . , T − 1) i.e.,

min
W

(t)
k,n

1

Dk,n

Dk,n∑
i=1

ℓ
(
y
(i)
k,n, ŷ

(i)
k,n

(
W

(t)
k,n,xk,n

))
, (4a)

s.t. ρk,n ≥ αn, (4b)

θk,n ≤ βn, (4c)

which is solved by invoking the so-called proxy Lagrangian
framework [24], since the recall is not a smooth constraint.
This consists first on constructing two Lagrangians as follows:

L
W

(t)
k,n

=
1

Dk,n

Dk,n∑
i=1

ℓ
(
y
(i)
k,n, ŷ

(i)
k,n

(
W

(t)
k,n,xk,n

))
+ λ1Ψ1

(
W

(t)
k,n

)
+ λ2Ψ2

(
W

(t)
k,n

)
,

(5a)

Lλ = λ1Φ1

(
W

(t)
k,n

)
+ λ2Φ2

(
W

(t)
k,n

)
(5b)

where Φ1,2 and Ψ1,2 represent the original constraints and
their smooth surrogates, respectively. In this respect, the recall
surrogate is given by,

Ψ1 =

∑Dk,n

i=1 y
(i)
k,n ×min

{
ŷ
(i)
k,n, 1

}
∑Dk,n

i=1 y
(i)
k,n

− αn (6)

while Ψ2 = Φ2 = βn − θk,n since the negative logarithm is
already a convex function. It also confirms that the solutions
of the optimization problem are equivalent to those obtained if
only the original constraints were used.

This optimization task turns out to be a non-zero-sum two-
player game in which the W

(t)
k,n-player aims at minimizing

L
W

(t)
k,n

, while the λ-player wishes to maximize Lλ [21, Lemma



Algorithm 1: Explainable Federated Deep Learning
Input: K, m, ηλ, T , L. # See Table II
Server initializes W

(0)
n and broadcasts it to the CLs

for t = 0, . . . , T − 1 do
parallel for k = 1, . . . ,K do
Initialize M = num_constraints and Wk,n,0 = W

(t)
n

Initialize A(0) ∈ R(M+1)×(M+1) with A
(0)
m′,m = 1/(M + 1)

for l = 0, . . . , L− 1 do
Receive the graph Mk,n from the local model
# Test the local model and calculate the
attributions

ai,jk,n = Int. Gradient
(
Mk,n

(
Wk,n,l,xk,n

))
# Mask the top p% dataset based on the
attributions with zero padding

# Calculate the log-odds metric

θk,n = 1
Dk,n

∑Dk,n

i=1 log
Pr

(
ŷ
(i)
k,n

|x̂(i)
k,n

)
Pr

(
ŷ
(i)
k,n

|x(i)
k,n

)
# Calulate the recall metric
ρk,n = π+

(
Dk,n

[
ŷ
(i)
k,n = 1

])
Let λ(l) be the top eigenvector of A(l)

# Solve problem (4) via oracle
optimization

Let Ŵk,n,l = Oδ

(
LWk,n,l

(·, λ̂(l))
)

Let ∆(l)
λ be a gradient of Lλ(Ŵk,n,l, λ

(l)) w.r.t. λ
# Exponentiated gradient ascent
Update Ã(l+1) = A(l) ⊙ · exp

{
ηλ∆

(l)
λ (λ(l))

}
# Colunm-wise normalization
A

(l+1)
m = Ã

(l+1)
m /

∥∥∥A(l+1)
m

∥∥∥
1
, m = 1, . . . ,M + 1

end
return Ŵ

(t)
k,n = 1

L⋆

∑L−1
l=0 Ŵk,n,l

Each local CL (k, n) sends Ŵ
(t)
k,n to the server.

end parallel for
return W

(t+1)
n =

∑K
k=1

Dk,n

Dn
Ŵ

(t)
k,n

and broadcasts the value to all local CLs.
end

8]. While optimizing the first Lagrangian w.r.t. Wk,n re-
quires differentiating the constraint functions Ψ1(W

(t)
k,n) and

Ψ2(W
(t)
k,n), to differentiate the second Lagrangian w.r.t. λ we

only need to evaluate Φ1

(
W

(t)
k,n

)
and Φ2

(
W

(t)
k,n

)
. Hence, a

surrogate is only necessary for the Wk,n-player; the λ-player
can continue using the original constraint functions. The local
optimization task can be written as,

min
Wk,n∈∆

max
λ, ∥λ∥≤Rλ

L
W

(t)
k,n

(7a)

max
λ, ∥λ∥≤Rλ

min
Wk,n∈∆

Lλ, (7b)

where thanks to Lagrange multipliers, the λ-player chooses
how much to weigh the proxy constraint functions, but does so
in such a way as to satisfy the original constraints, and ends up
reaching a nearly-optimal nearly-feasible solution [25]. These
steps are all summarized in Algorithm 1.

IV. RESULTS

This section analyzes the proposed Closed loop EFL frame-
work in detail. To build the explainability-aware constrained

traffic drop classification model, we use feature attributions
which is the pillar of this approach. After that, we present the
impact of considering jointly the recall and log-odds metrics
as constraints for optimizing the FL classification problem
by showing results of FL convergence and log-odds score.
Finally, we study the correlation between features attributions,
observed predictions, and true predictions and draw some
important conclusions. Specifically, to implement the model
Tester and Explainer, we invoke DeepExplain framework,
which includes state-of-the-art gradient and perturbation-based
attribution methods [26]. It provides an attribution score based
on the feature’s contribution to the model’s output, which we
integrate with our proposed constrained traffic drop classifica-
tion FL framework in a closed-loop iterative way.
A. Parameter Settings and Baseline

Three primary slices eMBB, uRLLC and mMTC are consid-
ered to analyze the proposed Explainable FL policy. Here, the
datasets are collected from the BSs and the overall summary
of those datasets are presented in Table II. We use vector β for
the explainability lower bound threshold and α for the upper
bound of recall score corresponding to the different slices. As
a baseline, we adopt a vanilla FL [27] with post-hoc integrated
gradient explanation,that is, a posterior explanation performed
upon the end of the FL training.

Table II
SETTINGS

Parameter Description Value
DNN Deep neural network size 2-hidden layers with 10 nodes
N # Slices 3
K # BSs 50

Dk,n Local dataset size 800 samples
T # Max FL rounds 50
U # Total users (All BSs) 15000
L # Local epochs 100
Rλ Lagrange multiplier radius Constrained: 10−5

ηλ Learning rate 0.02

B. Result Analysis
In this scenario, resources allocated to slices according to

their traffic patterns and radio conditions while ensuring a long
term isolation via the constraints.

• Convergence: As depicted in Fig. 3, we can conclude
that the proposed constrained EFL resource allocation
models of the different slices have converged faster than
the baseline unconstrained IG post-hoc case. Here, the
optimizer of EFL considers the relationships between the
objectives and constraints of the two-player optimization
problem, leading to improved performance compared to
the uncon. IG post-hoc one, which accounts for only the
objective function during optimization.

• Sensitivity analysis: To analyze our proposed model’s
sensitivity, we choose the recall metric, which is the rate
of actual positive values for measuring the performance
of our binary classification model. From Fig. 4, we can
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observe that the recall score of the proposed one for all
slices is in close proximity to the target threshold γ (i.e.,
around 0.88%), which is an acceptable value for operators
and slices’ tenants.

• Trustfulness: In Fig. 5-(a), we observe the effect of
changing the value top p% on the log-odds, consider-
ing proposed model for all slices. Also we present a
comparative analysis of log-odds score in Fig.5-(b) for
both cases which proof the superiority of the proposed
constrained EFL model. So, the statistics of the log-
odds score give us an approximate idea of our model’s
reliability and trustworthiness. It shows that the log-odds
score is decreasing with respect to the top p% value, which
conveys that our model is explainable and trustworthy in
the training phase.

Furthermore, in Fig. 6, the correlation heatmaps of the pro-
posed XAI method of the eMBB slice has presented for further
analysis. It helps us visualize the strength of relationships
between different variables and, in our case, identify which
feature variation impacts the most for SLA variation. To plot
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correlation matrix heatmap, we consider one matrix, Rk,n

= [ak,n, ŷk,n,yk,n], where, ak,n is the attribution score of
features variable with dimensions Dk,n × Q and ẑk,n is the
predicted output variable with dimensions Dk,n × 1 and yk,n

is the true predicted value with dimensions Dk,n × 1. From
the heatmap we see that the third feature, which is the channel
quality, has the most impact on the recall value. If the third
feature increases, the recall value will increase and vice versa.

V. CONCLUSION

This paper has presented a novel closed-loop explainable
federated learning (EFL) approach to achieve transparent zero-
touch service management of 6G network slices at RAN in a
non-IID setup. We have jointly considered explainability and
sensitivity metrics as constraints in the traffic drop prediction
task, which we have solved using a proxy-Lagrangian two-
player game strategy. From the results, we conclude that the
proposed EFL scheme is reliable and trustful compared to state-
of-the-art unconstrained post-hoc FL. Finally, the heatmaps of
the attributions correlation matrix are presented to showcase
the features whose variation influence more the traffic drop.
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