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Abstract—Beam Placement (BP) is a well-known problem
in Low-Earth Orbit (LEO) satellite communication (SatCom)
systems, which can be modelled as an NP-hard clique cover
problem. Recently, quantum computing has emerged as a novel
technology which revolutionizes how to solve challenging op-
timization problems by formulating Quadratic Unconstrained
Binary Optimization (QUBO), then preparing Hamiltonians as
inputs for quantum computers. In this paper, we study how
to use quantum computing to solve BP problems. However,
due to limited hardware resources, existing quantum computers
are unable to tackle large optimization spaces. Therefore, we
propose an efficient Hamiltonian Reduction method that allows
quantum processors to solve large BP instances encountered
in LEO systems. We conduct our simulations on real quan-
tum computers (D-Wave Advantage) using a real dataset of
vessel locations in the US. Numerical results show that our
algorithm outperforms commercialized solutions of D-Wave by
allowing existing quantum annealers to solve 17.5 times larger
BP instances while maintaining high solution quality. Although
quantum computing cannot theoretically overcome the hardness
of BP problems, this work contributes early efforts to applying
quantum computing in satellite optimization problems, especially
applications formulated as clique cover/graph coloring problems.

I. INTRODUCTION

Satellite communication systems are undergoing a business

and technological evolution linked to the growing interest in

Low-Earth Orbit (LEO) systems. With their ability to provide

response to the soaring high speed demand in remote locations,

their shorter round trip delay and their reduced manufacturing

and launching cost, LEO satellite communication systems are

currently being deployed in large scale [1].

The design and management of satellite communication

systems typically results in complex optimization problems

involving different degrees of freedom [2]. Focusing on the

LEO satellite scenario, one of the key design challenges is

the so-called “Beam Placement” (BP) problem, which seeks

an optimal user-to-beam allocation. While well-established

Geostationary (GEO) satellites ensure coverage over specific

region via a fixed and regular grid of equally-spaced beams,

in the LEO case a dynamic beam placement needs to be

calculated in order to point the satellite beams towards the

users on Earth. Operators may prefer to reduce the number of

beams generated on-board so that the beamforming network

is kept as simple as possible. The works in [3], [4] represent

the latest approaches to the beam placement problem. Both

works faced the trade-off between minimizing the number of

beams and maximizing the provided gain to users. However,

what is relevant here is that both [3] and [4] formulate the

beam placement problem as a minimum clique cover problem,

which is an NP-hard problem and therefore intractable for a

classical computer to solve. Given the emergence of commer-

cial quantum computers, we investigate the possibility of using

quantum computing for this problem.

Quantum computers are expected to execute challenging

computational tasks significantly faster than any classical

computers. Instead of processing information with classical

binary bits, qubits are used in quantum computers which are

able to explore combinations of quantum states simultaneously

by leveraging superposition of quantum states [5]. This reveals

the parallel processing capability of quantum computing. Early

theoretical results showed promising achievements. For exam-

ples, Shor’s algorithm [6] can break the RSA encryption and

Grover’s algorithm [7] can quadratically speed up unstructured

search problems. There are two main quantum processor

technologies, the Quantum Gate processors, such as IBM,

IonQ, and Rigetti [8], and Quantum Annealers, D-Wave [9].

The former is to make general purpose quantum computers

while the later is designed specifically to solve optimization

problems. To solve combinatorial problems, Quadratic Uncon-

strained Binary Optimization (QUBO) or Ising formulations

are used as the formulation language [10]. Then, Hamilitonians

are prepared as inputs of quantum computers. Currently, only

Quantum Annealers have large enough qubits for solving

various real-life applications such as car production [11], air

traffic management [12], computer vision [13] and wireless

communications [14].

However, current quantum annealer technologies has a

major limitation. Even with 5000+ physical qubits in latest D-

Wave Advantages processors, the current quantum hardwares

limit how large an optimization problem could be solved. For

example, existing D-Wave Advantage can only solve Quadratic

Assignment Problems with less than 200 variables [15]. A

few approaches have been developed to tackle this issue. Roof

Duality, which is the most well-known method, implemented

in D-Wave Ocean SDK [9], [16], is a linear relaxation based

method that partially assigns values for a subset of binary

variables, hence reducing the number of unknown variables.

D-Wave also implemented Qbsolve, which decomposes large

QUBO instances into smaller ones. However, this tabu-search-

based function was no longer supported after March 2022

[9]. A very recently proposed approach, FastHare, finds non-

separable groups in which variables have identical values in

the optimal solution and merges the variables of a group into
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one logical qubit [17]. As observed through extensive ex-

periments carried out in [17], the aforementioned approaches

seemed to work well on a subset of QUBO instances while

did not fit others. As such, the relevance of those approaches

to satellite communication problems, including beam place-

ments, requires a rigorous investigation. In addition, in the

aforementioned works, their original problems are QUBOs,

unconstrained formulations. However, BP problems are con-

strained. As a result, the feasibility of the original problems

has to be further investigated.

In this paper, we first introduce the QUBO formulation

of BP problems which can be used to fit in quantum an-

nealers. To tackle quantum annealers’ variable limit, rather

than preparing Hamiltonians from QUBO formulations of

an original Beam Placement optimization instance, we pro-

pose an efficient Hamiltonian reduction method to construct

a small-size “equivalent” Hamiltonian which can fit into

quantum annealers. This method includes two parts: variable

presolve and Hamiltonian formulation. The former is a two-

step presolve method based on graph operations and linear

relaxations, which could presolve most variables of the Beam

Placement instance. Then, using the remaining variables, a

reduced Hamiltonian is constructed as an input of quantum

annealers. We perform the first medium-scale benchmarks

for the proposed process on various aspects based on US

vessel location data assuming that each vessel is a satellite

communication subscriber. We first highlight that our method

can significantly reduce the number of logical qubits needed

to construct a Hamiltonian. It can presolve more than 99%
variables in most of cases while D-Wave Roof Duality cannot

presolve any variables. Moreover, our solutions allows D-

Wave Advantages to solve problems whose number of users

is 17.5 times higher while maintaining the feasibility of the

final solutions at 91.5%. Last but not least, numerical results

returned by D-Wave Advantage based on our reduced Hamil-

tonians show better beam placement performance as compared

with classical counterpart, indicating the potentials of applying

quantum annealing for satellite problems, especially when

formulated as a clique cover problem. Since a clique cover

of a graph is a vertex coloring of its complement and vice

versa [18], this approach also demonstrates the potential of

solving applications of the clique cover and graph coloring

problems in satellite networks.

II. QUANTUM ANNEALING AND QUBO/ISING

FORMULATION

Quantum annealers including D-Wave’s are quantum com-

puters that solve optimization problems through energy min-

imization of a physical system of S qubits [9], [10]. The

quantum system’s energy profile is defined by its Hamiltonian.

In Quantum Annealing (QA) [10], the quantum system is first

initialized at the ground state of the initial Hamiltonian H0

and then slowly evolve the system Hamiltonian to the targeted
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Fig. 1. (a) The System Model and (b) Example of one beam pattern with
two users in the beam

Hamiltonian HP in a given large duration T according to

H(t) =

(

1−
t

T

)

H0 +
t

T
HP , (1)

where,

H0 =
S∑

i=1

σx
i , HP =

S∑

i=1

fiσ
z
i +

S∑

i,j=1

Gijσ
z
i σ

z
j . (2)

where fi and Gij are system parameters called bias and

coupler strength, respectively; σz
i and σx

i are Z and X Pauli

operators on the ith qubit [10]. By measuring the ground state

of the system at time T , it is equivalent to find the optimal

solution of an Ising Model such that

min
si∈{−1,1}S

HP (s) =

S∑

i=1

fisi +

S∑

i,j=1

Gijsisj . (3)

The Ising model can be alternatively represented as

Quadratic Unconstrained Binary Optimization (QUBO) such

that

min
x∈{0,1}S

S∑

i=1

Qiixi +

S∑

i,j=1

Qijxixj (4)

where x = [x1, . . . , xS ] are binary variables and Q ∈ R
S×S

is an upper triangular matrix. QUBO can be easily converted

back and forth to an Ising Hamiltonian by mapping si = 2xi−
1, fi =

1
2Qii +

1
4

∑S

j=1 Qij +
1
4

∑S

j=1 Qji and Gij =
1
4Qij .

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Illustrated in Fig. 1a, let us consider a system where there

are N users and a satellite equipped with an antenna array

which is able to provide maximum B beams, B ≤ N , to serve

its users. Let N = {1, . . . , N} and B = {1, . . . , B} denote the

set of users indices and the set of beam indices, respectively.

The satellite can access a gateway equipped with a quantum

processor via its TT &C (telemetry, tracking, and control) link

to conduct optimization operations. To model the BP problem,

we make use of the User Assignment Matrix (UAM), which



is defined as A = {(aib) ∈ {0, 1}}, where aib = 1, if user i
is assigned to beam b. Otherwise, aib = 0.

To exploit users’ traffic diversity and maximize multicast

benefits, the satellite aims at minimizing the number of active

beams while ensuring the requested service by its users [3],

[4]. To do that, nearby users can be served by the same beam.

Leveraging the results of previous works [3], [19], to be served

in the same beam, with the specific location of the satellite,

any pairs of a given set of users must be separated by an

angle ᾱ ≤ α
2 , where α is the cone angle of a beam. This is

illustrated in Fig. 1b. Consequently, depending on the positions

of the satellite on the sky in different time slots, we have

different undirected proximity graphs G = (N , E), where

edge between user i and user j exists if ᾱij ≤ α
2 . Let zb

denote the indicator of whether beam b is active or not. The

BP problem of finding the minimum number of active beams

is formulated as followed,

P1: min
{zb},{aib}

∑

b∈B

zb, (5)

s.t. C1:
∑

b∈B

aib = 1, ∀i ∈ N , (6)

C2: aib ≤ zb, ∀i ∈ N , ∀b ∈ B, (7)

C3: aib + ajb ≤ 1, ∀b, if (i, j) /∈ E, (8)

C4:
∑

i∈N

aib ≤ W, ∀b ∈ B, (9)

C5: zb, aib ∈ {0, 1}. (10)

Here, C1 indicates that each user must be assigned in only

one beam. C2 indicates that no user can be served by an

inactive beam. C3 indicates that the angle separating two users

which respects to the satellite must be smaller than α/2 to be

in the same beam. C4 indicates the maximum number of users

that can be served by one beam.

B. QUBO formulation

Based on prior knowledge on how to bring constraints into

objective [10], P1 is transformed into QUBO as follows. Due

to bin-packing constraints C4, binary slack variables sbw, w ∈
W = {1, . . . ,W} are introduced to make C4 become equality.

P1 is then transformed into P̄1:

P̄1 : min
{zb},{aib},

{sb,w}

∑

b∈B

zb, (11)

s.t (6)− (8), (10)
∑

i∈N

aib +
∑

w∈W

wsbw = W, ∀b ∈ B, (12)

Let x = [aT1 , . . . , a
T
B , z1, . . . , zB, s1, . . . , sB]

T denote the

column vector representing variables of P̄1. First, denote

QC1,QC2,QC3 and QC4 the matrices corresponding to C1,

C2, C3 and C4. Denote Qo the matrix corresponding to the

objective function. We have

QUBO-1 : min
x

xTQx, (13)

where Q = Qo + λ
(
QC1 +QC2 +QC3 +QC4

)
and

Qo = diag
([

01×(NB),11×B,01×(WB)

])

, (14)

QC1 = AT
1 A1 − 2diag

(

dT
1 A1

)

, (15)

QC2 = diag
([

11×(NB),01×(B+WB)

])

+

[
0NB×NB, A2, 0NB×WB

0(B+BW )×NB,0(B+BW )×B,0(B+BW )×WB

]

,

(16)

QC3 = diag
([

F, . . . ,F
︸ ︷︷ ︸

B times

,O(B+WB)×(B+WB)

])

, (17)

QC4 =AT
3 A3 − 2diag

(

dT
2 A3

)

, (18)

where

d1 = 1N×1, (19)

A1 = [IN×N , . . . , IN×N
︸ ︷︷ ︸

B times

,0N×B,0N×W ], (20)

d2 = W1N×1, (21)

A2 =










−1N×1, 0N×1 , . . . , 0N×1

0N×1,−1N×1 , . . . , 0N×1

...

0N×1, 0N×1, . . . ,−1N×1
︸ ︷︷ ︸

B columns










, (22)

A3 =










11×B,01×B, . . . ,01×B,01×B, 1, . . . ,W
01×B,11×B, . . . ,01×B,01×B, 1, . . . ,W

...

01×B,01×B, . . . ,11×B
︸ ︷︷ ︸

NB columns

,01×B, 1, . . . ,W










. (23)

Here, I is an identity matrix with ones on the main diagonal

and zeros elsewhere, and F is the N -by-N adjacency matrix

of the complement of G. Moreover, diag(·) creates a (block)

diagonal matrix whose main diagonal is its argument. Based

on [10], we set the value of λ = B + 1. Then, to obtain

upper-triangular matrix Q accepted by D-Wave solvers, Qij =
Qij +Qji, ∀j > i and Qij = 0, ∀j < i.

C. Curse of Dimensionality

In contrast to classical computers, which requires NB+B
variables to solve P1, to construct QUBO-1 for quantum

annealer, P1 requires NB + B +WB logical qubits, which

may not fit to recent quantum computer (D-Wave), in which

5000+ physical qubits are required to represent less than 200
logical qubits [20]. Thus, even when we consider a small

instance with 12 users and 12 beams where each beam can

cover 5 users, the total number of logical qubits required is

216, which already exceeds D-Wave’s capacity. We can only

use D-Wave Advantage when N = 10, B = 10 and W = 5.

IV. HAMILTONIAN REDUCTION

In order to reduce the size of Hamiltonians, in this section,

we propose a solution consisting of variable presolve and



Algorithm 1 Finding an independent set

Input: G = (N , E) - the proximity graph

Output: Nind - an independent set of G
1: Nind = ∅,

2: while N 6= ∅ do

3: n∗ = argminn∈N Node Degree(n),
4: Nind = Nind ∪ {n∗},

5: N = N \
(
{n∗} ∪ Neighbor Set(n∗)

)
,

6: end while

reduced Hamiltonian formulation. For variable presolve, we

first find a subset of users who cannot be served by the

same beam by identifying a maximum independent set in the

proximity graph G. We assign each of such users to a different

beam. Next, we obtain P2 as a reduced version of P1 with

remaining users and solve a linear relaxation of P2, which

successfully assigns many users i to their respective beams b
(when aib = 1). Finally, we construct a reduced Hamiltonian

and use QA to find beam allocations for the unassigned users.

A. Two-step Variable Presolve

1) Find Maximum Independent Set: Let Nind be the set of

users corresponding to a large independent set of G. Note that

finding a maximum independent set of a graph is an NP-hard

problem. We can use any existing method in the literature to

find an approximation of a maximum independent set instead,

e.g., the one by Boppana and Halldórsson [21]. However, in

this work, as a proof-of-concept, we employ a simple and fast

greedy algorithm to find Nind (see Algorithm 1).

Once pre-assigning users in Nind to |Nind| different beams,

with the set of remaining users N \ Nind, the problem P1 is

now reduced to the following problem.

P2: min
{zb},{aib}

∑

b∈B

zb, (24)

s.t (6)− (9),

zb, aib ∈ {0, 1}, ∀i, j ∈ N \ Nind. (25)

Lemma 1. Let OPT(P1) and OPT(P2) denote the optimal

value of P1 and P2. By pre-assigning users in Nind to |Nind|
different beams, the optimal solution in P2 is still optimal in

P1, i.e., OPT(P1) = OPT(P2).

Proof. Assigning one separate beam to each user correspond-

ing to vertices in an independent set doesn’t affect the opti-

mality of the solution because these users must be allocated

to different beams in any feasible solution.

2) Linear Relaxation: We consider a linear relaxation P2′

of P2, which can be efficiently solved by simplex method

[22], given below,

P2′ : min
{zb},{aib}

∑

b∈B

zb, (26)

s.t (6)− (9),

zb, aib ∈ [0, 1], ∀i, j ∈ N \ Nind. (27)

Theorem 1. Let OPT(P2′) denote the optimal value of P2′.
Then OPT(P2′) ≤ OPT(P2) = OPT(P1).

Proof. Since P2′ is the linear relaxation formulation of P2,

OPT(P2′) ≤ OPT(P2). From Lemma 1, OPT(P1) =
OPT(P2). Thus, OPT(P2′) ≤ OPT(P2) = OPT(P1).

Remark 1. Let P1′ and OPT(P1′) denote the linear re-

laxation formulation of P1 and its optimal value. Given an

algorithm ALG with its returned value vALG,

vALG

OPT(P1)
≤

vALG

OPT(P2′)
≤

vALG

OPT(P1′)
. (28)

Thus, by solving P2′, which has fewer unknowns than P1′, we

obtain a tighter bound for the approximation ratio vALG

OPT(P1) .

Proof. Since the domain of P2 is a subset of the domain

of P1, the domain of P2′ is a subset of P1′. As a result,

OPT(P1′) ≤ OPT(P2′) ≤ OPT(P1).

B. Reduced Hamiltonian Formulation

After solving P2′, we obtain an optimal solution x̄. Users i
that have aib = 1 for some b are allocated to that beam b. Let

N̄ be the set of the unassigned users, i.e., users i with aib 6= 1
for every b ∈ B. Let B̃ be the set of active beams (zb = 1). Due

to the symmetry of beam variables in the problems, we could

re-index the active beams from 1 to |B̃|. We then construct the

Hamiltonian that is a reduced version of the QUBO formulated

from P1 as follows.

The maximum number of more beams that could be active

(other than the first |B̃| beams) is B̄ = min{B − B̃, N̄ }.

Thus, we only include zb, b = |B̃| + 1, . . . , B̄ in the reduced

Hamiltonian. Similarly, for beam association variables, we

only include aib, i ∈ N̄ , b = B̃+1, . . . , B̄. For slack variables

corresponding to active beam b ∈ B̃ whose users are smaller

than W , we only keep slack variables corresponding to the

remaining capacity of that beam. Let W b denote the remaining

capacity of beam b. For example, if the remaining capacity

of a given beam b′ is 3, i.e, W b′ = 3, we only keep slack

variables sb′1, sb′2 and sb′3. To further reduce the number of

variables in the reduced Hamiltonian, we eliminate all slack

variables corresponding to b = |B̃| + 1, . . . , B̄ by assuming

that the largest clique of the remaining users has size at most

W . Note that in some cases where this assumption is violated,

the returned solution is infeasible, which reduces the success

probability of QA’s solutions (see Fig. 4). The matrix Q′

corresponding to the reduced Hamiltonian H ′
P is then created

by selecting the rows and columns of Q corresponding to the

aforementioned variables.

The reduced Hamiltonian H ′
P is sent to D-Wave via its

API. Once API returns results, we choose the solution with the

lowest energy level. We then merge the newly solved variables

together with those determined earlier when solving P2′ to

obtain a complete solution to P1 (see Algorithm 2).

V. NUMERICAL RESULTS

In this section, we carry out simulations to evaluate the

performance of the proposed frameworks. To model the users,



Algorithm 2 Quantum Annealing with Reduced Hamiltonian

Input: x̄, Q, where x̄ is an optimal solution of P2′

Output: xQA - a solution to P1
1: Construct N̄ - the set of unassigned users

2: Construct Q′ by selecting rows and columns of Q cor-

responding to zb, b = |B̃| + 1, . . . , B̄, aib, i ∈ N̄ , b =
B̃ + 1, . . . , B̄ and sbw, w = 1, . . . ,W b, b ∈ B̃

3: Once D-Wave has converted Q′ to H ′
P , send H ′

P to D-

Wave Advantage processor

4: Once received D-Wave results, return xQA, which is ob-

tained by combining the results of D-Wave with x̄

TABLE I
DEFAULT PARAMETER SETUP.

Parameter Value

N 25–200
Satellite’s altitude 1110 km

Satellite’s latitude and longitude 26.812309, −85.386382

Number of realization 200

we make use of real vessel locations collected by the U.S.

Coast Guard on the first of January 2022 [23]. We randomly

sample locations from unique vessels in the region of Gulf of

Mexico with the sample size from 25 to 200. We also set the

altitude of the satellite at 1110 km, which is the most popular

LEO altitude of Starlink [3]. The latitude and longitude of

satellite are 26.812309 and −85.386382, respectively. The

maximum number of beams is set at the number of users. The

beam’s capacity W is set at 20. For each value of number of

users, we will sample 200 realizations.

A. Reduction Ratio

In this part, we evaluate how much the size of the Hamil-

tonian is reduced. We compare the proposed scheme with the

Roof Duality implemented in D-Wave Ocean SDK [9]. Here,

the reduction ratio of the problem is defined as

Reduction ratio = 1−
S′

S
, (29)

where S′ and S are the number of logical qubits for the

reduced Hamiltonian and the original one, respectively. In

order words, S × S and S′ × S′ are the size of the original

and the reduced Hamiltonian, respectively. We observe that in

our experiment, D-Wave Roof Duality does not reduce any

variables. By contrast, as can be seen in Fig. 3, our variable

presolve step obtains significant reduction ratios. We also

observe that when the number of users increases, the reduction

ratio of the reduction scheme decreases, which is perhaps due

to the increase of the problem’s complexity. However, the first

quantile of reduction ratio is always larger than 99% in the

simulation settings.

B. Solution’s Feasibility

In this part, we would like to evaluate the feasibility of

solutions returned by our proposed scheme. Here, the success

probability is defined as the chance the final solution is feasible
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Fig. 2. Locations of 150 random vessels at U.S south coast.

�� �� �� ��� ��� ��� ��� ���

��������������

��


��

��


	�

��


	�

��



�

��



�

�������

��
��
��
��
��
��

���

����������������������������

Fig. 3. Distribution of Reduction Ratio of the proposed scheme. In our
experiments with 200 users, in 75% of the trials, the reduction ratios are
greater than 99%. On the contrary, D-Wave Roof Duality provides no
reduction.

in the original problem P1. In Fig. 4, cases in which users are

completely assigned by solving P2′ without the need of using

QA are colored in blue and labeled as “Pres.” while cases

where QA is used to decide unsigned users are colored in

red and labeled “Q.A”. We observe that our variable presolve

scheme can solve most of the network instances with number

of users smaller than 175. Moreover, by using QA to solve the

undecided variables, we can solve up to 15.5% of the network

instances that the reduction scheme does not completely

solve. We note that D-Wave Binary Quadratic Model (BQM)

and Constrained Quadratic Model (CQM) cannot solve those

instances due to their large number of variables. We observe

that as the problem’s complexity increases when the number

of users increases, the chance that the derived solution in our

scheme is feasible decreases, especially when there are more

than 175 users. Still, a 175-user instance is already 17.5×
greater than the toy example that D-Wave can handle (only

10 users) discussed in Section III.C. Further improvements of

our scheme are left to the future works.

C. Algorithm Performance

In this part, we would like to evaluate the performance

of Quantum Annealing in comparison with a well-known

classical algorithm, Best Fit [24]. To solve BP, Best Fit simply

assigns a user to the most utilized beam that the user can be

assigned to without violating any constraints. If the user can

not be assigned to any existing beams, the satellite activates

a new beam. Here, for fair evaluation, we only consider cases

that are completely solved by Quantum Annealing. We remove

cases where the reduction scheme can reach optimality. We

also use the objective value of P2′ as the lower bound of the

optimal beam placement. In Fig. 5, we can see that for the

cases where Quantum Annealing’s solutions are feasible, their
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Fig. 4. Success probability to achieve feasible solutions of our scheme. Note
that D-Wave BQM and CQM cannot solve those instances without variable
reduction methods due to hardware limit.
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Fig. 5. The performance comparison of our proposed algorithm and Best
Fit [24]. Our algorithm achieves near-optimal solutions and outperforms Best
Fit (solved on a classical computer).

objective values can reach near-optimal quality. Moreover, we

also observe that the gap between Quantum Annealing and

Best Fit increases as the number of users increases.

VI. CONCLUSION

In this paper, we use a quantum computer to solve the

Beam Placement problem and evaluate the performance on

a real-world dataset of vessel locations in the US. We first

construct a QUBO formulation for the problem as an input of

quantum annealers. Due to quantum annealers’ variable limit,

we propose a Hamiltonian reduction method to reduce the

number of logical qubits required. First, our reduction method

significantly reduces the number of logical qubits required to

solve the equivalent QUBO of the original problem with the

first quantile of reduction ratio more than 99% while D-Wave

Roof Duality offers no reduction. Second, the experiments

show that there is a high chance to reach feasible solutions

using our reduction method and Quantum Annealing while

D-Wave BQM and CQM cannot solve the instances with

more than 25 users. Finally, we note that feasible solutions

achieved by our method outperform Best Fit, a well-known

classical method. We hope that our work helps trigger further

developments on applying quantum computing for satellite

communications problems, especially those with clique cover-

ing/graph coloring formulations.
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