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Abstract—The implementation of optimized man-
agement process for road intersections in Coopera-
tive Intelligent Transport Systems (C-ITS) is highly
recommended in order to reduce traffic jams and
fuel consumption. Most of solutions are implemented
on light controllers and they use various sensors in
order to optimize intersection management. The use of
vehicle communications, mainly 12V (Infrastructure
to Vehicle), enhances the solutions since the vehi-
cles continuously provide messages about their status
(position, timestamp, speed, heading, etc.). In this
paper, we suppose that a manager is embedded on
a hot-spot located at a road intersection. It will know
the status of each road (thanks to requests sent by
vehicles approaching the intersection) and will give
the right to the most relevant vehicle to pass through
the intersection (many vehicles could drive in the same
time when they use concurrent roads). Our algorithm
measures the weight of each lane and allows to non-
crossing ones having the highest weight to traverse the
intersection. The calculation of the weight is based on
many parameters: the waiting time, the length of the
road queue and some others. Our algorithm considers
that the intersection topology as stable. The algorithm
has been implemented on a simulator on three urban
scenarios and our results show very promising perfor-
mances, they show considerable enhancement in terms
of computing time.

Index Terms—Road intersection, 12V, optimisation,
C-ITS, Road Traffic.

I. INTRODUCTION

In order to be ready to accept autonomous vehi-
cles in cities, the road infrastructure should be ready
to work properly. One of the most challenging issue
with autonomous vehicles is intersection crossing
which is constrained by the concurrency of roads
on the intersection together with waiting time of
vehicles which should be handled with fairness. We
model in this paper the intersection manager as a
supervisor which is able to watch all roads on the
intersection.

We suppose that each vehicle which intends to
pass through the intersection will send a request to
the manager. This request contains both the entry
point and the output point of the intersection. In
addition to that, it should contain some features of

the vehicle as its type, its dimensions. All requests
are handled by the manager and its duty is to
minimize the average waiting time together with
the maximal waiting time. In parallel, the manager
should take care of the fluidity of the traffic. All
vehicles have to respect the manager decision and
have to follow its recommendations in order to
reach their destinations. We propose a methodology
which is able to consider these requests in an
optimal manner: it will minimize the waiting time of
vehicles through relevant synchronised movements
of vehicles.

The rest of paper is organized as follows: section
II gives an overview of some recent works about the
management of intersection using C-ITS. In section
III, the system model that we have chosen. Section
IV is dedicated to our detailed algorithm. Section V
gives the results of our evaluation. Section VI gives
some ideas about future work and improvement in
our model. Finally, section VII concludes the paper.

II. RELATED WORK

In this section, we give details of some works
done about the smart management of intersections.
[2] proposes an approach for controlling the
traffic at isolated intersections where vehicles are
equipped with on-board units (ITS station). A ve-
hicle is allowed to cross the intersection if the
green color is displayed to the an on-board screen.
The control aims to smooth the traffic through
the sequence of vehicles authorized to traverse the
intersection. The main challenge raised with the
assumption is that the sequence must be dynami-
cally formed by a real time application. They have
proposed a model based on Timed Petri Nets with
Multipliers (TPNM) which allows to propose the
control policy through the structural analysis. The
resulting switching rules are very simplistic and
efficient for isolated intersections.

In [3], the authors have proposed a novel ap-
proach to traffic control at intersections. Via vehicle
to vehicle or vehicle to infrastructure communi-
cations, vehicles can compete for the privilege of



passing the intersection, i.e., traffic is controlled via
coordination among vehicles. They have modeled
the problem as a new variant of the classic mutual
exclusion problem. They evaluate the performance
and their results show that the approach is efficient
and outperforms a reference algorithm based on
optimal traffic light scheduling.

[4] proposes a new algorithm to realize inter-
section control via vehicular ad hoc networking.
As in [3], the approach adopts a mutual exclusion
algorithm, which can let vehicles at an intersection
compete for the privilege of passing via message
exchange. In this work, they adopt a group based
privilege competition which allows only group head
handling requests from other lanes.

The solution proposed in [5], denoted as coop-
erative intersection control (CIC), considers vehicle
dynamics and is based on the concept of virtual pla-
tooning. Virtual platooning allows to form platoons
of vehicles that are in different lanes of the intersec-
tion and have different directional intentions. Safe
passage of the vehicles through the intersection and
a high intersection throughput (due to close “vir-
tual” vehicle following) can be applied. [7] proposes
general solutions to manage autonomous driving
in urban areas by using a collective perception
algorithm embedded on all vehicles. This collective
perception enhances the performances of the road
management by vehicles.

In [8], the authors consider vehicle heterogene-
ity and integrate a priority scheme into perimeter
control. This is achieved by installing priority lanes
at some of the perimeter intersections. Contrary to
other works that provide priority to certain traf-
fic modes, they dynamically identify the groups
of vehicles that should be prioritized. Then, they
develop a predictive control model approach able to
optimize the toll for using the priority lanes and the
traffic signal timings at the perimeter intersections.

[9] introduces an Internet of Agents (IoA) frame-
work for connected vehicles where agents make
their own decisions to improve the effectiveness
of any C-ITS through V2V communications with
other agents. A case study on distributed traffic
control system without traffic signal is presented.
In particular, they consider traffic control at in-
tersection problem as a group mutual exclusion
problem where only connected vehicles in non-
conflict relationship are able to enter the core of
intersection simultaneously. They extend the Ri-
cart—Agrawala based-logical clock algorithm to deal
with this problem and they prove the efficiency of
proposal via simulations.

[10] presents a coordination method for inter-
section management in a connected vehicle envi-
ronment. The road network is divided into three
logical sections, namely, buffer area, core area and
free driving area. In addition, a buffer-assignment
mechanism is developed to cooperatively assign a
specific crossing span for an vehicle and guide each
vehicle to adjust its entry time and corresponding
speed in the core area.

In all these studies, we noticed that there is a
lack of considering all lanes and their constraints
in order to schedule the intersection passing. For
this reason, we propose a model which is managed
by a central manager and which is able to handle
all requests coming from vehicles approaching the
intersection. Our proposal is generic enough and
able to handle usual intersection as well as round-
about intersections.

III. SYSTEM MODEL

Our model is based on the work of S. Bai and X.
Bai in [1]. In this paper, the authors consider any
intersection as a chord model: inputs and outputs are
represented on a circle and each input is connected
to all possible outputs by a dashed line. Each output
is connected as well to all inputs which could link
to the output. Then, each couple of points (input,
output) represents a possible trajectory through the
intersection. Each trajectory is represented by a
segment connecting two points on the circle. Two
crossing trajectories are conflict trajectories, two
non crossing ones are concurrent. Fig. 3 is an
example of a chord model.

Fig. 1: A scenario example : satellite view of
Pommery intersection, Reims, France.

From this scheme, we obtain a dual represen-
tation of the chord model (Fig. 4 for example)
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Fig. 2: A scenario example : schematic representa-
tion of Pommery intersection.
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Fig. 3: A scenario example : the chord model of

Pommery intersection.

denoted conflict graph where vertices are trajecto-
ries and edges are conflict between trajectories. In
this model, two trajectories are linked if they are
conflicting.

These representations are useful for understand-
ing the issue but are also interesting to solve the
problem.

An intersection could be modeled by a set of
successive points on the circle. Each point is either
an input or an output. From any number of entries
and exits, S. Bai and X. Bai propose to create virtual
ones so that there is an equal number of entry and
exit points and that any point of entry is associated
with a unique point of exit. As shown in 3, the entry
and exit points are numbered successively in the
trigonometric order. in The trajectory will be called
a lane. If the intersection have a number n. of entry
points and ng of exits, we obtain a maximum of n
entry and exit points. They then propose the MWIS

Fig. 4: A scenario example :
Pommery intersection.

the conflict graph of

algorithm to calculate a maximum weight for an
optimized set of non crossing lanes.

A difficulty is the construction of this model, that
requires to multiply the number of entries and exits
by creating virtual ones, such as there are as many
entries as circulation lanes in the intersection. In
the intersection we will use in our simulation, near
Chiteau Pommery in Reims, France (see Fig. 2 and
1), we have 8 entry points and 6 exits for a total
number of 19 possible circulation lanes : this model
represents this situation by 19 entries and as much
exits.

IV. OUR PROPOSAL

We consider a road intersection in an urban
environment having a fixed topology (entries, ex-
its and driving lanes do not change continuously,
which is a reasonable assumption). We denote by
SL= (Lq,...Ly) the set of all the lanes of the
intersection. Some of these lanes or trajectories are
conflicting (they can not be crossed simultaneously
by vehicles) and some are concurrent ones (they can
be crossed simultaneously by vehicles).

A MCL, for Maximal Concurrent Lanes, is a set
of concurrent lanes such that there is no other lane
that is concurrent with all the lanes of the set. We
propose to first determine SMCL, the set of all the
MCL. Once this is done, this information remains
reachable to the manager of the intersection in a
dedicated memory. The number of MCL mainly
depend on the local topology of the intersection.
Despite the fact that theoretical abstract intersec-
tions can lead to a huge number of MCL (see VII,
where the CATALAN numbers are evocated), in real
and concrete situations, the number of MCL seems,



experimentally, very reasonable. We can see some
examples - the last one being our scenario model,
the other two from two other intersections from
Reims - in table L

Number | Number of sets
of lanes of MCL

4 2

12 20

19 55

TABLE I: Examples of configurations

In order to compute the SMCL (see Algorithm
1), one begins by creating the set called CC'L of all
the couples of concurrent lanes [L;, L,]. If we note
L; = (en;,ex;) and L; = (en;,ex;), en; being
the entry number of L;, ex; its exit number, these
lanes are not concurrent if and only if en; < en; <
ex; < exj or en; < en; < exr; < er;.

Once this is done, we choose a lane L; and
we will determine SCL;, the list of all the MCL
containing L; and lanes L; such that i < j < n.
The first step is to create the set C'L; of lanes L;,
© < j, such that L; and L; are concurrent. One can
remark that L; ¢ CL; and that all the lanes in this
set are concurrent to L;, but any couple of lanes of
this set are not necessarily concurrent.

In the second step, we aim to keep only the
subsets of C'L; in which any couple of lanes are
concurrent. We then add L; to these subset and add
it to a list SC'L;. The sets in SCL; are not all MCL,
because they are not necessarily maximal.

In the last step, one takes the sets in SC'L; one
by one and verifies if it is or not included in another
element of SCL;. If it is the case, we remove
this set from SCL;. At the end of the step, SC'L;
contains only MCL.

This information, SMCL, is known by the super-
visor, as well as the entry and exit points of each
vehicle waiting at the intersection. The supervisor is
supposed to know the waiting time of each vehicle
as well as the number of vehicles in each queue.
With this information he can determine the weight
wL of each lane L at any given time. In our
simulations (see V), the weight is, in one case, the
length of the queue, and in the other the waiting
time of the first vehicle of each queue.

We set the time ¢ at 0; the supervisor determine
all the weights wL, then the weight wS of each
MCL S by adding the weights of the lanes in
S. It then selects Sa a MCL with the maximum
weight - this MCL is not necessarily unique.
The vehicles in the lanes of this MCL will be
authorized to cross the intersection as long as the

Algorithm 1 Algorithm for generating the sets of

MCL
1: receive SL
2: N |SL|
3:forall L; & L; € SL do
4: if L; & L; concurrent then

5 add [LZ,LJ] to CCL
6 end if

7: end for

8: for all L, € SL do

9

10: for all C € CCL do

11: if C = [LZ, LJ} OR C = [Lj, Ll} then

12: add Lj to CL;

13: end if

14: end for

15: if |CL;| = 0 then

16: add L; to CL;

17: add L; to SCL;

18: else

19: SCL; < subsets of CL;

20: for all S, € SCL; do

21: if 3 two non concurrent lanes in Sy,
then

22: remove S from SCL;

23: else

24: add L; to Sy

25: end if

26: end for

27: end if

28: for all S, & S, € SCL; do

29: if S C Sy then

30: remove Sy from SCL;

31: else if Sy C Sj then

32: remove Sy from SCL;

33: end if

34: end for

35: add SCL; to SMCL

36: end for

37: return SMCL

time t is inferior to a fixed value T'max. When
t = Tmax or if the lanes of the set are empty
before ¢ = T'max, the supervisor set the time ¢ to 0
and restart the process, as described in Algorithm 2.

We have obtained similar results as MWIS pro-
cess [1] but with lower computation time, as shown
in the next section.

V. SIMULATIONS

We have used our algorithms with three config-
urations, two from [1] and one from the Pommery



Algorithm 2 Algorithm used to determine the set
of MCL authorized to cross
1: receive SL
receive SMCL
t receive 0
for all L € SL do
determine wL
end for
for all S € SMCL do
wS + > wL

LeS
9: add wS to WS
10: end for
1: M < max(W5)
12: Sa < S such that wS = M
13: while t < Tmaz & (3 L € Sa, L #0) do
14: authorize vehicles in lanes L € Sa to cross
15: end while

X DN AR

intersection, described before in this article (Fig 2
and Fig 1). The weights affected to each lane are
random. The average results are in table II.

Number MWIS Generating | Maximal
of algorithm sets of weight of
lanes (ms) MCL (ms) | MCL (us)
4 0.8 0.6 15
12 7 9.6 41
19 14.5 900 140

TABLE II: Running time of algorithms

We see that our algorithm for traffic control is
100 times faster than MWIS from [1], which is not
surprising. The sets of MCL are being generated
only once and memorized. Our algorithm which
generates those sets seems less efficient than MWIS,
but our computation is being done only once by
the supervisor and not repeatedly as with MWIS
method. It must be updated only in case of problems
on the road (road works, accidents, ...) and does it
fast enough for this issue.

Let see now if our model works. We simulated
the traffic, using our algorithms, in the Pommery
intersection in Reims. To be precise, we will de-
termine the average waiting time of the vehicles
having crossed the intersection every minute for 3
hours. In our scenario, we suppose that the rate of
arrival of vehicles at the intersection begins at 2000
vehicles per hour, then increase regularly to 5400
and then decrease to return to 2000. We can see the
arrival rate in figure 5. We suppose that each vehicle
can cross the intersection in at most 3 seconds, and
that Tmax is 30 seconds. The arrival of vehicles is
simulated by a Poisson process which mean is given

by the arrival rate of 6 divided by 120 - the mean
is the number of vehicles every 30s.

5000 4

4500 1

4000

35001

3000 4

25001

Arrival rate (vehicules/hour)

o] 5‘0 160 15;0
Simulation time (minutes)

Fig. 5: Vehicle arrival rate at Pommery intersection.

We had at first to make a model of this intersec-
tion, that will, instead of 8 entries and 6 exits, have
19 of each and as much lanes.

We used two kinds of weights, one that uses only
the waiting time of the first vehicle in each lane,
and another that uses only the queue length of each
lane. The results can be seen in Fig. 6.

Our results show an effective algorithm, as good
as MWIS, but needing highly less calculus time.
The average waiting time is stable for an arrival
rate varying from 2500 to 4000 vehicles/hour, then
increase with the arrival rate. One can observe that
as soon as the arrival rate decrease, the waiting
time drops very quickly to return to its initial value.
Moreover, as observed in [1], the simulation using
as weight the waiting time of the first vehicle of
each queue and the one using the length of each
queue don’t seem to show significant differences.
More simulations, with different configuration of
intersection and other weights, will be needed to
confirm this.

o
o
L

l —First vehicule waiting time
—Queue length

o
=}
L

s
o
L

~
o
L

,_.
5]
L

Average waiting time (seconds)

Simulation time (minutes)

Fig. 6: Algorithm performance at Pommery inter-
section.



VI. FUTURE WORK AND IMPROVEMENT

Another point to improve is the model. It may be
possible to limit the number of virtual entries and
exits to create and to have a more efficient algorithm
to determine the list of the sets of maximal concur-
rent lanes. One idea is to use DYCK words. A DYCK
word is a balanced string of parenthesis. For any
intersection, we will add as few as possible virtual
entries and exits so that entries and exits will be
alternated. We will have at most n = 2(n.+ns—1)
such points (half entries and exits). For the Pom-
mery intersection, we have n, = 8, ng = 6 but
only n = 20 instead of n = 38 with MWIS method.
Each entry will be followed by an exit and each exit
will be followed by an entry. The point is that if all
trajectories between entries and exits are authorised,
a MCL can be seen as a DYCK word with size
n. See the example given in Fig.7 for a 5 entries
and 5 alternated exits intersection with a MCL
corresponding to the DYCK word EESESSEESS
(with E representing an entry and S an exit) or in
an equivalent way (()())(()). If we note N(n) the
number of DYCK words with length n, we have

N(n+1) = Y N(k)N(n — k) and we know
k=0
1 2n
then that, N(n) = —— (the nth CATALAN
n+1l\n

n

number, which is equivalent to ) which is
n\/mn

then an upper bound to the number of MCL. DYCK
words can easily be determined. The fact is, due to
the added virtual entries and exits, some of those
words represent the same MCL and some represent
a subset of a MCL. That does not really matter
to determinate which MCL is of maximal weight,
except for time efficiency. It just remains then to
sort an efficient set of representatives of MCL from
all DYCK words to optimize their use.

VII. CONCLUSION

In this article, we have shown that it is possible,
for any intersection, to calculate easily an important
topological information, the sets of maximal con-
current lanes, by a supervisor, and use it to calculate
very efficiently a weight for each of those sets and
then decide the set that will be allowed to cross the
intersection.

In future work, we will try other kinds of weight,
for example using the speed of increasing or de-
creasing in queue length, the presence of different
types of vehicles (cars, trucks, priority vehicles, ...).
Those parameters concern only the entry point. It

B

Ey

Fig. 7: A MCL corresponding to the DYCK word
(E1 (EQSl)(E352)53)(E4(E5S4)55) We let in-
dices and write both parenthesis and letters to make
the associations between entries and exits easier to
read.

will be interesting to add in the weight information
from the exits, such as if a given exit is free or not.
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