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Abstract—Sixth-generation (6G)-enabled massive network slic-
ing is a strong enabler for the expected pervasive digitalization
of the vertical market. In such a context, artificial intelligence
(AI)-driven zero-touch network automation should present a high
degree of scalability and sustainability, especially when deployed
in live production networks wherein the collected monitoring
datasets at different points are non-independent and identically
distributed (non-IID). This paper presents a new cloud-native
service-level agreement (SLA)-driven stochastic policy to guar-
antee a scalable and fast operation of constrained federated
learning (FL)-based analytic engines that perform statistical slice-
level resource provisioning at RAN-Edge in a non-IID setup. Both
simulated and cloud-native emulated scenarios are implemented
to demonstrate the superiority of the solution in reducing SLA
violation, convergence time and computation cost compared to
different FL baselines, showcasing thereby a higher scalability.

Index Terms—6G, cloud-native, federated learning, game the-
ory, proxy-Lagrangian, resource allocation, SLA, stochastic policy,
ZSM

I. INTRODUCTION

6G networks are expected to intelligently support a massive
number of simultaneous and heterogeneous slices associ-

ated with various vertical use cases. In this respect, challenges
of scalability and sustainability might surface in the deployment
of artificial intelligence (AI)-driven zero-touch management
and orchestration (MANO) of the end-to-end (E2E) slices
under stringent service level agreements (SLAs). In this respect,
ETSI has standardized the zero-touch network and service
management (ZSM) framework, where a reference architecture
and AI-based closed-loop management automation have been
proposed [1]. However, the traditional centralized approach for
monitoring, analyzing, and controlling the underlying raw data
will be problematic because it suffers from significant overhead
and delay and a single point of failure. On the other hand, the
decentralized approach ensures scalability, low data exchange
and, therefore, more security. In this view, distributed artificial

intelligence (AI) approaches, particularly FL techniques can
play a vital role in monitoring scattered data across the network
while reducing the computational costs and enabling fast local
analysis and decision. In practice, Cloud-native approaches are
considered the primary enabler to develop, build, run, and
manage such FL-based analytic and decision functions that
are intended to run in live networks [2]. Nonetheless, both
the convergence delay and computation cost often limit FL
capability under non-IID real network data [3].

A. Related Work

In [4], the author focused on gradient-descent based feder-
ated learning (FedAvg) with the local model update and global
model aggregation steps as well as analyzed the convergence
bound for federated learning with non-IID data distributions,
which turns out to suffer from convergence delay. On the
other hand, to solve this performance degradation, the authors
in [5] proposed a Hybrid-FL, where the server updates the
model using data gathered from the selected clients that hold
IID datasets and thereafter merges the resulting model with
models trained by the rest of the clients. Similarly, the authors
of [6] proposed a entropy-based federated averaging scheme
using clustering technique to calculate dataset entropy and
stochastically client selection policy to significantly stabilize
the training and reduce the corresponding computation cost
and convergence time. Also, a strategy to improve training
on non-IID data has been proposed in [7], which consists on
creating a small subset of globally shared data between all Edge
devices under network resource constraints and also analyzed
the convergence bound of FL.

B. Contributions

In this paper, we present a containerized Cloud-native em-
ulation system that implements a novel scalable SLA-driven
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Figure 1: Proposed architecture

stochastic FL for network slicing resource provisioning un-
der SLA constraints. The solution uses Docker compose and
Docker containers to facilitate the development and testing of
FL applications in 6G networks. Specifically,

• To deal with the FL resource provisioning task at the local
analytic engines (AEs), we formulate the corresponding
SLA-constrained optimization problem under the proxy-
Lagrangian framework and solve it via a non-zero sum
two-player game strategy.

• To ensure scalability under massive slicing, we design
a novel SLA-driven stochastic FL policy for selecting
a subset of AEs that will participate in the FL task at
each round, which enhances the convergence time while
maintaining the same computation cost no matter how the
number of AEs increase over the network.

• We deploy the proposed solution in a containerized cloud-
native environment and compare our simulated results with
the emulated system. Besides, we present our simulated
results in both constrained and unconstrained SLA cases.

II. PROPOSED NETWORK MODEL AND DATASETS

As shown in Fig. 1, a 6G RAN-Edge topology under a per-
slice central unit (CU)/distributed unit (DU) functional split,
wherein each transmission/reception point (TRP) is co-located
with its DUs has considered. Basically, each CU consists of a
monitoring system (MS) and an AI-enabled slice resource al-
location function called analytic engine (AE). Each CU k (k =
1, . . . ,K) runs as a virtual network function (VNF) on top
of a commodity hardware, and performs slice level RAN key
performance indicators data collection to build its local datasets
for slice n (n = 1, . . . , n), i.e., Dk,n = {x(i)

k,n, y
(i)
k,n}

Dk,n

i=1 , where
x
(i)
k,n stands for the input features vector while y

(i)
k,n represents

the corresponding output.
Assumed that the collected datasets are generally non-

exhaustive to train accurate analytical models, a selected subset
of AEs takes part in a federated learning task wherein an E2E
slice-level AE plays the role of an aggregation server.

Table I summarizes the features and the supervised output of
the local datasets, which have been collected from a live LTE-
Advanced (LTE-A) RAN with the hourly traffics of the top-10
over-the-top (OTT) applications. These accumulated realistic
datasets are non-IID due to the different traffic profiles induced
by the heterogeneous users’ distribution and channel conditions.
Such non-IIDness nature of datasets makes FL algorithms
challenging for training.

Table I: Dataset Features and Output

Feature Description

OTT Traffics
Apple, Facebook, Facebook Messages,
Facebook Video, Instagram, NetFlix,

HTTPS, QUIC, Whatsapp, and Youtube
CQI Channel quality indicator
MIMO Full-Rank MIMO full-rank usage (%)
# Users Downlink Average active users

Output Description
CPU Load CPU resource consumption (%)

III. SLA VIOLATION-AWARE FEDERATED RESOURCE
ALLOCATION AND PROPOSED SLA-DRIVEN STOCHASTIC

FL POLICY

An SLA is established between slice n tenant and the
infrastructure provider so that any assigned resource to the
tenant should not exceed a range [αn, βn] with a probability
higher than an agreed threshold γn. This corresponds to solving
a statistically constrained local resource allocation problem
with both empirical cumulative density function (ECDF) and
complementary ECDF (ECCDF) constraints at FL round t (t =
0, . . . , T − 1), i.e.,

min
W

(t)
k,n

1

Dk,n

Dk,n∑
i=1

ℓ
(
y
(i)
k,n, ŷ

(i)
k,n

(
W

(t)
k,n,xk,n

))
, (1a)



FL training

Selected AEs based on 

Probability Distribution 


SLA violation rate of 

each all AEs




Probability

Distribution




Figure 2: Proposed policy for AE selection.

s.t. Fxk,n∼Dk,n
(αn) =

1

Dk,n

Dk,n∑
i=1

1
(
ŷ
(i)
k,n < αn

)
≤ γn, (1b)

F̃xk,n∼Dk,n
(βn) =

1

Dk,n

Dk,n∑
i=1

1
(
ŷ
(i)
k,n > βn

)
≤ γn, (1c)

which is solved by invoking the so-called proxy Lagrangian
framework [9]. This consists first on considering two La-
grangians as follows:

L
W

(t)
k,n

=
1

Dk,n

Dk,n∑
i=1

ℓ
(
y
(i)
k,n, ŷ

(i)
k,n

(
W

(t)
k,n,xk,n

))
+ λ1Ψ1

(
W

(t)
k,n

)
+ λ2Ψ2

(
W

(t)
k,n

)
,

(2a)

Lλ = λ1Φ1

(
W

(t)
k,n

)
+ λ2Φ2

(
W

(t)
k,n

)
, (2b)

where Φ1,2 and Ψ1,2 represent the original constraints and
their smooth surrogates, respectively. Specifically, the indicator
terms in (1b) and (1c) are replaced with Logistic functions.
This optimization task turns out to be a non-zero-sum two-
player game in which the W

(t)
k,n-player aims at minimizing

L
W

(t)
k,n

, while the λ-player wishes to maximize Lλ [8, Lemma
8]. While optimizing the first Lagrangian w.r.t. Wk,n re-
quires differentiating the constraint functions Ψ1(W

(t)
k,n) and

Ψ2(W
(t)
k,n), to differentiate the second Lagrangian w.r.t. λ we

only need to evaluate Φ1

(
W

(t)
k,n

)
and Φ2

(
W

(t)
k,n

)
. Hence,

a surrogate is only necessary for the Wk,n-player; the λ-
player can continue using the original constraint functions. Via
Lagrange multipliers, the λ-player chooses how much to weigh
the proxy constraint functions, but does so in such a way as to
satisfy the original constraints, and ends up reaching a nearly-
optimal nearly-feasible solution [10].

We aim to select only a subset of active AEs in each FL
round to optimize the federated learning computation time
and the underlying resource consumption. In this regard, we
propose an SLA-driven stochastic AE selection policy. Upon
the completion of the training at round t, each AE (k, n)
evaluates the generalization of its FL model using a typical
test dataset D̃n of size D̃n—that is common to all monitoring

Algorithm 1: SLA-Driven Stochastic Federated Learn-
ing Policy.

Input: K, m, ηλ, T , L. # See Table II
parallel for k = 1, . . . ,K do
# Calculate SLA based violation rate
AE (k, n) calculates νk,n according to 4 and reports it to the
aggregation server
end parallel for
# Federated Learning
# Server generates probability distribution
using Softmin function
for k = 1, . . . ,K do

πk,n =
exp{−νk,n}∑K
l=1

exp{−νl,n} , k = 1, . . . ,K

end
Server initializes W

(0)
n with initial training parameter

for t = 0, . . . , T − 1 do
# Server selects the m AEs ID using
np.random.choice
AE

(t)
k1,n

, . . . ,AE
(t)
km,n ∼ {π1,n, . . . , πK,n |

AE1,n, . . . ,AEK,n}
Server broadcasts W(0) to the m selected AEs
parallel for k ∈ {k1, . . . , km} do
# Local epochs
for l = 0, . . . , L− 1 do

Solve the proxy-Lagrangian game between L
W

(t)
k,n

and Lλ

and get Wk,l
end
return W

(t)
k,n = Wk,L−1

Each local AE k sends W
(t)
k,n to the aggregation server.

end parallel for
# FL Server Aggregation
return W

(t+1)
n =

∑
k∈{k1,...,km}

Dk,n

Dn
W

(t)
k,n

Broadcasts W
(t+1)
n to all K AEs.

end

systems of slice n— and calculates the so-called SLA violation
rate as,

νk,n =
1

D̃n

D̃n∑
i=1

1
[(

ŷ
(i)
k,n < αn

) ⋃ (
ŷ
(i)
k,n > βn

)]
. (3)

Next, at each FL round t, as presented in Fig. 2, all of the
participated AEs send their SLA violation rates to the server
which generates a probability distribution using softmin
function as,

πk,n =
exp{−νk,n}∑K
p=1 exp{−νp,n}

, (4)
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Figure 3: Cloud native implementation of FL agents

wherein AEs with low SLA violation are given a high proba-
bility of FL participation to drive the model convergence, but
also AEs with high SLA violation might take part in the FL
training with a low probability to guarantee the generalization
that could stem from their datasets. Based on the probability
distribution, only a subset of m < K AEs is drawn at each FL
round to

AE
(t)
k1,n

, . . . ,AE
(t)
km,n ∼ {π1,n, . . . , πK,n | AE1,n, . . . ,AEK,n},

(5)
Thus, the AEs would have stochastically participated in the

FL task while avoiding the concurrent training at each round.
And the model averaging at round t is performed as,

W(t+1)
n =

∑
k∈{k1,...,km}

Dk,n

Dn
W

(t)
k,n. (6)

Where Dn is the sum of datasets sizes over all slice n’s AEs.
This proposed procedure is summarized in Algorithm 1. Here,
Python with TensorFlow library is used to train and validate
the proposed model.

IV. CLOUD NATIVE DEPLOYMENT OF FL AGENTS

The main goal is to deploy a cloud-natie approach of FL
agents to check the feasibility of our algorithm in the actual
scenario and prove the scalability of our proposed policy. To
emulate the cloud-native deployments, we use Docker compose
tool. The reason behind choosing Docker-compose for deploy-
ments is that it usually runs on top of Kubernetes. Also, these
kind of implementations expect to be supported by Container
Orchestration Engines (COE) offered Slices as Platform as a
Service (PaaS), as specified in ETSI NFV IFA 029[11], which
is our future target to implement.

A. Architecture

In Fig. 3 illustrates the cloud-native implementation of FL
agents where FL Server (OSS server) alongwith one module
who is responsible for overall orchestration is besides in one

docker container. On the other hand, several AEs, in this
case, clients simultaneously run by using Docker compose tool.
Through REST API, the Server and clients can communicate
with each other. FastAPI as a REST API is used in our
implementation because it is a modern, open-source, fast, and
highly performant Python web framework used for building
Web APIs with Python 3.6+ based on standard type hints [12].

B. Communication process

There are two main modules: the server module, which is
responsible for conducting training among clients, and the other
module, which is used by all the clients who will participate in
the overall FL training process. Communications are performed
using the HTTP protocol through several REST interfaces
among the server and client nodes.

1) Server Side: The server container contains the main.py
module that acts as a controller, the REST API that can
communicate with other REST APIs, and the Server class
responsible for all the logic. It has the following set of basic
REST operations:

• POST/client: Registering clients with the Server.
• GET/select clients: Initiate policy for selecting clients and

corresponding FL training.
• POST/SLA: Clients send their SLA violation rate to the

Server node.
• PUT/model-weights: Clients send calculated model pa-

rameters to the Server node.
2) Client side: The client container contains the app.py

module responsible for REST API communications and the
client module, where the Machine Learning models are im-
plemented. It has the following set of basic REST operations:

• PUT/SLA: Server requests each of the clients to calculate
their SLA violation rate.

• POST/training: Server requests the selected clients to
start FL training.

C. Working procedure of the overall network

For running the overall network correctly, the system’s first
requirement is that the server node is in running mode, and
at least one client node is available for training. Following the
mentioned way, the overall system will work.

• At first, all clients should know about the server node’s
IP address, and they register with the server node through
the POST/client request with their own IP address.

• After registration, the server node send requests to all
registered clients to start the proposed clients selection
policy through POST/select-client request.

• Then, all clients calculate and send their associated SLA
violation rate value to the Server through PUT/SLA and
POST/SLA.



• Next, the Server generates the probability ildistribution of
all clients using softmin function and select clients for
training by using np.random.choice functions.

• Finally, the Server send POST/training requests to the
selected clients and start FL training.

• Later, model weights of each clients send to the Server
through PUT/model-weights, and then the Server calcu-
late the average of model weights and update the overall
system and repeat the same procedure for upcoming FL
rounds.

V. RESULTS

A. Parameter Settings and Baseline

We consider below three primary slices to analyze the
proposed FL policy, defined as follows:

• eMBB: Netflix, Youtube and Facebook Video,
• Social Media: Facebook, Facebook Messages, Whatsapp

and Instagram,
• Browsing: Apple, HTTP and QUIC,

Here, the traffic associated with each mentioned slice is the sum
of the underlying OTTs’ traffics that collects from the hourly
traffics of the slices for five days , and the overall summary
of those datasets are presented in Table I at section II. We use
vectors α, β for the resource bounds, and γ for the thresholds
corresponding to the different slices for a particular resource.
The parameters settings are mentioned in Table II. Noted that
due to the resource constraint of our virtual machine where we
run our docker server and clients, we only able to create 40 and
50 containers as clients for training the proposed FL policy.

Table II: Settings

Parameter Description Value
N # Slices 3
K # AEs 100 (Simul.), (50, 40) (Emul.)
m # Selected AEs 50 (Simul.), 25 (Emul.)

Dk,n Local dataset size 1000 samples
T # Max FL rounds 30
L # Local epochs 160
Rλ Lagrange multiplier radius Constrained: 10−5

ηλ Learning rate 0.02

B. Simulated and Cloud-Emulated Results

In the simulated scenario, resources at CU-level are dynam-
ically allocated to slices according to their traffic patterns and
radio conditions (average CQI, MIMO full-rank usage). Fig. 3

Convergence: Observing Fig.4, we can conclude that for all
slices, policy-based FL converges faster than without policy,
since the the AEs with lower violation rate have more chances
to participate in the training. On the other hand, Fig 5 shows
the results of our emulated FL environment where the proposed
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model has been trained with K = (40, 50) AEs. For both cases,
the presented policy-based FL converges faster after 8 rounds
with m = 25 selected AEs in both simulated and emulated
scenarios. Therefore, the selected subset of AEs are sufficient
to keep the same performance even if we increase the total
number of AEs as the number of slices and CUs increases in
the physical network, which ensures scalability.

Scalability: Furthermore, as depicted in Fig. 6, the compu-
tation time vs. rounds trend shows that the proposed policy
at the emulated system minimizes the computation burden
more quickly than the simulated system, while noticing also
that the computation load depends on the size of the physical
machine. Interestingly, since we settle for a subset of AEs, the
computation cost is maintained at the same level no matter how
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the total number of AEs increases (K = (40, 50))while in the
case of deactivated policy, the computation time of emulation
system (e.g., K = 50 as in Fig. 6) is clearly higher with an
exponential trend. Note that we have implemented our docker
Server-Clients in such a way that it is only able to tackle IO-
bound tasks, not CPU-bound ones. Finally, to investigate the
trade-off, the CPU SLA violation rates of the slices are shown
in Fig.7, where it is observed that the policy-driven constrained
FL presents significantly lower violations compared to FedAvg
while preserving the performance of constrained FL without
policy (i.e., around 1%).

VI. FUTURE RESEARCH DIRECTIONS

This paper focuses on scalability and sustainability of 6G
networks, considering only computing resources. In future,
we can concentrate on overall resources such as computing,
communication, which may make our model more realistic.
Moreover, in actual deployment, the operator/slice tenant needs
to understand the FL model’s behavior at a specific time (e.g.,

busy hour) to trust the AI. We can work on the above research
directions to build an advanced AI-based trust model, ensure
hassle-free processes, and improve security to the 6G hetero-
geneous networks. Furthermore, we can also focus on further
reducing the convergence time more by handling CPU-bound
tasks in the emulated system. Also, we intend to integrate our
proposed policy in a real multi-technological domain network.

VII. CONCLUSION

In this paper, we have presented a scalable cloud-native
SLA-driven stochastic FL policy for zero-touch network slicing
resource allocation. By dynamically selecting only a subset of
active analytic engines based on their achieved SLA violation
rate, the FL training has been significantly stabilized while min-
imizing the convergence time and reducing the corresponding
computation cost and SLA violation rate. Moreover, Numerical
results have been given at both simulated and cloud native
emulated scenarios to support these findings and show the proof
of scalability using our proposed policy at the emulated system.
However, some research challenges are also mentioned in this
paper that requires further research effort in that direction.
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