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Abstract—We show that spatially coupled low-density parity-
check (LDPC) codes yield robust performance over changing
intersymbol interfere (ISI) channels with optimal and suboptimal
detectors. We compare the performance with classical LDPC
code design which involves optimizing the degree distribution
for a given (known) channel. We demonstrate that these classical
schemes, despite working very good when designed for a given
channel, can perform poorly if the channel is exchanged. With
spatially coupled LDPC codes, however, we get performances
close to the symmetric information rates with just a single code,
without the need to know the channel and adapt to it at the
transmitter. We also investigate threshold saturation with the
linear minimum mean square error (LMMSE) detector and show
that with spatial coupling its performance can get remarkably
close to that of an optimal detector for regular LDPC codes.

I. INTRODUCTION

Spatially coupled codes were first studied in [1], [2] in the
context of low-density parity-check (LDPC) codes and later
applied to other classes of codes [3]. They are known to exhibit
remarkably good performance in a range of coding scenarios
[4]–[6] and scenarios beyond coding as well [7], [8]. This
good performance is a consequence of the fact that the belief
propagation (BP) threshold of the coupled code approaches the
threshold of the underlying uncoupled code with maximum
a-priori (MAP) decoding, a phenomenon known as threshold
saturation. This phenomenon was proved in [9], [10] for binary
memoryless symmetric (BMS) channels. For such channels,
it has been shown that spatially coupled LDPC codes can
universally achieve capacity with BP decoding [10].

In [11], it was shown that threshold saturation also occurs
for channels with memory. The authors also showed that,
with regular codes of high node degree, the BP threshold
of the coupled code approaches the symmetric information
rate (SIR) of the simple dicode channel. In [12], the same
phenomenon was demonstrated for three different intersymbol
interference (ISI) channels with larger memory, and it was
shown that a single code universally achieves the SIR of the
three considered ISI channels. It can be observed that spatial
coupling opens up a new paradigm of code design whereby
the global MAP threshold, which was considered practically
unattainable, now matters and can be achieved with the locally
optimal BP decoding. One may then choose a code with good
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Fig. 1. Block diagram showing the transmitter and the ISI channel.

MAP threshold (which often implies bad BP threshold) and
apply spatial coupling to attain the MAP threshold with BP
decoding.

In this paper, we apply spatially coupled LDPC codes
to turbo equalization demonstrating that their universality
provides practical advantages when compared to classical code
design. Classical code design for turbo equalization usually
involves optimizing a code for a particular channel. For LDPC
codes, this often means optimizing the degree distribution for
the considered channel [13]–[15]. The shortcoming is that a
degree distribution optimized for a given channel may perform
poorly over a different channel. Furthermore, one needs to
know the channel at the transmitter. In contrast, due to their
universal behavior, no optimization is required for spatially
coupled LDPC codes, hence there is no need to know the
channel and they are expected to provide superior performance
for scenarios where the channel changes. We compare the
robustness of regular spatially coupled LDPC codes across
three different ISI channels against optimized irregular LDPC
codes in terms of thresholds and finite length simulations.
We also show that with regular codes the suboptimal linear
minimum mean square error (LMMSE) detector, which has a
very poor performance when compared to the optimal detector,
has a performnce quite close to the BCJR detector when
spatially coupled LDPC codes are used with both of them.

The remainder of the paper is organized as follows. After
introducing the considered system model in Section II, we first
discuss classical code design for ISI channels with irregular
LDPC codes to highlight the weakness of such approach in
Section III. In Section IV, we describe code design with
spatially coupled LDPC codes for an optimal detector and how
their universality can overcome these problems. In Section V,
we consider a suboptimal LMMSE detector, discuss threshold
saturation in this setting and show that we cannot simply use
the area bound to provide a meaningful upper bound for the
coupled threshold for such a detector. We then propose a
method to approximate such threshold. Finally, the paper is
concluded in Section VI.
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Fig. 2. Factor graph of turbo equalization with an irregular LDPC code.

II. SYSTEM MODEL

The system model is shown in Fig. 1. A sequence of k
information bits u is encoded onto a codeword v of length n.
The codeword is then mapped into a sequence of symbols x
using binary phase shift keying (BPSK) modulation with the
mapping 0 7→ +1 and 1 7→ −1. The sequence x is transmitted
over an ISI channel of memory ν. The output of the channel
filter, z, is the convolution of x and the impulse response
of the channel, h, which has ν + 1 taps. Table I shows the
impulse responses of the considered ISI channels. The impulse
responses are normalized such that ||h|| = 1. This makes the
signal energy at the receiver, Ez , equal to the signal energy,
Ex, at the input of the ISI channel. The received sequence,
y, is the result of corrupting z by additive white Gaussian
noise. We define γ = Eb/N0, where Eb is the average energy
per information bit and N0 = 2σ2 the noise spectrum density.
Note that Eb/N0 = Ez/RN0, where R is the rate of the code.

At the receiver, the channel detector and the decoder
exchange information iteratively, a process widely known
as turbo equalization. We use BP decoding to decode the
LDPC code while for the channel we consider two types of
detectors—the optimal detector, implemented by applying the
BCJR algorithm, and the suboptimal LMMSE detector. The
detectors are implemented as described in [16]. We thus have
message exchanges within the decoder, i.e., between check
nodes (CNs) and variable nodes (VNs) for IC iterations, and
message exchanges between the VNs and the detector for ID
iterations, as depicted by Fig. 2. The messages exchanged are
log-likelihood ratios.

III. CODE DESIGN FOR TURBO EQUALIZATION WITH
IRREGULAR LDPC CODES

We consider irregular LDPC codes with polynomials λ(x)
and L(x) representing the VN degree distribution from an edge
and node perspective, respectively, while the CN degree dis-
tribution from an edge perspective is represented by ρ(x). The
design rate for such a code is given by R(λ, ρ) = 1−

∫ 1
0
ρ(x)∫ 1

0
λ(x)

.
We consider a design rate of 1/2 for all scenarios. To achieve
good performance with turbo equalization with classical code
design, the LDPC code needs to be specifically designed for

TABLE I
DISCRETE IMPULSE RESPONSES OF THE CONSIDERED ISI CHANNELS

CH-I h = [ 0.7071 −0.7071 ] ν = 1

CH-II h = [ 0.408 0.816 0.408 ] ν = 2

CH-III h = [ 0.227 0.46 0.688 0.46 0.227 ] ν = 4

a given channel. One approach is to optimize the degree
distribution such that the BP threshold is maximized. This can
be achieved via density evolution. We briefly describe density
evolution for irregular LDPC codes over an ISI channel.

The density passed from the detector to the code, p(L(ℓ)
H→v),

is a function of the incoming densities from all VNs p(L(ℓ−1)
v→H )

and the noise distribution. Denoting this function as T we have

p(L
(ℓ)
H→v) = T

(
p(L

(ℓ−1)
v→H ), σ

)
.

It is not possible to obtain T (., .) in closed form for
Gaussian noise (it can be computed for erasure noise [12]),
but it can be evaluated via Monte Carlo methods. For each
VN, its outgoing density to an edge is the convolution of the
density p(L(ℓ)

H→v) from the detector and the dv − 1 incoming
densities from other edges, where dv is the VN degree. The
average density from the VNs to a neighboring CN, p(L(i)

v→c),
is then obtained by averaging over the degree distribution
λ(x). At each CN of degree dc, the outgoing density is
computed from the dc − 1 incoming densities in a nested
fashion using a two-dimensional lookup table for discretized
density evolution [17]. Similar to the VNs, the average density
to a VN, p(L(i)

c→v), is obtained by averaging over the degree
distribution ρ(x). After IC iterations within the code, the
density passed from a VN to the detector, p(L(ℓ)

v→H), is the
convolution of the incoming dv densities from the neighboring
CNs. The density evolution update equation for the joint BP
decoding of the code and channel is thus given as

p(L(i)
v→c) = p(L

(ℓ−1)
H→v )⃝⋆ λ

(
p(L(i−1)

c→v )
)

p(L(ℓ)
c→v) = ρ

(
p(L(i−1)

v→c )
)

p(L
(ℓ)
v→H) = L

(
L(IC)

c→v)
)

p(L
(ℓ)
H→v) = T

(
p(L

(ℓ)
v→H)

)
where for a given density a, λ(a) =

∑
j λja

⃝⋆ (j−1), ρ(a) =∑
j ρja

∗ (j−1) and L(a) =
∑

i Lia
⃝⋆ (j). The operator ⃝⋆

represents the convolution of densities while ∗ represents the
density transformations at the CN as used in [18].

To find a code for a particular channel, we use a two-
step searching scheme. In the first step, a list of codes is
generated using the EXIT chart design method. This is done
by combining the code’s VNs with the detector and fitting the
EXIT curve of the combined node with that of the CNs. The
method is used according to the description in [13] but with
the modification that we use CNs with more than one degree.
The fitting is done manually at an SNR close to the SIR of
the channel. The SIR values were calculated using a numerical



TABLE II
CODES OPTIMIZED FOR THE BCJR DETECTOR

CH-I CH-II CH-III
i λi ρi i λi ρi i λi ρi

2 0.3075 2 0.3963 2 0.5935
3 0.3208 3 0.3589 3 0.0243
5 0.0180 0.0436 4 0.0458 6 0.8856
6 0.0377 5 0.0153 0.0189 7 0.1144
7 0.9456 6 0.9128 11 0.0182
8 0.0108 8 0.0225 17 0.3639
10 0.0130 9 0.0592
13 0.0446 13 0.1583
16 0.0876 17 0.0120
18 0.1708

TABLE III
CODES OPTIMIZED FOR THE LMMSE DETECTOR

CH-I CH-II CH-III
i λi ρi i λi ρi i λi ρi

2 0.2652 2 0.3131 2 0.4792 0.0270
3 0.2921 3 0.2805 3 0.0357
4 0.0489 0.0270 4 0.0123 0.0496 4 0.0172 0.0696
5 0.0663 6 0.1662 5 0.0209 0.0150
6 0.0178 8 0.7841 7 0.0632
8 0.9067 10 0.0139 8 0.8252
12 0.0306 16 0.2225 19 0.4348
14 0.0681 20 0.1578 50 0.0122
18 0.0419
20 0.2355

method described in [19]. Due to the approximate nature of
the EXIT chart approach, a list of NZ codes whose curves
closely fit (imperfections are allowed where we might have a
small crossing of the curves) around the SIR rate are generated.
In the second step, we perform density evolution for each of
the NZ codes and select the code with the best BP threshold.
Table II shows the codes obtained for the BCJR detector
while those for the LMMSE detector are shown in Table III.
With this procedure, we can find codes with threshold close
to the SIR of the particular channel the code is designed
for. This approach, however, does not guarantee that a code
designed for a specific channel performs well for other ISI
channels or a time-varying channel. Tables IV and V show
the BP thresholds of the designed codes for each of the three
considered channels1. In the tables each bold entry represents
the threshold of a code matched to the channel it was designed
for. We observe that when a code designed for a given ISI
channel is applied to a different channel, the gap to the SIR
can be large. For example, the code designed for CH-II under
the LMMSE detector has a threshold 0.1 dB away from the
corresponding SIR, but the code threshold of the same code
is nearly 3 dB away for channel CH-III.

IV. CODE DESIGN WITH SPATIALLY COUPLED CODES

We now consider spatially coupled LDPC codes with a
BCJR detector. The whole system can be described by a factor
graph which combines the graph representing the channel con-
straints and the Tanner graph of the LDPC code. Specifically,

1With a slight abuse of notation, we use the term BP thresholds for the
system with LMMSE detector as well, even though it is not locally optimal
as the BCJR detector.

TABLE IV
CODE DESIGN AND CHANGING CHANNEL WITH BCJR

Designed for BP threshold when applied to SIR
CH-I CH-II CH-III

CH-I 0.93 1.65 4.55 0.82

CH-II 1.42 1.51 4.11 1.44

CH-III 3.29 3.32 3.25 2.96

TABLE V
CODE DESIGN AND CHANGING CHANNEL WITH LMMSE

Designed for BP threshold when applied to SIR
CH-I CH-II CH-III

CH-I 1.02 1.96 6.53 0.82

CH-II 1.37 1.54 5.80 1.44

CH-III 3.52 3.44 3.35 2.96

the factor graph is constructed by placing L copies of a (dv, dc)
regular LDPC code of VN degree dv and CN degree dc in L
spatial positions in the range L ∈ {1, . . . , L}. Fig. 3 shows
the factor graph for three spatial positions, t− 1, t, and t+1.
Each spatial position consists of N VNs, represented by empty
circles, and M CNs (M = dv

dc
N), represented by squares with

a cross. The L copies are coupled as follows: each VN at
position t ∈ L is connected to CNs in the range [t, . . . , t+m],
where m is referred to as the coupling memory. Hence, each
CN at position t is connected to VNs in the range [t−m, . . . , t].
The constraints of the ISI channel at each spatial position are
represented by a square labeled with the letter H, referred
to as factor node. Each of the VNs represented by the black
circles at the bottom of the figure (denoted by {zt}) represent
a block of N symbols at the output of the ISI channel before
being corrupted by noise. This means that z = (z1, . . . ,zL)
(see Fig. 1). The rectangles at each spatial position between
the Tanner graph of the SC-LDPC code and the channel factor
nodes represent multiplexers that multiplex the N code bits at
each spatial position into a single binary sequence (xt, with
x = (x1, . . . ,xL)) at the input of the channel. This makes
n = NL. Decoding is then performed by iteratively passing
messages along the edges of the graph in Fig. 3.

Owing to the universality of spatially coupled LDPC codes,
we perform code design for ISI channels in two steps. We
first pick a regular code with high node degree and then
apply spatial coupling to achieve good performance over all
channels. We apply this principle and consider the (5, 10)
and (6, 12) regular LDPC codes. In Table VI we give the
thresholds for the uncoupled codes (labeled γBP) and those of
the coupled codes for different coupling memories (labelled
γ(m)). We also show the corresponding MAP thresholds and
the SIRs as well. It is observed that uncoupled regular LDPC
codes have poor BP threshold, with a gap up to 5 dB from
the SIR. The MAP thresholds, however, are almost equal to
the SIRs2. Due to threshold saturation, the BP threshold of
spatially coupled LDPC codes are close to the SIR for the

2The MAP thresholds for the system with BCJR detector were obtained
from [12] where they were obtained using the area theorem.



Fig. 3. Compact graph representation for equalization with a (3,6) SC-LDPC
code with coupling memory m = 1.

three different ISI channels. For the (6, 12) code, the threshold
for memory m = 6 is good for all channels and better than
the ones of the optimized codes in Table IV.

In Fig. 4, we give simulation results for the (6, 12) code for
CH-II and CH-III and compare it to the irregular LDPC code
designed for CH-II. For the spatially coupled LDPC code, we
use m = 6 and L = 500 with N = 10 000, which gives the
design rate R = 0.494. The code is decoded using window
decoding [20] with a window size of W = 30, resulting in
a decoding latency of WN = 300 000 symbols. Within the
window, we use IC = 30 iterations in the code and ID = 20
iterations between the code and the channel. For the irregular
code, we use a block length of n = 300 000 and the parity-
check matrix is generated by the progressive edge growth
algorithm [21]. We use IC = 30 iterations within the code
and ID = 20 iterations between the code and the channel. The
results indicate a convergence to the thresholds in Tables IV
and VI, whereby the gaps are smaller for the uncoupled code.
The irregular code designed for CH-II performs very well
for that particular channel, but the performance deteriorates
significantly when the channel is changed to CH-III. The
coupled code shows good performance for both channels.

V. SPATIALLY COUPLED CODES WITH THE LMMSE
DETECTOR

In this section, we consider the use of spatially-coupled
LDPC codes with a suboptimal channel detector, namely
the LMMSE detector. For the LMMSE detector, we also
observe in Table VI that the BP threshold of spatially coupled
LDPC codes improves with increasing memory. It is not
clear, however, which value the coupled threshold saturates
to. This is because using the generalized extrinsic information
transfer (GEXIT) bounding technique as for the BCJR detector
will not give us a meaningful bound. This can be observed by
noting that the upper bound to the MAP threshold is based
on the following facts. The GEXIT of an ISI channel with
entropy h = H(Z|Y ) and initial state S0 is defined as [11]

G(h) =
1

n

dH(X|Y , S0)

dh
.

The conditional entropy rate H(X|Y , S0) can be thought of
as the output of the globally optimal receiver (MAP receiver).

1 1.5 2 2.5 3 3.5 4 4.5
10−5

10−4

10−3

10−2

10−1

Eb/N0

P
b CH-II

CH-III

Fig. 4. Simulation results with BCJR detector. Dashed lines show the
performance of the irregular code optimized for CH-II while solid lines are
for that of the (6,12) with m = 6. The solid short vertical lines are the
corresponding SIRs while the long vertical lines with diamonds mark the BP
thresholds.

But if we use a locally optimal receiver (using BP) instead,
the output entropy will be greater than or equal to that of a
globally optimal receiver. This is because the globally optimal
receiver will reduce the uncertainty about X compared to
the locally optimal receiver. By definition, the integral of the
GEXIT equals the rate of the code as n grows to infinity and
it is equal to zero below the MAP threshold. We thus have

R = lim
n→∞

∫ 1

hMAP
G(h) ≤

∫ 1

hMAP
GBP(h) ,

where GBP(h) is obtained from a BP decoder with both
the block length n and number of iterations ID approaching
infinity. This provides a way to compute an upper bound for
the MAP threshold [22]. This is done by finding h̄ such that
it is the largest positive number such that∫ 1

h̄

GBP(h) = R.

This bound is tight for a receiver with the BCJR detector. If we
change the detector to a suboptimal detector like the LMMSE,
the message passing receiver is no longer locally optimal thus
the performance of the whole sytem is degraded. As a result,
the LMMSE detector will result into greater entropy than the
BCJR detector. This implies that∫ 1

hMAP
GBCJR(h) ≤

∫ 1

hMAP
GLMMSE(h).

Thus if we were to apply the same bounding technique,
we would have an upper bound higher than that of the
receiver with the BCJR detector. But since we know that the
performance will be degraded by using a suboptimal detector,
this bound becomes meaningless.

We can however approximate this value using the positive
gap condition for the EXIT curves [23]. This is done by



TABLE VI
THRESHOLDS OF REGULAR CODES WITH SPATIAL COUPLING FOR ISI CHANNELS WITH BCJR AND LMMSE DETECTORS

BCJR LMMSE
Code Channel γBP γ(1) γ(6) γ(10) γMAP γSIR γBP γ(1) γ(6) γ(10) γArea γSIR

(5, 10)
CH-I 3.03 0.88 0.85 0.84 0.83 0.82 3.55 0.98 0.97 0.97 1.08 0.82

CH-II 4.35 1.483 1.45 1.45 1.44 1.44 5.84 1.71 1.68 1.68 1.82 1.44

CH-III 7.55 3.04 2.99 2.99 2.96 2.96 13.31 3.62 3.59 3.58 3.71 2.96

(6, 12)
CH-I 3.52 0.85 0.84 0.83 0.82 0.82 4.18 0.98 0.96 0.96 1.12 0.82

CH-II 4.94 1.48 1.45 1.45 1.44 1.44 7.00 1.71 1.68 1.67 1.85 1.44

CH-III 8.12 3.04 2.98 2.98 2.96 2.96 14.15 3.69 3.59 3.56 3.72 2.96

combining the detector and the VNs of the LDPC code and
computing the area between the EXIT curve of the combined
node, hf, and that of the CN, hg. An estimate of the BP
threshold of the coupled system is given by finding the SNR
at which the area between the curves transitions from negative
to positive as Eb/N0 is increased. If we denote the function
which gives the entropy of a symmetric Gaussian with mean
µ by ψ(µ), the average output entropy from VNs to a CN,
hE,VN, is given by

hE,VN =
∑
i

λiψ
(
(i− 1)ψ−1(hE,CN) + ψ−1(hE,DET)

)
(1)

where hE,CN is the average entropy from a CN and hE,DET is
the output entropy from a detector. The output entropy of the
detector is a function of the a-priori entropy to the detector
hA,DET and Ez/N0,

hE,DET = D
(

hA,DET,
Ez

N0

)
.

The function D is computed by Monte Carlo simulations and
for a given Ez/N0 it can be approximated by a third order
polynomial in the a-priori entropy,

D
(

hA,DET,
Ez

N0

)
= c3h3A,DET+c2h2A,DET+c1hA,DET+c0 , (2)

where
hA,DET =

∑
i

Liψ
(
iψ−1(hE,CN)

)
. (3)

Substituting (3) and (2) into (1), we obtain the EXIT curve of
the combined variable-detector node hf for a given SNR.

For the CN, we use the dual approximation [18, p. 236] to
obtain the output entropy as

hE,CN = 1−
∑
i

ρiψ
(
(i− 1)ψ−1(1− hE,VN)

)
.

We use a numerical approximation for ψ(µ) and ψ−1(µ) based
on the numerical approximations given in [13] for the J(σ)
function which gives the mutual information of a symmetric
Gaussian density. We use the fact that for a symmetric Gaus-
sian density, µ = σ2

2 which implies J(σ) = 1 − ψ(σ
2

2 ). We
thus have the recursion

hg(v) = 1−
∑
i

ρiψ
(
(i− 1)ψ−1(1− v)

)
hf(u) =

∑
i

λiψ
(
(i− 1)ψ−1(u) + ψ−1

(
DL(u)

))

0 0.2 0.4 0.6 0.8 1
0
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u, h−1
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,h
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1
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(u
)

h−1
g (u)

hf(u)

Fig. 5. Approximating the coupled threshold of an (6,12) LDPC code and
LMMSE equalizer for CH-II using the EXIT chart paradigm. The net area
between the curve is zero at Eb

N0
= 1.85 dB.

where

DL(u) = D
(∑

i

Liψ
(
iψ−1(u)

)
,
Ez

N0

)
.

Fig. 5 illustrates how this recursion can be used to ap-
proximate the coupled threshold for the LMMSE detector.
In Table VI, we denote this approximate value by γArea. It
can be seen that the coupled threshold for higher memory
seems to saturate to a value close but not equal to γArea. It
appears that γArea is a pessimistic estimate as the coupled
threshold always exceeds it. On the other hand, γArea provides
an efficient way to roughly predict the coupling gain directly
from the uncoupled graph.

We can notice in Table VI that the LMMSE detector without
coupling performs quite bad when compared to optimized
irregular codes in Table III. With coupling, however, the
thresholds are improved significantly. In contrast to the case
with the BCJR detector in Section IV, the coupled codes with
the LMMSE detector do not always outperform the optimized
codes for the matched channels but they are nevertheless very
close to them and we still have the robustness with changing
channels.
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Fig. 6. Simulation results comparing the BCJR vs LMMSE detector without
coupling (dashed lines) and with coupling (solid lines) for a (6,12) LDPC
code and CH-III.

We can also notice in Table VI that the linear detector
without coupling yields poor thresholds when compared to the
optimal detector for the same code and channel, especially
for channels with severe ISI (for example in CH-II and
CH-III). The situation, however, changes significantly when
spatial coupling is introduced. We see that the linear detector
achieves performance very close to the optimal detector with
spatial coupling. For CH-III, for example, the BP threshold of
the (5, 10) and (6, 12) codes with LMMSE detector without
coupling is more than 5 dB away from the threshold with
the BJCR detector. With coupling, however, the gap is only a
fraction of dBs for all coupling memories. In Fig. 6 this effect
is shown with simulation results for the (6,12) code with the
same settings as for the BCJR case discussed above for CH-
III. In the figure we can clearly notice the narrowing of the
gap between the two detectors when spatially coupled LDPC
codes are applied.

VI. CONCLUSIONS

We have demonstrated that spatially coupled LDPC codes
are robust against both changing channel conditions and
changing detector type when compared to classical code
design. We can just use one LDPC code with high node
degree with spatial coupling and attain universally good results
for a number of ISI channels with BP decoding. It also
makes the use of the suboptimal linear MMSE detector quite
competitive with the BCJR detector. This can be of great
practical value especially with situations in which applying
the BCJR detector can be prohibitively complex due to, e.g.,
large channel memory.
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