
Multi-Agent DRL for Mitigating Power Collisions in
SGF-NOMA Systems

Muhammad Fayaz†‡, Wenqiang Yi†, Yuanwei Liu†, and Arumugam Nallanathan†
†Queen Mary University of London, London, UK

‡ University of Malakand, Pakistan

Abstract—Semi-grant-free non-orthogonal multiple access
(SGF-NOMA) is a potential paradigm to support massive connec-
tivity for the short packets Internet of things (IoT) applications
while satisfying the undistracted transmission requirements of
primary IoT users. However, resource allocation in SGF-NOMA
is more challenging due to the sporadic traffic of grant-free
(GF) users and the need to satisfy the quality of service (QoS)
requirements of grant-based (GB) users. The GF users access and
choose resources at random, resulting in frequent power collisions
and decoding failures at the base station (BS). This paper develops
a general learning framework that enables GF users to learn
from historical information to avoid power collisions. We utilize
a hybrid multi-agent deep reinforcement learning (hMA-DRL)
framework to maximize the connectivity and enhance the number
of successful decoded users at the BS. The numerical results show
that the proposed scheme achieves a solution near to the optimal
one and increases the successful decoded users by 42.38% as
compared to the benchmark scheme. The considered algorithm
performs well with an increasing number of users as compared
to the competitive and cooperative MA-DRL algorithms.

I. INTRODUCTION

Massive Machine-Type Communication (mMTC) is one of
the three key application scenarios for Fifth Generation and
Beyond (B5G) mobile communication networks primarily fo-
cused on Internet of Things (IoT) applications [1]. IoT devices
are frequently characterized by sporadic transmission, small
packet sizes, and massive connectivity needs. However, the
conventional multiple access methods are originally developed
for human-centric wireless communication and mainly based
on the orthogonality. As a result, they are unable to meet the
extraordinary network traffic and device density requirements
for IoT applications [2]. Therefore, the power domain non-
orthogonal multiple access (NOMA) has recently emerged as
a viable solution to this problem in which several users (with
different power levels) share the same resource block (RB) with
the help of superposition coding at the transmitter and succes-
sive interference cancellation (SIC) at the receiver, resulting
in increased spectral efficiency [3]. It is proven that NOMA
with random access is suitable for short-packet transmission
due to light signal overhead [2]. Therefore, grant-free (GF)
random access transmission can be adopted for short packet IoT
devices with sporadic traffic. However, GF transmission can not
guarantee the quality of service (QoS) of users. Therefore, to
guarantee users QoS requirements and enhance connectivity,
another random access NOMA scheme, namely semi-grant-
free (SGF) NOMA has been proposed in [4]. However, the

performance of SGF-NOMA schemes critically depends on the
resource allocation methods and power control schemes [5].
Note that NOMA is largely reliant on a large channel gain
difference or received power difference, but maintaining this
gap with a large number of GF users is difficult. In general,
to leverage the power difference for multiple access, NOMA
requires coordination with known channel state information
(CSI). However, acquiring CSI of all users is costly and
impractical in SGF-NOMA designs due to containing numerous
GF users. A critical problem in SGF transmission is ensuring
the QoS of GB users while guaranteeing GF users to the same
RB having distinct received power difference [4], [6].

In this paper, we consider SGF-NOMA proposed in [5] for
random access, where GF users do not request the BS for uplink
transmissions. The considered approach extended the concept
of a power pool (PP) used in [7] and design cluster-based PPs to
achieve distributed power control and reduces complexity at the
BS. The BS broadcasts the PPs to GF users in the network and
they randomly select one power level for uplink transmission.
However, the random selection of transmit power level from the
PP leads to decoding failure at the BS due to a small channel
gain difference, i.e., the BS cannot separate signals of the users
transmitting at the same power level, known as power collision
[8]. Therefore, this paper aims to transform GF IoT users into
intelligent learners to resolve the power collision problem and
to help the long-term optimization of future configurations. The
main contributions of this work are as follow:

• We propose a generic learning framework for PP and
power level selection to avoid power collisions occur due
to random selection and conflicting interactions among IoT
users. In this framework, each GF user acts as a learning
agent and learn from historical information.

• We develop a hybrid multi-agent deep reinforcement
learning (hMA-DRL) algorithm, which is, to the best of
our knowledge, the first learning algorithm for resource
allocation in wireless communication that uses a hybrid
framework to avoid the non-optimal solution of competi-
tive MA-DRL and slow learning of cooperative MA-DRL.

• We show that our suggested hMA-DRL gives a solution
close to the optimum one and increases the number of
successful decoded users by 42.38% as compared to the
random scheme. In addition, the considered algorithm
perform well with increasing number of users as compared
to the competitive and cooperative MA-DRL algorithms.978-1-6654-3540-6/22 c© 2022 IEEE
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Fig. 1: Power collision scenarios: A power collision happens at sub-
channel 2, because two GF users select the same transmit power level1.

II. SYSTEM MODEL

We consider NOMA assisted uplink IoT networks with GB
users represented by U = {u1, · · · , uNGB} and GF users
represented by N = {n1, · · · , nNGF }. All users transmit their
data via K orthogonal sub-channels to a BS located at the
centre of one cell with radius R. The channel gains from the
GB user u and GF user n to the BS are denoted by gu and
gn, respectively. The channel gain of users are characterized
by the large-scale distance-dependent path loss and small-scale
Rayleigh fading. Moreover, they obey that gu = |hu|2d−αu and
gn = |hn|2d−αn , where hu, hn, du, dn and α are the small-scale
Rayleigh fading of GB user u and GF user n, distance of user
u and user n to the BS, and path loss exponent, respectively.

A. SGF-NOMA Transmission Scheme with Power Pool

For most IoT applications with short-packet transmissions,
the traditional GB transmission offers limited connectivity and
occupies more capacity than needed. This extra capacity under
the GB scheme can be utilized to provide additional access
via GF schemes to enhance the connectivity for massive IoT
devices. It is worth noting that most IoT users in mMTC do
not need ultra-high data rates. Based on this idea, SGF-NOMA
is proposed by [4], which can be defined as follows:

Definition 1 (SGF-NOMA). When the available capacity of
the sub-channel exceeds the required capacity of the connected
GB user, the BS will send the tolerable interference of the GB
user as a threshold to all GF users. The GF users which has
lower received power than the threshold can upload messages
without any handshake with the BS. The GB and GF users in the
same sub-channel are served via uplink NOMA transmission.

In SGF-NOMA, since all GF users that meet the condition
can upload messages at the same time, if any two of them
has the same received power levels, a collision happens which
results in the failure of SIC processes. To solve this problem,
the BS sends a power pool PPs = [PP1, PP2, · · · , PPK ]
against each sub-channel K = [k1, k2, · · · ,K] to GF users.

1In some cases, the BS can decode the signals of users transmitting with the
same transmit power level due to the large difference in channel gain. However,
we ignore this possibility in this work since we assume that the same NOMA
cluster contains high-correlated users.

Definition 2 (Power Pool). In SGF-NOMA scheme, the
received power levels in the same NOMA cluster need to
be different to ensure the successful SIC process. Therefore,
in each sub-channel, the transmit power levels for GF users
have several distinct values, which considers both the channel
condition of GF users and the QoS of the connected GB user.
These different transmit power levels form a PP against each
sub-channel.

Active GF users choose a sub-channel for uplink transmis-
sion and then pick a transmit power from the PP associated with
that sub-channel at random. We consider a typical scenario that
each sub-channel has a single GB user2. The combined signal
received at the BS from GB and GF users on the sub-channel
k ∈ K in a time slot t can be expressed as

yk(t) =
√
pu,k(t)gu(t)su(t)+

NGF
k (t)∑
n=1

√
pn,k(t)gn(t)sn(t) + n0, (1)

where pu,k and su are the transmit power and the transmitted
signal of GB user u on sub-channel k, respectively. The pn,k ∈
PPk, sn are the transmit power and transmitted signal of n-th
GF user on sub-channel k, respectively. The NGF

k is the number
of GF users and n0 is the additive white Gaussian noise.

B. Power Pool and Transmit Power Selection

In this work, we have used fixed PPs based on our previous
designs in [5], where all PPs have P power levels and support at
most N GF users in each time slot. Therefore, the PP associated
to the sub-channel k obeys that PPk = [PPk,1, · · · , PPk,P ].
We define two binary variables w, x ∈ {0, 1} for PP and
transmit power selection. The wn,kPPk

(t) = 1 if nth GF user
select power pool PPk, otherwise wn,kPPk

(t) = 0. Similarly,
xn,kPPk,p(t) = 1 if nth GF user select power level p from PPk

on sub-channel k, otherwise xn,kPPk,p
(t) = 0. Next, we define

wn(t) =
[
wn,1PP1

(t), wn,2PP2
(t), . . . , wn,kPPk

(t)
]

and xn,k(t) =[
xn,kPPk,p1

(t), xn,kPPk,p2
(t), . . . , xn,kPPk,P

(t)
]

as the PP and transmit
power selection vectors for GF user n in the time slot t. After
that, we define Cp.k(t) ≤ N, ∀t, as the number of GF users
that select transmit power p from PP PPk, i.e.,

Cp,k(t) =
∑
n∈N

xn,kPPk,p
(t), k ∈ K. (2)

Based on (2), the transmit power pn,k obeys that pn,k =∑P
p=1 x

n,k
PPk,p

(t)PPk,p. Let Vk(t) denote the set of GF users
who pick a transmit power level that no other GF users have
selected in a particular time slot t.

Vk(t) =
(
n
∣∣ ∑
p∈PPk

1(Cp,k(t) = 1)xn,kPPk,p
(t) = 1, n ∈ N

)
, (3)

where 1(·) represents indicator function.

2If we consider the QoS of multiple GB users, we can group more than one
GB users into one NOMA cluster.



C. Signal Model

We assume that GB users have the highest priority and
require undistracted transmission, so the BS decodes GB users
in the first stage of the SIC process to prevent decoding delay.
In the second stage of SIC, the BS decodes signals from
GF users based on the received signal power strength. More
specifically, after decoding the GB users signals, the GF user
with the highest power will be decoded first and so on. The
signal-to-interference-plus-noise ratio (SINR) of uth GB user
can be expressed as

γu,k(t) =
pu,k(t)gu,k(t)∑NGF

k (t)
n=1 pn,k(t)gn,k(t) + n2

0

. (4)

Similarly, the SINR of nth GF user can be given as

γn,k(t) =
pn,k(t)gn,k(t)∑NGF

k (t)
n̄=n+1 pn̄,k(t)gn̄,k(t) + n2

0

. (5)

Further, we define a variable bn,kPPk,p
as the indicator for

decoding the information of nth user selecting transmit power p
from PP PPk associated to the sub-channel k. The bn,kPPk,p

(t) =
−1, if the signal of nth user was not decoded successfully,
bn,kPPk,p

(t) = 0, if no signal is transmitted and bn,kPPk,p
(t) = 1, if

signal using transmit power p decoded successfully.

III. PROBLEM FORMULATION

We assume that the BS can only decode GF users’ in-
formation if all GF users on the same sub-channel select
distinct transmit power levels; otherwise, power collision (same
power selection) [8] prevents the BS from decoding GF users’
information as shown in Fig. 1. In a time slot t, we define
a binary variable rn,k(t) that indicates whether or not user n
signal on sub-channel k is successfully decoded. We have

rn,k(t) =

{
1, if n ∈ Vk(t),

0, otherwise.
(6)

We use the conditional throughput [8] as the performance
metric for the considered SGF-NOMA scheme, which is the
average number of signals decoded successfully at the BS for
a given N . Since each PP contains P power levels and can
support at most N GF users, the maximum throughput of the
considered SGF-NOMA system is (KN + U) messages in a
single time slot t if no collisions occur, where U is the number
of GB users in the network.

This work aims to maximize conditional throughput of GF
users by resolving the power collision problem. Therefore, the
optimization problem can be formulated as

maximize
wn(t),xn,k(t)

1

T

T∑
t=1

NGF∑
n=1

K∑
k=1

rn,k(t) (7a)

s.t. pu,k(t)gu,k(t) ≥ pn,k(t)gn,k(t) ≥ · · · ≥ pN,k(t)gN,k(t)
(7b)∑

PPk∈PPs
wn,kPPk

(t) ≤ 1, ∀n ∈ N, k, t, (7c)

∑
PPk,p∈PPk

xn,kPPk,p
(t) ≤ 1, ∀n ∈ N, k, t, (7d)

Bs log2(1 + γu,k(t)) ≥ RGBth , ∀u ∈ U, k, t, (7e)
pn,k(t) ≤ Pmax, ∀n ∈ N, k, t, (7f)
Cp,k(t) ≤ N ≤ P, ∀k, t, (7g)

where (7b) represents the users’ decoding order (GB user
decodes in the first stage of SIC). The (7c) and (7d) restricts the
GF user to choose just one PP and one power level in time slot
t, respectively, and (7e) meets the GB user’s minimum data rate
requirement. The (7f) shows each GF user’s maximum transmit
power. The (7g) exhibit the maximum number of GF users on
each sub-channel that should be less or equal to the number of
power levels in the PP associated with that sub-channel.

IV. MA-DRL FRAMEWORK FOR MITIGATING
POWER COLLISIONS IN SGF-NOMA

Machine learning (ML) has the ability to produce the best
optimal decisions in a more accurate and faster way for NP-hard
optimization problems [1]. Broadly MA-DRL algorithms can
be classified into three categories, fully competitive (games of
complete opposition), fully cooperative (games of no conflict),
and a mixed setting (games of partial conflict) of the two [9]. In
the next section, we model the PP and transmit power selection
problem as partially observable (PO) MA Markov decision
process (MDP) and propose a hMA-Deep Q network (DQN)
algorithm to solve the optimization problem given in (7a) more
efficiently. In the sequel, the terms “hMA-DRL” and “hMA-
DQN” are used interchangeably for convenience.

A. Modelling as POMA-MDP

The agents in the formulated problem can only access partial
network information. Therefore, the problem is POMA-MDP
which consists of a tuple {N ,S,A, r}, further explained in the
following section.

• Set of Agents N : An agent is an entity capable of
processing information from the environment and making
decisions aimed at maximising the objective function. N
represents the set of agents (GF users) that collectively
explore the environment.

• State Space S: The global state S(t) in time slot t includes
the decoding status, selected power level and PP of all
users. However, a user only observes a part of the global
state, i.e., an agent n only knows its decoding status,
selected power level and PP. Therefore, we define the local
state sn(t) ∈ Sn for agent n in time slot t as

sn =
(
PPk(t), pn,k(t), bn,kPPk,p

(t)
)

(8)

The Sn = {s1, s2, · · · , sn} is the set of all possible states
that an agent can encountered during the training process.
The state includes the decoding status of the users; there-
fore, the state in one particular time slot t depends on
the state (selected power level and sub-channel) of the
previous time slot (t− 1).



Remark 1. The proposed framework ensures the privacy
of users in the network because the user as an agent has
no access to other users’ information and only receives
own information from the environment as a state.

• Action Space A: Each agent’s action consist of two parts,
i.e., PP and transmit power level selection decision. More
specifically, an agent’s action n can be stated as

an(t) =

{
a1
n(t)︸ ︷︷ ︸

PP selection part,

, a2
n(t)︸ ︷︷ ︸

Power selection part

}
, (9)

a1
n(t) =

{
wn,1PP1

(t), . . . , wn,kPPk
(t)
}

a2
n(t) =

{
xn,kPPk,p1

(t) . . . , xn,kPPk,P
(t)
}
.

• Rewarding Scheme r: The return reward specifies the
goodness or badness of an action taken in the previous
time slot (t−1), motivating the agent to learn and change
its behaviour towards maximizing long term reward. All
GF users receive a reward after taking joint action a(t) in
a given state sn(t) as follows:

rn(t) =


0, if nth user transmit power p

collided with other user(s),

1, otherwise.

(10)

Based on the above rewarding scheme, next, we define the
reward specific to each MA-DRL category.

TABLE I: Reward scheme for competitive and cooperative MA-DRL
Sub-channel Users Selected power level Reward

Competition Cooperation

1

n1 p2 0 0
n2 p3 1 0
n3 p1 1 0
n4 p2 0 0

TABLE II: Reward scheme for hMA-DRL
Sub-channel Users Power level Reward Competitive/ Cooperative

1

n1 p2 0
n2 p3 1 or 0 Base on ρ
n3 p1 1 or 0 Base on ρ
n4 p2 0

i. Competitive MA-DRL: All agents receive a distinct reward
based on their actions. An agent receives a reward of 1 if
no other agent in the same sub-channel has chosen the
same power. In contrast, the agent receives a reward of 0
if a power collision occurs. Example is given in TABLE I,
where user n1 and user n4 select the same transmit power,
a collision occurs, and both users receive a penalty of 0.

ii. Cooperative MA-DRL: In this framework, all agents get
the same reward as shown in TABLE I. As the transmit
power of user n1 and n4 collided, therefore every user on
that sub-channel receives a reward of 0.

iii. Hybrid MA-DRL: In this framework, agents behave coop-
eratively or competitively based on the value of ρ and get
the reward accordingly, as shown in TABLE II.

To maximize the long term cumulative reward, the conventional
Q-learning algorithm can be used to find out the optimal actions
for each agent. Where a Q-function Qn(sn(t), an(t)) is defined
for each agent n and associated with its policy πn as the
expected reward after selecting action an(t) in state sn(t),

Qπn(sn(t), an(t)) = Eπ
[
rn(t)

∣∣sn(t) = s, an(t) = a
]
, (11)

where rn is the future discounted reward given by rn =∑∞
e=0 γ

er(t+ e) and 0 < γ ≤ 1, the γ is the discount factor
and e represents the epoch number.

All agents in the environment aim to maximize their long-
term reward that leads the agents to find out the optimal
policy π∗. Once the agent obtained the optimal Q-function
Q∗n(sn(t), an(t)), then the agent finds its optimal policy π∗n. In
a conventional Q-learning algorithm, to determine the action
an(t) that maximizes the future discounted reward, each agent
maintain a Q table to store the Q-values of all possible
actions in a given state sn(t). To overcome the memory and
computation complexity of Q learning, the authors in [10]
proposed deep Q learning to approximate the Q function.
More specifically, Q learning is combined with deep neural
network (DNN) with weights θ for Q function approximation
Qn(sn, an; θ). Hence rather than maintaining a huge storage
space (Q table) for computing Q values, the agents only retain
weights (θ) in their local memory, which minimise memory and
computation complexity. Each agent in the MA-DRL setting
comprises the primary network, target network and a replay
memory for saving experiences during the interaction with the
environment. In the learning process, each agent n inputs the
current state sn(t) to its primary network and output all the Q
values associated with all actions in that state. The agent then
selects the action with the highest Q value, and the environment
returns a new state and reward to that agent based on the
action taken. In every interaction with the environment, each
agent form an experience in the shape of a tuple consists of(
sn(t), an(t), rn(t), sn(t+1)

)
and store it in its replay memory.

From replay memory, a mini-batch of experiences is randomly
and uniformly selected to update the target network weights θ̄.
The target value of the target network can be expressed as

yn(t) = rn(t) + γ argmax
an(t+1)∈An

Q(sn(t+ 1), an(t+ 1); θ̄). (12)

The weights of the target network are set equal to that of
the primary network after fixed training steps. To train the
primary network, minimize the loss function using a variant
of stochastic gradient descent (SGD),

Ln(θ) =
(
yn(t)−Qn(sn(t), an(t); θ)

)2
. (13)

B. Proposed hMA-DRL Scheme

We use the k-means clustering algorithm to divide the users
into C different clusters and assign a PP to each cluster. The
clustering procedure is based on users locations/distances, and
each cluster contains the nearest users.

Remark 2. Unlike prior research, which considered a near-



far situation for clustering process, and grouped nearby users
with distant users in a cluster. We focus on a suitable real-
world scenario, where users are positioned closer to each
other to form a NOMA cluster, such as workplaces, shops and
waiting areas, etc. Moreover, we can incorporate the transfer
learning mechanism where new users joining a NOMA cluster
can utilized the knowledge of already trained users.

Algorithm 1 hMA-DRL Algorithm for Transmit Power Selection in SGF-NOMA

1: Step 1: User clustering
2: Set the required cluster number C, maximum No. of users N in each

cluster, maximum No. of iterations L
3: Input: Location/distance of GF users D = {d1, d2, · · · , dN}, n ∈ N
4: Randomly choose C samples in D as initial centroid φ = {φ1, · · · , φC}
5: for l = 1 to L do
6: for dn ∈ D do
7: Execute K-means (n, C)
8: if |ci|< N then Assign n to cluster ci
9: else Assign n to cluster ci+1

10: end if
11: if φc(l) = φc(l − 1) then End loop
12: end if
13: end for
14: end for
15: Output: set of clusters C = {c1, c2, · · · , C}
16: Step 2: Power selection from PP
17: for e = 1 to E do
18: for t = 1 to T do
19: for each cluster c = 1 to C do
20: for agent n = 1 to N do
21: Input state sn(t), chose action an(t) and take joint action
22: Receive next state sn(t+ 1)
23: if e < ρ then Competitive behaviour
24: Agents in the cluster receive individual reward rn(t)
25: else Cooperative behaviour
26: All agents in the cluster receive same reward rc(t)
27: end if
28: Store sn(t), an(t), rn(t)/rc(t), sn(t+ 1) in memory
29: end for
30: end for
31: if e % == Learning steps then
32: From memory, sample batches and minimize loss using (13)
33: if e % ==Target update steps then Set θ̄ = θ
34: end if
35: end if
36: end for
37: end for

To select transmit power, each GF user acts as an agent
and collectively explore the environment. The agents at cluster
level compete for some time and then switch to cooperative
behaviour, details are given in Algorithm-I. To fully explore
the environment for optimal actions, we use the ε − greedy
policy. All agents perform joint action. Each agent then receives
a new state and reward according to competitive/cooperative
mode and store the experience to its replay memory. Finally,
for each agent n, we sampled random batches from its replay
memory to train the primary network using (13). After fixed
episodes, we update the weights of the target network.

C. Computation Complexity of the Proposed Algorithm
The suggested hMA-DRL approach has a computational

complexity of order O(CNET ), where C is the number of
clusters, N is the total number of agents, E is the number of
episodes, and T is the number of learning steps.

TABLE III: Network and Training Parameters
No. of PPs/sub-channels 4
Power levels in each PP [[0.1 ,0.2, 0.4, 0.6], [0.1, 0.2, 0.3, 0.5], [0.1, 0.4,

0.5,0.6], [0.1, 0.3, 0.5, 0.7]]W
Path loss exponent α 3.0
Sub-channel bandwidth 10 KHz
AWGN(n0) -90dBm
Pmax 1 W
GB users required data rate 15 bps/Hz
No. of training episodes 500
Layers Input, hidden layers:{1,2,3}, output
No. of neurans in each layer {500, 250, 120}
Update target frequency 2000
Discount factor γ 0.9
ε 1.0
ε min 0.01
Learning rate 0.001

V. NUMERICAL RESULTS

A. Simulation Parameters

We use the network and training parameters listed in TA-
BLE III for our simulations. We use Adam as an optimizer
and Rectified Linear Unit (ReLU) as an activation function for
each NN. The size of the input layer of the Q-network is equal
to 3 (i.e., each state contain three values, selected PP, transmit
power and decoding status), and the size of the output layer is
equal to the number of actions (i.e., PPs × P = 16). We keep
the value of ρ fixed, i.e., for an initial 50% of the episodes,
agents compete and then switch to the cooperative manner for
the rest of the episodes.

B. Learning Stability and Convergence Analysis

We show the learning stability and behaviour of the agents by
illustrating the reward obtained during the learning and training
process. The reward of each agent (total of 10 agents) achieved
in competitive, cooperative, and hybrid MA-DRL algorithms
is shown in Fig. 2(a). During the first 150 training episodes,
cooperative MA-DRL reported low reward value, but after that
the reward is gradually increases and crossed the reward of
competitive algorithm in 300 episodes and converges in almost
350 episodes. The competitive MA-DRL initially converges to
a reward of 7 in 300 episodes and finally converges to local
optimal solution in 360 episodes. In cooperative MA-DRL, all
agents collaborate to find a globally optimal solution to the
problem. However, finding a global optimal solution, agents
in this model of learning behaviour require a considerable
learning time. Since an agent with a good policy must wait for
the user(s) with a weak policy to improve. Contrarily, agents
in competitive MA-DRL initially achieve a higher reward
value than cooperative MA-DRL and finally converges with
non-optimal reward value. Because agents update their policy
independently without considering its effects on other agents,
due to which the environment appears non-stationary. Unlike
the former two algorithms, the proposed hMA-DRL achieves
a stable learning performance with a quick convergence to the
highest reward. In the beginning, agents compete with each
other, but to avoid getting a non-optimal solution (due to greedy
behaviour), later on, the agents’ behaviour is turned into a
cooperative one. Therefore, the hybrid behaviour of agents is
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Fig. 2: The performance comparison: Sub-figure (a) shows the reward of each agent. Sub-figure (b) shows the performance comparison in
terms of successful decoded users. Sub-figure (c) Shows the performance w.r.t increasing number of GF users.

a balanced approach to avoid the non-optimal solution (due to
competition) and slow learning (due to cooperation) problems.
Using an adaptive approach for the transition from competition
to cooperation can further enhance hMA-DRL performance.

C. Performance Comparison
To evaluate the performance, we considered the optimal

solution and the random power selection mechanism as bench-
marks. It is evident from Fig. 2(b) that the proposed hMA-DRL
algorithm delivers a near-optimal solution and outperforms the
random selection scheme by providing a 42.38% increase in
successful decoded users. Because GF users choose the PP
and transmit power at random, the system experiences severe
collisions and performance degradation. In addition, the hMA-
DRL algorithm converges quickly as compared to competitive
and cooperative schemes. Because in hMA-DRL, GF users
compete with one another and try to win rewards that create
a solid foundation for improving their policies quickly, and to
avoid local optimum, later on, GF users collaborate to find the
globally optimal solution. In comparison to the other methods,
the hMA-DRL converges within 300 episodes.

D. Performance Analysis with Varying Number of GF Users
Fig. 2(c) shows a considerable improvement in the condi-

tional throughput against the increasing number of GF users
achieved by the proposed hMA-DRL. For light traffic (up to
8 GF users), the performance of hMA-DRL and competitive
MA-DRL is similar. However, further increasing the number
of GF users increases the power collision probability and the
conditional throughput of competitive MA-DRL decreases due
to the users’ self-interest policies. The cooperative MA-DRL
perform better than the random scheme when up to 12 GF users
choosing transmit power from the available PPs. Furthermore,
when the number of GF users grows, cooperative MA-DRL
performs the poorest. Since large number of users cooperating
increase the probability of receiving a negative reward, as users
engage in this behaviour share the same incentive. As a result,
finding optimal policies for the PP and power selection needs
a long learning time.

VI. CONCLUSION

This paper has suggested a hMA-DRL scheme to prevent
power collision and improve connectivity in IoT networks with
SGF-NOMA. Numerical results show that the proposed scheme
gives a near-optimal solution and outperform the benchmark
scheme with a 42.38% increase in the number of successful
decoded users. Also, we show that the proposed algorithm
outperforms the benchmark scheme, as well as the competitive
and cooperative MA-DRL algorithms, in terms of conditional
throughput as the collision probability increases. Investigating
the energy efficiency and adaptive transition from competitive
to cooperative behaviour are the future research directions.
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