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Abstract—The development of vehicular technologies and in-
frastructures leads to development in mobility handling for
wireless communications. Improving connectivity establishment
and reliability became an issue, especially for vehicles that may
move out of antenna coverage during connection establishment.
This paper focuses on improving LoRaWAN connectivity for
roaming devices by combining a machine learning predictor and
DNS prefetching to gather information necessary for connection
establishment before the device comes under coverage, thus
reducing the overall latency for connection establishment. The
paper also relates to other issues by comparing the solution with
other approaches and studying antenna occupation.

Keywords - IoT, V2I, V2X, DNS, Prefetching, Machine
Learning Prediction, Traffic Prediction, LoRaWAN, Edge
Networks

I. INTRODUCTION

The evolution of vehicular network generations led to new
challenges in the different communication models such as
vehicle-to-vehicle communication or vehicle-to-infrastructure
systems. The connected vehicles can provide data caching or
task offloading for other vehicles and user devices. Besides, the
high mobility of vehicles is a major issue directly related to the
communication channel where the stability of the connection
enhances the quality of service, particularly latency and delay.

The Domain Name System (DNS) is a key component on
the Internet that might incur additional latency and hinder
device connectivity. From a user’s point of view, access must
be provided as smoothly as possible, without additional cost,
to develop the technology’s adoption. From an operator’s
point of view, an increase in latency might incur congestion
or antenna overload which would decrease the Quality of
Service for IoT solutions. And in roaming scenarios, serving
all users as soon as possible would decrease the impact from
other networks on their own gateways. Thus, reducing the
impact from DNS requests when a device is joining becomes
a key connectivity concern. It is particularly challenging in
mobile environments.

Also, the issue behind storing and sharing DNS data, or
where to locate a DNS cache, how long to keep information
cached and when to access it as an operator, is crucial to
improve backend network mechanisms. Prefetching informa-
tion is a common strategy to reduce latency within networks.

Web browsers use this technique to obtain IP addresses for
domains within a web page, predicting that the user may click
on a link, thus sparing the DNS requests when a user clicks
by performing the request beforehand.

This paper analyzes two DNS prefetching strategies in an ur-
ban scenario involving mobile vehicles in Roma for which we
wish to provide Long-Range Wide Area Network (LoRaWAN)
connectivity. We evaluate their impacts on both the user and
operator’s quality of service. We consider mobile vehicles in
Roma for which we wish to provide Long-Range Wide Area
Network (LoRaWAN) connectivity. In a LoRaWAN scenario,
DNS is involved in the roaming procedure. The proposed
solution proposes to use of DNS prefetching to query DNS
servers based on device mobility to resolve device-specific
information between a gateway and a DNS server. Prefetch-
ing can be as simple as requesting that nearby gateways
prefetch the information (scenario 2 below) but could also
rely on recent mobility models based on Machine Learning
(ML) predictions (our scenario 3). This article studies the
consequences of prefetching DNS information on antennas
with regards to device mobility. In particular, we check if the
information is prefetched adequately with respect to the actual
vehicle location by observing the DNS query success ratio. We
also study antennas occupation based on mobility scenarios
to further understand the possible impact of prefetching on
antenna cache filling. Actually, different prefetching strategies
lead to higher or lower cache occupations for the antennas.

The presented use case focuses on provisioning DNS con-
nectivity data necessary for the join exchange in a LoRaWAN
connection establishment procedure, but this method applies
to other DNS data querying. It is even more general since the
strategies we propose provision information in antennas and
may be used for many other user-centric data.

In the next part, we review the related works. Section
III presents our studied scenarios. Section IV presents our
results, in which IV-A analyses DNS cache results and IV-B
describes antenna occupation within the studied area. Finally,
our conclusions are summed up in V.



II. RELATED WORKS

A. Improving communications using predictors in Vehicular
Networks

This part presents existing works that resolve the com-
munication failure problem caused by mobility in vehicular
networks. Some of these solutions exploit machine learning
techniques to predict devices movement and improve commu-
nication efficiency.

Vinod et al. [1] proposed a mechanism of link life prediction
that creates an alternative link before it breaks. They validated
the results by studying a set of vehicles on a highway; besides,
they used a microscopic or macroscopic (traffic flow, traffic
density) approach to generate the vehicles’ movements. The
proposed algorithm uses the velocity and the location of
vehicles to predict the route breaks.

Shelly et al. [2] proposed a statistic method for link lifetime
in Vanet networks by using an analytical model. They studied
the impact of vehicle density, vehicle mobility, and the trans-
mission range and analyzed the statistics of the communication
link. Besides, they studied a case of two vehicles (A) and (B),
where VA, VB and Vr are velocities of vehicle A, vehicle B
and the relative velocities of pair of vehicles respectively.

Work in [3] proposed a link duration prediction via Ad-
aBoost algorithm [4]. The proposed steps consist in aggre-
gating the existing link metrics to generate many predictors;
each predictor predicts if the link duration is under or over
a threshold with high accuracy using the set of link metrics.
In the next step, the algorithm determines the duration of the
link using all the knowledge collected from these predictors.

Wang et al. [5] proposed a prediction model called extended
link duration prediction (ELDP), which allows the vehicle to
estimate the link duration with the other vehicles. Simulations
in a city and highway show that the speed of vehicles impacts
the link duration prediction in Vanet networks. In this work,
a normal distribution needs to be used for vehicles speed.

Das et al. [6] proposed a network formation game called
NGOMA algorithm for MAC-level re-transmission. It selects
one node from the intermediate node, and in the case of a link
failure, the formation game is used to select the relay node to
re-transmit a packet from the source node to the destination
node. The proposed algorithm reduces the delay and enhances
the packet delivery ratio.

Similarly, Bhoi et al. [7] used a data forwarding technique to
predict the link failure where a link existence diagram (LED)
is generated to know the existing vehicles links. The proposed
techniques prove their efficiency in terms of end-to-end delay.
Nevertheless, the GPS can’t detect obstacles and require huge
resources.

Authors in [8] proposed a route prediction in Vanet networks
to resolve the problem of the communication link failure; they
proposed to use machine learning algorithms for prediction
and then studied the efficiency of the proposed solution.
Simulation results proved the efficiency of machine learning
in route prediction compared to real vehicles mobility.

Each proposed solution improved the QoS in vehicular
networks, especially solving the problem behind link failure
during communications. Nevertheless, it is difficult to prove
the efficiency of these solutions in dense networks with a
huge number of vehicles. In addition, the impact of different
obstacles is not studied in these works. Some of these solu-
tions exploit machine learning capabilities to predict devices
movements. Using artificial intelligence to support and predict
device mobility can improve link quality and is more suitable
for large-scale vehicular networks.

B. DNS performance, caching and prefetching

DNS prefetching relies on a prediction mechanism; the user
could click on the link, so its browser performs the DNS
query beforehand for all domains that appear within a web
page. This simple prediction mechanism can be applied in any
circumstances. [9] analyzed DNS traffic with the increase of
IPv6 technologies in web hosting and put it in perspective with
network traffic increase in Japan, and offered a prefetching-
based solution to increase cache hit rate and reduce response
times on web browsers. [10] proposes to study DNS queries
in the context of web navigation (DNS over UDP requests)
by studying when DNS queries are performed and when the
information is needed. Their conclusion regarding prefetching
is that no supplementary DNS cost appears due to prefetch-
ing. A good tutorial on prefetching and its consequences is
provided by the Chromium project [11].

Fetching data using DNS comes with a short delay. [12]
studied DNS responses with overall results outlining a 200ms
response for 70% of their queries, and 90% of queries are
realized within 1s. More recent analyses, such as [13] or [14]
outline better results by combining anycast technologies and
Content Delivery Networks for DNS. [13] studies responses
from top resolvers which answer to 90% of their requests
within 100ms. Moreover, [14] provides additional information
regarding DNS over TLS (DoT) resolution in which they
outline failure rates with responses between 130ms and 230ms
from top resolvers. Overall, the time inflation from additional
security can be outlined around these values.

DNS over HTTPS (DoH) would add another supplementary
cost up to 150ms as outlined by [13] measurements on
public resolvers. Overall, sending two complete DNS requests
completed with DNSSEC integrity check and secured with
DoH would cumulate up to 1.1s of queries done within the
first exchanges between the ED and the RG.

Our problem is as such: "Would it be possible to reduce that
delay in a mobility context to reduce the impact from DNS
querying on channel establishment?"

This is why exploiting DNS to prefetch information is use-
ful; as the information is queried anyway, doing it beforehand
if possible reduces the overall latency. Prediction algorithms
help us determine where to provide the DNS information. This
paper aims to analyze how we could reduce the overhead of
DNS querying in mobility solutions for vehicular applications
studying various scenarios.



III. USE CASE AND SOLUTIONS

The LoRaWAN join procedure introduces two DNS queries
for channel establishment between gateway and backend (Fig-
ure 3). This work provides a few insights on possible solutions
based on Machine-Leaning-based mobility predictions and
information prefetching from DNS servers.

The usual activation flow detailed on Figure 3 for roaming
device consists in :

• an exchange between the End-Device and the serving
Network Server associated with a nearby gateway

• a DNS query to identify the Join Server associated with
the End-Device

• a DNS query to identify the home Network Server
• an exchange between Join Server and serving Network

Server
• a response from serving Network Server to the device

We consider mobility traces from devices moving within
the city of Roma; Figure 1 shows part of the studied traces
traced as a function of latitude and longitude. Each vehicle
is traced with ten points, separated from the next one by a
1-minute delay. We considered all DNS entries to be kept
in cache for 5 minutes for these simulations. Note that DNS
cache congestion will not be studied here.

Figure 1: Vehicle mobility around Roma

We simulate antenna placement within the movement
perimeter; regularly placed antennas provide independent cov-
erage for our vehicles. Figure 2 shows a vehicular trace with
the antenna disposition within its sector. Our test antenna
positioning algorithm places the antennas regularly in squares;
thus, each antenna has 8 immediate neighbors for all scenarios.

In our simulated fog LoRaWAN deployment, each antenna
would act independently and provide access to its devices. To

Figure 2: Vehicle and antennas for a single trace

cover a city the size of our perimeter (200 km x 170km), a reg-
ular deployment will need around 520 independent antennas
to be deployed. With a regular antenna placement and about
8 km between two antennas at most, the vehicle-to-antenna
distance will always be bounded between 0 and 4 km.

We assume that each independent antenna will provide
roaming access to devices within its reach. As described in
figure 3, this means that the antenna will request the device’s
key from its HN and establish its connection to the ED thanks
to them.

Figure 3: Usual LoRaWAN devices activation message flow

We separated our study into three scenarios. In the first
scenario, no prefetching is realized, and the device uses the
standard DNS query mechanism. It is a reference scenario.
In the second scenario, we improve the mechanism with a
basic prefetching mechanism realized by nearby antennas:
any antenna, in the neighborhood of the antenna under which
the device is, is prefetched. Finally, in the third scenario,
we run mobility predictions, using ML, for our devices, plan
their possible future location and prefetch the information
based on the predictions.



A. Prediction algorithm

We propose to use a Long Short-Term Memory (LSTM)
algorithm to predict vehicles mobility inside the city [15]. The
LSTM model is trained using real vehicles mobility dataset
[16] in Rome city, Italy. The data represents the real-time
vehicles’ mobility for one month. The data is classified as
follows: vehicle ID (is an integer), date, time, and the position
of vehicles (latitude, longitude).

B. First Scenario

For this first scenario, we studied the movements of 6992
devices within the Roma metropolis. Each vehicle is tied to 10
successive locations. We survey the closest antenna for each
location and check if the device’s information is available on
the antenna’s cache or should be queried. Actually, depending
on the vehicle movements, DNS configuration (number of
entries in cache, TTL...) or antenna placement, it may come
under an antenna’s coverage where it has already been before.
The first location of the device is put on the side as "First
DNS Query" for consistency with the other scenarios as we
would not prefetch information for the first point of the time
series.

C. Second Scenario

For the second scenario, we studied the movements of the
same 6992 devices; each vehicle is still tied to 10 successive
locations. We look for the nearest antenna for each location
and check if the device’s information is available on the
antenna’s cache or should be queried.

Our test antenna positioning algorithm places the antennas
regularly in squares; thus, each antenna has 8 immediate neigh-
bors. In this scenario, we prefetch the information on these 8
closest antennas to anticipate possible device movements. As
mentioned above, the first DNS query for each vehicle is put
on the side as "First DNS Query" as these DNS queries cannot
be anticipated.

The consequences of DNS prefetching on message flow is
described in Figure 4, the information necessary to support
the devices’ connectivity is recovered before the device’s Join
Request; thus, the time corresponding to the various queries
is saved from the first transmission and realized beforehand.

The activation flow (Figure 3) using prefetching becomes
as described in Figure 4:

• a Prefetching DNS query to identify the Join Server
associated with the End-Device

• a Prefetching DNS query to identify the home Network
Server

• an exchange between the End-Device and the serving
Network Server associated with a nearby gateway

• an exchange between Join Server and serving Network
Server

• a response from serving Network Server to the device

The first two steps do not need device communication to be
processed; knowing that the device is nearby is sufficient.

Figure 4: LoRaWAN devices activation message flow with
our DNS prefetching mechanism

D. Third Scenario

In this third scenario, we predict car mobility using deep
learning algorithms and identify antennas candidate for device
coverage. Based on these predictions, the DNS (or its cache) is
queried once by the antenna corresponding to the device’s po-
sition for each given point within the device’s movement. Then
for the four following predicted positions, the corresponding
antenna will perform DNS prefetching as described in Figure
4 to heat its cache for a possible change of coverage from the
device.

Figure 5 provides a rundown on interactions between an-
tennas and DNS Servers in the third use case.

Figure 5: Possible solicited antennas in Scenario 3

For a given position A, we consider the 25 possible antennas
(B to Z) from the previous predictions and actual positions of
the vehicle:

• Antennas B to E are antennas corresponding to the
prediction of position A in previous moments in time{
fT−i(T + i), i ∈ [[1, 4]]

}
). If antenna A corresponds to

one of these antennas, we consider that our prediction is



successful, and we hit the cache as the information was
prefetched in previous moments in time.

• Antennas F to O correspond to the predictions for previ-
ous positions of the device (

{
fT−i(T+j), i ∈ [[1, 5]], j ∈

[[1, 4]], i − j > 0
}

). If antenna A corresponds to one of
these antennas, but not antennas B to E, our prediction
was a failure, but the actual corresponding prediction was
correct with a time shift. Furthermore, the prefetching for
these antennas was realized; thus, the information is still
present in the cache, and despite the prediction failure for
this exact timestamp, we hit the cache as the information
was not purged yet.

• Antennas P to S are a similar case (
{
fT−i(T + j), i ∈

[[1, 5]], j ∈ [[1, 4]], i− j < 0
}

), our prediction was a fail-
ure, but the predicted antennas were correct considering
a time shift (and would probably be correct for future
device positions). Furthermore, the prefetching for these
antennas was realized; thus, the information is present in
the cache, and despite the prediction failure for this exact
timestamp, we hit the cache as the information was not
purged yet.

• Finally, antennas V to Z are the actual antennas so-
licited for the device in previous moments in time
(
{
fT−i(T ), i ∈ [[1, 5]]

}
). Should all other predictions fail

but antenna A correspond to any antennas from V to Z,
the prediction is a failure, and so is the prefetching, but
the information corresponding to these antennas is still
present in the DNS cache from previous requests, we
labelled this result "DNS Cache".

• In the case where antenna A (
{
fT (T )

}
) does not corre-

spond to any antenna between B and Z, prefetching was
a failure, and a new antenna was solicited; thus, it must
realize a DNS request (labelled "DNS Query")

• Additionally, we separated from these DNS queries the
DNS query for the first device’s location as antenna B to
Z constitute an empty set for this given location.

The activation flow using prefetching is the same as scenario
2 (Figure 4). In this scenario, the first two steps for device
activation do not need device communication to be processed;
knowing that the device will pass under the antenna coverage
in the future is sufficient.

IV. RESULTS

A. Cache hit analysis

Figure 6 presents our global results for all three scenarios.
The "No prefetching case" describes our results for the first

scenario. For the 10 locations of our 6992 vehicles, the antenna
either queries the DNS as part of the vehicle’s first localization,
queries the DNS as part of an antenna change for the device
or queries its own cache since the device was already known.

Our studied traces are not heavily mobile for now as we
study an urban scenario, and additional studies would be
necessary to study possible other equilibriums between DNS
caching and DNS querying for mobile devices. That explains
that our first insight into these results would be that devices

Figure 6: Cache Hit Rate repartition between queries - All
cases

are moderately mobile, switching antennas once within the 10
points of their movements, moving around 35km per hour. We
observe the 6992 initial DNS requests and around 8 thousand
additional DNS queries, consistent with a 2.1 mean antenna
per vehicle. The remaining DNS queries are prevented as the
request hits the DNS cache within the antenna.

The "Nearby prefetching case" data from Figure 6 describes
our results for Scenario 2. As above, for the 10 locations of
our 6992 vehicles, the antenna either queries the DNS as part
of the vehicle’s first localization, queries the DNS as part of
an antenna change for the device or queries its own cache
as the device was already known through low mobility or
prefetching. The simulations show that prefetching permits us
to prevent on-the-fly DNS querying. The DNS is still queried
but when the information is not yet necessary. The DNS
cache handles all queries necessary for device communication,
preventing additional DNS query times during handshakes.
Nearby prefetching permits us to attain an important hit rate
on our cache, whether filled by our first classic DNS query,
DNS refresh or prefetched DNS query. A similar situation
would be as described in the introduction of section II-B,
where prefetching every DNS zone encountered within web
page URLs allows to quicken the load time by pre-filling the
DNS cache with prefetched DNS queries.

Finally, the "Predictor prefetching case" from Figure 6
combines the results from our vehicle location based on the
scenario breakdown from Figure 5. Results are, satisfying
compared to the first scenario. Putting aside the first DNS
queries, successful prediction leads to hitting an antenna linked
to a correctly predicted position in 70.4% of cases. Cache
hit rate linked to predictions, whether correct predictions or
incorrect predictions by lateness or earliness, would add up



to 86% of requests. The remaining 14% are divided between
DNS cache after prediction error (11.4%) and actual DNS
queries (2.5%).

B. Antenna occupation

Another important subject to study is antenna occupation.
As part of our study, antennas prefetch information based on
the possibility that the associated device will pass under its
coverage:

• We placed 520 virtual antennas around the city
• Out of them, the first scenario activates 301 antennas.

That means that our 6992 vehicles pass near these 301
antennas and that 301 is our minimum number of active
antennas as a whole.

• The second scenario activates as whole 393 antennas, a
bit over twice more antennas than in the first scenario.
The ’nearby case’ shows excellent results but would
probably create congestion within the network should
these results be confirmed at a larger scale.

• Finally, the third scenario activates 380 antennas, globally
around the same amount as the antennas solicited as part
of the second scenario, Figure 7 gives us more insight on
the distribution of these antennas.

Obviously, the absolute number of activated antennas de-
pends on the spatial distribution of the vehicles. Another
important criteria is the number of activated antennas per
vehicle. Figure 7 shows the comparison of the number of
activated antennas per vehicle for all scenarios.

Figure 7: Sample from activated antennas in all scenarios for
each vehicle

The mean amount of antennas, as described in Figure 8
activated is as follows:

• Scenario 1 leads to activating 2.1 antennas per moving
vehicle on average.

• Scenario 2 leads to activating 12.3 antennas per moving
vehicle on average.

• Scenario 3 leads to activating 9.7 antennas per moving
vehicle on average.

Figure 8: Activated antennas distribution for each scenario

Figure 8 provides additional insight on these values, Sce-
nario 1 has at least 50% of its values between 1 and 3,
Scenario 2 between 9 and 14 and Scenario 3 between 7 and 12.
This result fits with the moderate mobility from our values as
devices that move within 3 antennas would activate around 15
antennas through their movement in Scenario 2. The predictor
performs better than the simple nearby prefetching, with more
than 75% of its values under the median for Scenario 2. Also,
Scenario 2 has many outliers with over 21 antennas solicited
per device on highly mobile roads, in which the predictor
performs best.

V. CONCLUSION

DNS prefetching is an efficient tool to reduce the delay
added by on-the-fly DNS queries necessary for device
communication. It is a way to prepare the information for
the moment the vehicle will be under the umbrella of the
right antenna. Prefetching the information on nearby antennas,
like in our nearby-case scenario, can completely prevent DNS
queries by performing them in advance around the closest
ones, but at a cost as more antennas are prefetched than with
our Machine Learning (ML) scenario, especially in a highly
mobile environment. By exploiting recent ML capabilities for
traffic prediction, like in our ML scenario, it becomes possible
to heat the cache for 86% of requests, and leads to a cache hit
for 97% of them, on-the-fly DNS queries following prediction
failures constituting 3% of queries.



As described at the beginning of the article, reducing on-the-
fly DNS queries leads to time savings. DNS query time is well
documented ( [9] [10] [12] [13] [14]) and its usual cumulative
introduced latency amounts between 60 ms and 250 ms; thus
the queries can lead up to a full second of latency saving.

Overall, the ML system would outperform its nearby-
activation counterpart in antenna solicitation since only the
most likely future gateways are provisioned: scenario 2 ac-
tivates around 27% more antennas than scenario 3. Also,
additional simulations with different antenna location patterns
would help to improve this score.

Another interesting further study would be observing an-
tennas overload, such as the overload from DNS cache for
which considering a usual 5-minutes caching timeframe. The
actual implementation keeps 4096 entries within the cache,
each with a variable duration. It would be interesting to study
cache congestion against the number of vehicles within the
perimeter, considering this 4096 entry limit and the caching
duration. Also, considering that our traces amount for taxis
which represent around 1% of actual cars circulating around
a country, it would be feasible to study the actual overload
within the network by increasing the number of vehicles by a
100-factor.
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