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Abstract—Software-Defined Networking (SDN) is becoming the
reference paradigm to provide advanced Traffic Engineering (TE)
solutions for future networks. However, taking all TE decisions at
the controller, in a centralized fashion, may require long delays
to react to network changes. With the most recent advancements
in SDN programmability some decisions can (and should indeed)
be offloaded to switches.

In this paper we present a model to route elastic demands in a
general network topology adopting a semi-distributed approach
of the control plane to deal with path congestion. Specifically,
we envision a Stackelberg approach where the SDN controller
takes the role of Leader, choosing the most appropriate subset
of routing paths for the selfish users (network switches), which
behave as Followers, making local routing decisions based on
path congestion. To overcome the complexity of the problem
and meet the time requirements of real-life settings, we propose
effective heuristic procedures which take into accurate account
traffic dynamics, considering a stochastic scenario where both the
number and size of flows change over time. We test our frame-
work with a custom-developed simulator in different network
topologies and instance sizes. Numerical results show how our
model and heuristics achieve the desired balance between making
global decisions and reacting rapidly to congestion events.

Index Terms—SDN, Traffic Engineering, Stackelberg Game,
Model and Heuristics, Elastic demands

I. INTRODUCTION

Software-Defined Networking (SDN) has become the refer-

ence paradigm in both the industrial and academic worlds due

to its potential to provide advanced Traffic Engineering (TE)

solutions for current and future networks. It decouples control

and data planes: the first is responsible for signaling traffic

and routing, while the latter involves packet forwarding.

Traffic Engineering studies the optimization of network

performance, reducing operational costs, and balancing the

utilization of network resources. Several TE solutions perform-

ing load balancing in an SDN context have been proposed

in the literature [1–4]. Nowadays, traffic is characterized by

unpredictable events and fluctuations which require dynamic

network reconfigurations. The use of a centralized controller to

coordinate a distributed architecture permits to determine and

enforce solutions which are very effective; however, taking all

TE decisions at the controller, in a centralized fashion, may

require excessively long delays to react to network changes.

Much of current Internet traffic is elastic by nature, since

it is handled by the Transmission Control Protocol (TCP),

which permits to enforce end-to-end congestion control while,

at the same time, ensuring a fair sharing for connections

that experience similar network parameters (in particular, the

Round Trip Time of the connection). According to a Sandvine

report [5], due to its ubiquitous use in video streaming, web

browsing, file transfers, communications, and other application

types, TCP typically represents 85% to 90% of fixed access

Internet traffic and as much as 96% of mobile Internet traffic.

Furthermore (see for example [6]) it has been shown that

the resource allocation that is carried out by TCP flows is

well approximated by a well-known fairness paradigm, the

Max-Min-Fairness (MMF) [7]: each TCP connection uses, in

average, the whole available capacity until it is bottlenecked

at some link, on which it equally shares its capacity with

the other concurrent flows. This holds also for “TCP-like”

protocols that are gaining momentum, like QUIC, for example,

which exhibit a similar behavior.

Previous works in this context ([6]) consider as known/given

the number of connections in the network and further assume

a single-path routing. Bottleneck routing games have been

introduced in [8], in a MMF context, trying to move traffic

to the less utilized parts of the network, avoiding congestion

by minimizing the utilization of the most used links. However,

due to the increasing number of services and the users mo-

bility, the number of active flows changes over time, and, in

addition, a single-path routing does not allow nodes to make

optimal resource decisions based on the real-time network

congestion and flows intensities.

For these reasons, in this paper we present a mathematical

model (Adaptive Multi-Path, AMP) and two effective heuris-

tics that perform routing of elastic (TCP-like) demands in gen-

eral network topologies, adopting a hybrid framework based

on a Stackelberg (Leader-Follower) approach, as in [9], that

we call “semi-distributed”: the controller (Leader) provides a

set of paths to each active origin-destination pair, adapting its

cardinality based on heterogeneous demands intensities (we

will show numerically that such approach provides consistent

advantages if compared to providing a fixed number of paths,

or a unique path). We also set an upper bound to the maximum

cardinality of paths to simplify switches’ route management

and reduce the usage of the Ternary Content Addressable

(TCAM) memory [10]. The switches (Followers) then choose

among these paths and adapt their local forwarding behavior to

the real-time congestion information obtained in a distributed

fashion. This distinguishes our contribution from previous

works that separately consider SDN-based load balancing



([2–4]), elastic traffic ([6–8]), and semi-distributed resource

allocation ([11, 12]) approaches. In addition, as a further novel

and important contribution, we explicitly consider and model

a stochastic scenario where both the number and size of flows

change over time, which leads to radically different choices

compared to those that typically apply to traditional static

scenarios.

We numerically assess the performance of our proposed

model and heuristics with a custom-built python-based net-

work simulator under stochastic traffic arrivals to show how

our multi-path routing enables switches to choose their best

current path based on real-time congestion information. More-

over, we observe that our designed heuristics are able to find

very good solutions in a short time (few tens of seconds) also

in relatively large network scenarios, which is a necessary

requirement for an effective operation in a real environment.

The paper is structured as follows: Section II discusses the

system model. Section III and Section IV present, respectively,

a mathematical formulation of our problem and two effective

heuristics. Numerical results are discussed in Section V for

general and realistic network scenarios. Finally, conclusions

and directions for future research are outlined in Section VI.

II. SYSTEM MODEL

We focus on an SDN scenario where programmable

switches implement the network user-plane and are equipped

with processing capabilities (e.g., P4 or OpenState-compliant

switches). The semi-distributed approach we present aims at

leveraging the advantages of both centralized and distributed

control-plane solutions. In particular, it can quickly balance

path loads to follow real-time traffic changes, based on live

congestion information and independent decisions made by

each switch, and, at the same time, rely on a global view,

provided by the SDN controller, to steer switches’ behavior

towards an optimal performance.

The framework we propose is shown in Fig. 1. The network

supports several elastic demands from a source switch (src)

to a destination switch (dst). Each demand can be routed via

multiple paths and split among them on a per-flowlet basis [2].

In this context, three are the main TE choices we have to

make to cope with traffic dynamics: (i) the number of paths to

be assigned to each source-destination demand, (ii) the routing

paths, namely the links crossed by each path, and (iii) the de-

mand split ratio across multiple paths. Our framework assigns

the first two to the controller, while the split ratio is decided by

each source switch. Given the paths provided by the controller,

each switch maintains a local congestion measure for each of

them. The congestion can be periodically estimated by using

probe packets [3] or piggybacking techniques [2] measuring

the available capacity. At the arrival of the first packet of a

flowlet, the switch will route the entire flowlet through the

path experiencing the lowest congestion. If another flowlet

starts while the previous is still active, it will be routed again

through the path exhibiting the lowest congestion, considering

the contribution of ongoing flowlets.

Fig. 1: Proposed semi-distributed framework.

Arguably, the network performance provided by the

switches’ adaptive split will strongly depend on the available

paths and their number. In addition, the design of the best

paths must consider the Max-Min-Fairness resource allocation

originated by the interaction of elastic flows. Although TCP

flows may deviate from the MMF model when in the pres-

ence of different Round-Trip-Times (RTT), other commonly-

implemented mechanisms to limit the congestion, like Random

Early Detection (RED), allow to practically limit this effect

[13]. Computing optimal routing paths considering a different

resource allocation model (f.i., considering fixed traffic de-

mands or arbitrary sharing mechanisms) would clearly lead to

a sub-optimal, often remarkably worse, performance when the

network is subject to elastic traffic, which is dominant in the

Internet [5].

Each switch chooses the best path according to its own

congestion measurements. Therefore, from a network per-

spective, we can describe them as competitive players that

try to selfishly minimize the congestion seen by respective

flows. The interactions among these players routing flowlets

through available paths will eventually converge to a stable

split condition [8], namely the game-theoretical concept of

equilibrium, where no player has an incentive to unilaterally

deviate. A routing model that arbitrarily assigns split ratios to

switches would not be representing the real resource allocation

in stable conditions, so it would produce inefficient routing.

In light of the above aspects, the framework we propose

works as follows (see Fig. 1): (a) Switches monitor the flowlet

arrival intensities of the demands for which they are the source

node and periodically send this information statistics to the

SDN controller. (b) The controller determines the number and

the routing paths to assign to each demand according to the

received traffic intensities, considering the aspects related to

MMF and equilibrium resource allocation. It can use the model

in Sec. III or the much faster heuristic algorithms proposed in

Sec. IV. (c) Path entries are then sent to each switch. (d) Each

switch keeps measuring the congestion perceived on assigned

paths and stores this information in a path table. (e) When a

new flowlet of a demand arrives, the switch looks up the path

table and selects the routing entry for the demand with the

current minimum congestion.



This combination of real-time congestion-based switch reac-

tions and periodical measurement-based routing updates from

the controller provides an efficient trade-off between fast and

optimal network reconfiguration to follow traffic dynamics.

III. PROBLEM FORMULATION

Traditional MMF-based capacity allocations [6] rely on the

assumption that the number of concurrent flows on each link is

known, and they equally share the link capacity. However, real

communication networks behave like a stochastic scenario,

where elastic traffic consists of connections (flowlets) that

arrive at arbitrary instants and last until the connection is

closed, e.g., the file transfer is completed. We can characterize

this traffic assuming Poisson arrivals for each demand with

rate Λd and file size drawn from a general distribution of

mean σ. However, the actual number of flowlets along a

link depends not only on flowlets’ arrival rates, but also on

their service times, which depend, in turn, on the resources

allocated to those flowlets and the file size distribution. Since

the resource allocation depends, in turn, on the number of per-

link concurrent flowlets, modeling this interaction under MMF

assumptions is in general intractable, and, even for a given

routing, it is not possible to obtain a closed form solution for

the distribution of the number of concurrent flowlets through

a link [14]. For this reason, rather than focusing on the exact

bandwidth allocation for each flow, our approach aims at

finding a set of paths that adapts to the network topology

and to the heterogeneous intensity distribution of the origin-

destination pairs. Therefore, instead of considering the exact

number of flowlets for each demand, we consider its intensity,

that is the arrival rate Λd. Therefore, what we call throughput

(bandwidth) of a demand x is in fact an approximation of it.

However, this does not harm the goal of the model, which is

to provide good routing paths to allow switches to perform

the best possible throughput-oriented choices. Consistently

with this definition, we introduce the concept of intensity-

normalized bandwidth of a demand as its total available

bandwidth normalized by its traffic intensity.

The routing design model we propose, named Adaptive

Multi-Path (AMP), considers as inputs a network graph

G(V ,A), V and A being the set of nodes and arcs in

the graph, a set of demands D with their traffic intensities

{Λd, d ∈ D : Λd ≥ 1}, the set of all available paths Pd

from the source to the destination of each demand d, and a

maximum number of allowed paths N . It provides as output

a variable number of routing paths for each demand such that

the network throughput is maximized.

The model includes four set of variables: xd,p and yd,p are,

respectively, a real variable expressing the total throughput

(bandwidth) for demand d along the path p ∈ Pd, and a binary

variable indicating if demand d uses path p ∈ Pd. Then, binary

variable bd,pi,j indicates if arc (i, j) is a bottleneck for demand d
along path p. Finally, the real variable zi,j expresses the largest

intensity-normalized bandwidth among those of the demands

traversing arc (i, j).
The objective function of the AMP model is:

Ω = max
∑

d∈D

wd
∑

p∈Pd

xd,p (1)

which maximizes the weighted sum of the total bandwidth

available to each demand. To enforce the model to give higher

weights to demands with higher intensity, we set wd = Λd.

For the sake of clarity, we divide the description of model

constraints in the following three sets:

a) Multi-path constraints: These constraints define the

multi-path behavior:
∑

p∈Pd

yd,p ≤ N ∀d ∈ D (2)

∑

p∈Pd

yd,p ≥ 1 ∀d ∈ D (3)

yd,p ≤
xd,p

M1
∀d ∈ D, p ∈ Pd (4)

yd,p ≥
xd,p

M2
∀d ∈ D, p ∈ Pd (5)

Constraints (2) and (3) enforce, respectively, the maximum and

minimum number of paths per demand. Due to constraints (4)

and (5), the binary variable yd,p takes value 1 if and only

if path p ∈ Pd is used by demand d. The values of M1 =
min(i,j)∈A{ci,j}/(N ·

∑

d∈D Λd) and M2 = max(i,j)∈A{ci,j}
are, respectively, the lower and upper bound1.

b) Max-Min Fairness constraints: In a scenario charac-

terized by multiple simultaneous flowlets and multiple paths

for each demand, MMF conditions in Sec. II must be properly

adapted. Since each flowlet behaves as an independent elastic

traffic connection, when multiple flowlets of the same demand

share the same bottleneck, they equally share the total available

bandwidth. We refer to this fraction of bandwidth as the

per-flowlet bandwidth. Similarly, if more demands share the

same bottleneck, all their flowlets equally share its available

bandwidth, experiencing the same per-flowlet bandwidth.

The bandwidth allocation among multiple flowlets of dif-

ferent demands routed through multiple paths deserves further

comments, which are related to the way each switch indepen-

dently routes incoming flowlets according to the congestion

along its available paths. Recalling some notions of [8], it

is said to be a (Nash) Equilibrium a routing profile set for

which every switch considers its chosen strategy to be the

best under the given choices of other nodes. However, each

switch is selfish and tries to improve its own bottleneck, which

is the performance of the worst link under the given strategy

(paths) it is using. A stable condition is the one where each

switch balances the per-flowlet bandwidth of a demand over

its available paths so that all its bottlenecks have the same

value. Indeed, if no balance is achieved, the switch would

have incentive to deviate some of demand’s flowlets to the

less congested path, i.e., the one with the largest per-flowlet

bandwidth. Therefore, the per-flowlet bandwidth of a demand

1The upper bound considers the case where the demand is the only
competitor in its bottleneck link, which has the maximum capacity in the
network. The lower bound is achieved when the N paths of all demands are
routed through the same arc (i, j) ∈ A, which has the smallest capacity in
the network. Note that the lower bound holds in case xd,p > 0.



is the same through all the bottleneck links of its paths.

Extending the above reasoning from flowlets of the same

demand passing through different bottleneck links to flowlets

of different demands passing through the same bottleneck link,

we can conclude that the per-flowlet bandwidth (and hence the

intensity-normalized bandwidth) of a demand must be greater

than or equal to the one of any other demand routed via

the same bottleneck link. We enforce this behavior with the

following constraints, where Ld,p
i,j is a parameter which takes

value 1 if arc (i, j) belongs to the path p of demand d.
∑

(i,j)∈A

bd,pi,j · Ld,p
i,j ≥ yd,p ∀d ∈ D, p ∈ Pd (6)

∑

d∈D

∑

p∈Pd

xd,p · Ld,p
i,j ≤ ci,j ∀(i, j) ∈ A (7)

∀(i, j) ∈ A, d ∈ D, p ∈ Pd :
∑

d′∈D

∑

p′∈Pd

xd′,p′

· Ld′,p′

i,j ≥ ci,j · b
d,p
i,j (8)

zi,j ≥

∑

p′ xd,p′

Λd
· Ld,p

i,j −M3(1− yd,p) (9)
∑

p′ xd,p′

Λd
· Ld,p

i,j ≥ zi,j −M3(1− bd,pi,j ) (10)

Constraints (6) ensure that there is at least one bottleneck arc

for each demand, constraints (7) are link capacity constraints,

constraints (8) guarantee that bottleneck arcs are saturated, and

constraints (9) assign to the variable zi,j the value of the largest

intensity-normalized bandwidth on the arc (i, j) ∈ A. Finally,

constraints (10) impose that all demands for which (i, j) is bot-

tleneck must have an intensity-normalized bandwidth at least

as large as the one of any other demand routed through it. The

value of M3 = (max(i,j)∈A{ci,j} · N)/mind∈D{Λd} is the

upper bound of the intensity-normalized bandwidth achieved

in the best-case of a demand routed with no competitors over

N paths whose bottlenecks are links of maximum capacity.
c) Other inequalities: The last set of constraints are

additional cutting planes that help the MILP solution process

by improving the quality of the linear relaxation:

xd,p ≤ M1 ∀d ∈ D, p ∈ Pd (11)

∑

(i,j)∈A

bd,pi,j · Ld,p
i,j ≤

xd,p

M1
∀d ∈ D, p ∈ Pd (12)

bd,pi,j ≤ Ld,p
i,j · yd,p ∀d ∈ D, p ∈ Pd (13)

Constraints (11) and (12) are upper bounds for the bandwidth

available to demand d on path p and for the bd,pi,j variable,

respectively. Constraints (13) impose that arc (i, j) can be

bottleneck for d ∈ D only if path p ∈ Pd is indeed used.

IV. HEURISTICS

To allow our model to follow the network dynamics and

let it achieve a prompt (re-)configuration of traffic routing,

we propose in this section two heuristic routing optimization

algorithms. The first one, heur-AMP, overcomes the complex-

ity of the original AMP model by working on a restricted

set of elementary paths. The second one, stochastic-AMP, is

designed for a dynamic environment, providing more degrees

of freedom to avoid congestion issues during live operations.

A. Heur-AMP

Since the number of available paths for each demand grows

exponentially with the size of the network, we can remarkably

reduce the complexity of the AMP problem by considering a

reduced set of “good” candidate paths. To obtain such subset,

we rely on the continuous relaxation of some of the integer

variables in the AMP formulation. Integer variables are yd,p,

specifying if demand d uses path p, and bd,pi,j , indicating the

bottleneck link of each path p. Namely, we solve the AMP

model by relaxing only variables bd,pi,j (relaxed-AMP), and then

consider every path p for demand d such that yd,p = 1. This

has the twofold advantage of providing hints about few paths

per-demand with a potentially high performance and obtaining

such an indication in short computation times.

Since the set of paths selected by relaxing variables bd,pi,j

may cause feasibility issues in the constraints of the original

AMP formulation, we cannot guarantee that the number of per-

demand paths resulting from relaxed-AMP provides a feasible

solution for the original AMP model. Therefore, we solve the

original AMP model again considering now the reduced set

of paths indicated by relaxed-AMP.

B. Stochastic-AMP

AMP model and heur-AMP heuristic implement a routing

path optimization that provides high throughput in static

conditions, i.e., considering average traffic intensities Λd, as

indicated by the values of their objective functions. However,

the real network behavior is characterized by a stochastic

scenario with random flowlet arrivals, each with a random

duration. This may considerably and unpredictably [14] shift

the network working point from the one that was optimal in

average conditions. In this case, even if it is essential to give

relevance to more intense demands, it is also crucial to set a

bound to the minimum offered bandwidth to guarantee the best

possible worst-case. Since the worst per-flowlet bandwidth

is the one experienced in the most congested link of the

network, maximizing the minimum per-flowlet bandwidth will

implicitly reduce the congestion in all network bottlenecks.

Therefore, in the first step of this new heuristic approach,

we modify heur-AMP by changing its objective function into:

maxmin νd =
∑

p∈Pd

xd,p
/

Λd (14)

which we linearize with standard additional constraints [7].

However, as for any max-min optimization, it can happen

that network resources are not fully exploited. To preserve an

optimal worst-case throughput and target at a good overall re-

source allocation, we consider as a second step of the approach

another modified version of heur-AMP, where we add lower-

bound constraints to the minimum per-flowlet bandwidth:
∑

p∈Pd

xd,p ≥ Λdνd d ∈ D (15)

and we plug in a different objective function. Indeed, we argue

that multiple per-demand paths to forward flowlets can better

cope with traffic dynamics in a stochastic scenario. Indeed,

they provide better opportunities to network switches to avoid



TABLE I: MILP results

AMP fixed-AMP
2 3 2 3

|V| |A| |D| Ω′ Ω′ Ω′ Ω′

5 7 10 1.10 1.11 1.03 0.81
6 8 10 1.09 1.10 1.01 0.78

6 9 10 1.11 1.11 1.07 0.98
8 12 10 1.21 1.22 1.17 1.13
8 12 15 1.09 1.11 1.04 0.99

avg 1.12 1.13 1.06 0.94

TABLE II: Heuristics and MILP results in the abilene and polska network scenarios.

AMP heur-AMP stochastic-AMP
2 3 1 2 3 2 3

net |D| Ω′ γ′ Ω′ γ′ Ω′ γ′ Ω′ γ′ Ω′ γ′ Ω′ γ′ Ω′ γ′

ab
ilen

e

10 1.15 0.98 1.15 0.93 1.00 1.04 1.13 1.11 1.12 1.15 1.11 1.62 1.12 1.62
20 1.06 1.03 1.06 0.94 0.96 1.31 1.01 1.32 1.02 1.36 1.01 1.73 1.03 1.73
30 1.04 0.97 1.04 1.08 0.96 1.51 0.98 1.67 0.98 1.67 0.94 2.91 0.94 2.91
40 1.02 0.93 1.01 0.94 0.95 1.24 0.94 1.46 0.94 1.46 0.94 1.96 0.95 1.96

avg 1.07 0.98 1.07 0.97 0.97 1.28 1.02 1.39 1.02 1.41 1.00 2.06 1.01 2.06

p
o
lsk

a

10 1.29 0.85 1.38 0.73 0.99 0.93 1.23 0.99 1.31 0.88 1.21 1.44 1.26 1.49
20 1.06 1.03 1.06 0.94 0.96 1.31 1.01 1.32 1.02 1.36 1.01 1.73 1.03 1.73
30 1.10 0.73 1.13 0.80 0.99 1.15 1.06 1.17 1.05 1.15 1.02 2.03 1.04 2.03
40 1.04 0.84 1.04 0.88 0.95 1.39 0.95 1.23 0.95 1.25 0.91 3.53 0.91 3.53

avg 1.12 0.86 1.15 0.84 0.97 1.20 1.06 1.18 1.08 1.16 1.04 2.18 1.06 2.20

congestion. Hence, to incentivize the solution to provide more

paths for each demand, we modify the objective function into:

max
∑

d∈D

wd
∑

p∈Pd

xd,p + α

∑

d∈D,p∈Pd yd,p

|D|
. (16)

The normalization with demand cardinality |D| ensures the

second term to be at most N , so we tune parameter α such that

the second term assumes a value about 0.1% of the first one.

Stochastic-AMP then consists in a first step, in which we

use heur-AMP with expression (14), while, in the second step,

we use again heur-AMP with (15) and (16). Notice that, as

shown in Sec. V, applying heur-AMP for both the first and

second step remarkably reduces the solution time, thus leading

to an overall time-efficient heuristic.

V. NUMERICAL RESULTS

To evaluate the performance of our models and heuristics,

in this Section we compare them in terms of objective function

value, computation time, and throughput statistics obtained

with our network simulator.

a) Network instances: We consider three network topolo-

gies from the SNDlib library [15]: abilene (|V| = 12,

|A| = 30), polska (|V| = 12, |A| = 36) and nobel-germany

(|V| = 17, |A| = 52). We assign a random capacity to each

arc choosing the values between 2, 2.4, and 8 Gbps. We

consider randomly generated sets of origin-destination pairs

with different demands cardinality |D| in the range [10,70].

We consider for each instance an intensity Λd computed by

sampling from a uniform distribution over [1,10].

We solve the proposed models and heuristics using the

CPLEX solver (ver. 12.8) on a PC with two quad-core Intel

Xeon E5620 processors and 90 GBytes of RAM, imposing a

time limit of 1 hour for each run.

b) MILP results: Table I shows the results of the AMP

and fixed-AMP models, where in fixed-AMP we impose exactly

N paths per demand by setting equality in constraint (2). The

results of each row are averaged over 10 instances. For each

instance we randomize the link capacities, the combination

of origin-destination pairs, and their intensities. Columns are

grouped into model type and number of paths N ∈ [1, 2, 3].
For each of them, we report the value of Ω′, which is the

objective function (1) normalized w.r.t. the value obtained with

AMP for N = 1. Since the fixed-AMP variant has proved

computationally hard to solve, we use different subsets in

terms of nodes and arcs of nobel-germany only for this case.

We can see that by introducing multiple paths (for N ≥ 2)

the performance improves, from 9% up to 22%. However,

while the AMP model exploits multi-path routing as an

opportunity to obtain performance gains, for fixed-AMP this

can be a harmful limitation, being forced to split traffic over

exactly N paths for each demand. Indeed, even if we can

observe an improvement of 6% on average with N = 2, a

decrease occurs with N = 3, which can be as large as 22%.

Table II reports the results of the AMP model and two pro-

posed heuristics, heur-AMP and stochastic-AMP. Column γ′

is the smallest intensity-normalized capacity assigned to a

demand, normalized again w.r.t. AMP for N = 1. A multi-

path solution exhibits the best performance when the network

is highly meshed and not too congested, as more room is

available to apply smart TE decisions. Indeed, a maximum

improvement of 38% (in bold in Table II) is observed for the

polska network with |D| = 10.

The optimality gap between the heuristics and AMP over the

same instances never goes beyond 9% on average. However,

we have a remarkable computation time reduction with the

heuristics as results are available in few seconds: up to 14s

for heur-AMP and 60s for stochastic-AMP, on average, rather

than almost 1 hour (time limit) for AMP model. Furthermore,

γ′ shows that stochastic-AMP can provide a higher worst-case

bandwidth, up to 353% (in bold in Table II) better than AMP

with 1 path. This aspect of stochastic-AMP will become more

evident when we analyze the simulation results hereafter.

c) Dynamic Scenario: We developed a python-based net-

work simulator that generates flowlets over time and computes

their bandwidth allocation at each time instant according to the

TCP waterfilling algorithm [16]. For each couple of nodes,

flowlet arrivals are generated proportionally to traffic intensity

Λd and routed according to the paths provided by the controller

and local switch decisions. Flowlets’ file sizes are drawn

from an exponential distribution. The arrival intensity and file-

size mean are tuned in such a way that network stability is

preserved for all examined models. When a flowlet arrives, the

source switch can perform the path selection in two ways:

• Predefined static (denoted by letter P in Figure 2).

This path selection method models the case in which

switches have no forwarding decision capabilities. The

switch sends a number of flowlets on each path that is

proportional to the (fixed) ratio xd,p/
∑

p x
d,p, enforced

by the controller on the basis of AMP model or heuristics.

• Oracle dynamic (denoted by O). We assume the switch

is perfectly aware, in real-time, of the congestion level of



Fig. 2: Average normalized throughput. Heuristics simulation results.
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available paths and sends each incoming flowlet through

the path with the currently minimum congestion. This

provides an upper bound to the performance achievable

by monitoring solutions, where congestion is estimated

with packet probing or piggybacking techniques.

Figure 2 shows the average throughput achieved by these

two path selection methods, computed as the inverse of the

average completion time, and normalized by the one obtained

by AMP for N = 1. Results correspond to the average values

among all the instances listed in Table II. We further consider

the nobel-germany network, for which the demands cardinality

is extended to a maximum of |D| = 70 to match its size.

Since for this large topology we could not find a solution with

AMP model in reasonable time, we run heur-AMP heuristic.

Reported results are grouped by the model type, the path

selection method (P and O) and the value of N (∈ [1, 2, 3]).
We can observe the following: 1) Independently of the

model type/heuristic and the network topology, the model

performs better when we increase the number of available

paths N (up to 7 times), and the O path selection method

outperforms the P method (as expected) as real-time con-

gestion information permits to better follow traffic variations

and avoid congestion. 2) Stochastic-AMP always outperforms

AMP in terms of average normalized throughput. Indeed, it

is interesting to see that stochastic-AMP with a single path

routing solution shows better performance (up to 238%) than

AMP model with 3 available paths under both path selection

methods (AMP-P-3 and AMP-O-3). 3) Finally, we analyze the

solution obtained by halting stochastic-AMP at its first step

(maxmin-AMP), thus focusing only on (14). It shows better

performance than AMP, but the gap with stochastic-AMP is

evident, as it omits the second step aiming to improve network

resource utilization.

VI. CONCLUSION

In this paper we proposed a mathematical model, as well

as two effective heuristics, that route elastic demands in

general network topologies. We envisioned a semi-distributed

approach to deal with path congestion, where the SDN con-

troller provides a limited set of paths to each active switch,

adapting their number to congestion conditions and estimated

demands intensities. The switches choose within this set of

paths, adapting their forwarding behavior to the real-time

congestion information.

Numerical results, obtained in different network scenarios

with an increasing number of nodes and demands, show that

our proposed heuristics can find very good routing solutions

taking only few tens of seconds as computing time, while solv-

ing exact models becomes rapidly infeasible with increasing

instance sizes. Furthermore, they are able to accurately track

dynamic changes in the arriving flows that naturally occur in

real networks. We also provided, through oracle-dynamic path

selection, an upper bound to the performance achievable by

any on-line monitoring solution, where congestion is estimated

with packet probing or piggybacking methods.

Future work will include a more detailed study of the game’s

features, including the quality of the equilibria reached by the

followers (switches) in a fully distributed way, as well as the

convergence properties of the procedures necessary to reach

such equilibria in real-life scenarios.
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