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Abstract—In multiple-input multiple-output (MIMO) systems,
the high-resolution channel information (CSI) is required at the
base station (BS) to ensure optimal performance, especially in the
case of multi-user MIMO (MU-MIMO) systems. In the absence of
channel reciprocity in frequency division duplex (FDD) systems,
the user needs to send the CSI to the BS. Often the large
overhead associated with this CSI feedback in FDD systems
becomes the bottleneck in improving the system performance.
In this paper, we propose an AI-based CSI feedback based on
an auto-encoder architecture that encodes the CSI at UE into
a low-dimensional latent space and decodes it back at the BS
by effectively reducing the feedback overhead while minimizing
the loss during recovery. Our simulation results show that the
AI-based proposed architecture outperforms the state-of-the-art
high-resolution linear combination codebook using the DFT basis
adopted in the 5G New Radio (NR) system.

I. INTRODUCTION

The massive multiple-input multiple-output (MIMO) is
widely regarded as one of the key technologies in the fifth-
generation wireless communication system. With a larger an-
tenna array, such a system can boost both spectrum and energy
efficiency, and further support higher-order multi-user (MU)-
MIMO transmission to maximize the system performance.

One of the key components of a MIMO transmission is the
channel state information (CSI) acquisition at the base station
(BS). In frequency division duplex (FDD) systems, the CSI
is first estimated at the user equipment (UE) using the CSI
reference signal (CSI-RS) transmitted from BS and is then fed
back to the BS. The quality of this CSI feedback affects the
efficacy of downlink (DL) multi-user (MU) precoder selection
at the BS, i.e., directing beams for a selected set of co-
scheduled UEs with minimal interference between MU layers.
Thus, for MU-MIMO with a high number of antenna ports,
the availability of accurate CSI is necessary to guarantee high
system performance.

The UE can either feedback the entire CSI matrix referred to
in this paper as full channel state information (F-CSI) which is
very expensive in terms of uplink (UL) feedback overhead or
can pre-process the CSI and send relevant information such as
the channel eigenvectors, i.e., dominant beam directions that
can directly be used for the design of DL precoder.

The conventional CSI feedback framework adopted in 3rd
Generation Partnership Project (3GPP) standards pre-processes
the CSI. In particular, a CSI codebook is designed to express
channel eigenvectors, with a reduced amount of feedback.

Note that in the case where the channel has multiple dom-
inant eigenvectors i.e, higher rank channel, each eigenvector

is fed back independently. Thus, despite the promising perfor-
mance of the NR high-resolution CSI feedback, the overhead
can still be expensive, especially in higher-rank channels.
Therefore, it is desirable to have an enhanced framework to
reduce the feedback overhead without hampering the system
performance.

A huge body of work also focuses on UE sending the entire
CSI, i.e., F-CSI to the BS by reducing feedback overhead by
either (a) traditional compressive sensing (CS) methods, and/or
(b) deep learning methods, where the CSI is transformed and
represented in a sparse domain. The traditional compressed
sensing (CS) (LASSO l-1 solver [1], AMP [2], TVAL3 [3])
works poorly since the channel matrix may not be sparse
enough to achieve higher compression. Furthermore, it is
difficult to apply them in the actual communication system
due to high computational complexity and time consumption.

In recent years, AI technology has gradually matured and
achieved great success in various fields and has also been
adopted to solve challenging communication problems, as they
have the capability to deal with non-linearity in the system
which is usually difficult to mathematically formulate and
analytically solve. Furthermore, with deep learning methods
achieving great success in the image compression task, it
motivated researchers to propose a neural network-based CSI
compression to improve the accuracy of full channel state
information (F-CSI) feedback with reduced overhead that
alleviates the problems of previous CS methods.

An architecture based on autoencoder, i.e., CsiNet [4] was
proposed to compress CSI and reconstruct it, providing per-
formance gains in comparison with CS-based methods. CsiNet
has two components, (a) encoder at UE that transforms the
CSI into a compressed latent space leveraging the channel
structure learned through data training, and (b) decoder at
BS, that recovers the original channel from the compressed
representation. This work inspired a lot of research, such as
CsiNet-LSTM [5], where, to better extract the correlation of
CSI in the time domain, long short term memory (LSTM) was
combined with CsiNet. Multi-user cooperative feedback was
considered in [6], and some end-to-end models are designed
combining CSI feedback with channel estimation or beam-
forming [7], [8]. To improve the accuracy of CSI feedback, a
multi-resolution convolution block was designed in the CRNet
[9].

A novel architecture called ACRNet [10] was proposed to
further improve the state-of-the-art performance with network
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aggregation [11] i.e., a standard convolution block is split into
parallel groups and with a learnable activation function.

The above works have achieved great performance in the
F-CSI feedback mechanism where the channel is transformed
into another space, such as angular-delay domain [5], to
leverage the sparsity. However, this is different from the
widely adopted conventional CSI feedback scheme in 3GPP
protocols that mainly focuses on the feedback of precoder
channel data as discussed before. For practical purposes, it
is very much desirable to minimize the CSI feedback over-
head, hence the codebook-based precoder channel feedback
is largely implemented. Therefore, inspired by the successful
research of deep learning in F-CSI feedback, we leverage
the dual-polarization of antennas, which is very common for
commercial cellular BS deployment, and propose a novel AI-
based model PolarDenseNet to further enhance performance
compared with the conventional feedback scheme.

The paper is organized as follows. In section II, we define
the precise problem statement and summarize the 5G NR
codebook-based CSI feedback schemes in section-III that will
be the baseline to compare the performance of our proposed
AI model. We then introduce the architecture of our proposed
model in section IV. In section V, we present our simulation
setup with results and conclude in section VI.

II. SYSTEM MODEL

In this paper, we consider a massive MIMO system with
Nt >> 1 transmit antennas at a base station (BS) and Nr re-
ceive antennas at a user equipment (UE). We assume a single-
panel bipolar antenna array (i.e., number of polarizations =
2) in a rectangular shape, where N1 and N2 antenna ports
are arranged in horizontal and vertical directions respectively,
as depicted in Fig. 1. In this figure, each antenna element is
logically mapped onto a single antenna port. In general, one
antenna port may correspond to multiple antenna elements
(physical antennas) combined via virtualization. The total
number of antenna ports at the BS is Nt = 2N1N2. In 5G
NR, the maximum number of supported antenna ports is 32
and a variety of different antenna port layouts are supported
[12].

Fig. 1: An illustration of dual polarized antenna array at BS
for various possible configurations of (N1, N2).

In this paper, we assume an orthogonal frequency division
multiplexing (OFDM) system operating over Nc subcarriers.
The received signal at the nth subcarrier is

yn = hHn vnxn + zn, (1)

where yn ∈ CNr×1, hn ∈ CNt×Nr , vn ∈ CNt×Ns ,
xn ∈ CNs×1, zn ∈ CNr×1 are the received symbol, channel

matrix, precoding matrix, transmitted symbol and AWGN
noise, respectively. Note that Ns represents the total number
of modulated symbols transmitted at nth subcarrier, that can
take values in the range [1,min(Nr, Nt)]. The channel matrix
stacked in frequency domain is then referred to as F-CSI,
H = [h1 . . . hNc

] ∈ CNc×Nt×Nr .
The conventional 3GPP scheme pre-processes the F-CSI by

performing the eigenvalue decomposition of the channel since
the dominant beam direction for a particular frequency sub-
band corresponds to the dominant eigenvector of the channel.
Thus, with the bandwidth split into various subbands, the UE
sends these dominant eigenvectors as the CSI feedback. Now,
let us formally define the precoder channel matrix as follows.

Definition 1. In MIMO OFDM systems with N transmit
antennas and with bandwidth split into K subbands each
containing a certain number of resource blocks, the precoder
channel matrix HN,K , is constructed by stacking K dominant
eigenvectors of the precoder of size N×1, each corresponding
to a specific subband.

For simplicity, in the rest of the paper, we refer to the
number of transmit antennas as N instead of Nt.

The feedback overhead for the entire precoder channel ma-
trix HN,K , i.e., the number of real-valued feedback parameters
Z = 2 × N × K, become too large to be reported over
the available uplink (UL) channels. Therefore, the precoder
channel matrix HN,K needs to be “compressed” before
being fed back. Thus, the problem statement is to propose
a scheme that can be practically implemented and reduce the
CSI feedback overhead, i.e., a scheme that can be an alternate
means to the existing conventional feedback framework.

In this paper, we propose to use an AI-based auto-encoder to
compress the precoder channel matrix HN,K and then perform
a system-level simulation to compare its performance with the
conventional 3GPP schemes, details of which are mentioned
in the following section.

III. BASELINE: 3GPP CODEBOOK BASED FEEDBACK

In this section, we briefly describe the 5G NR CSI codebook
design and feedback framework. In Rel 15 type-II codebook
scheme [12], the CSI compression was only in the spatial
domain (SD) where spatial Discrete Fourier transform (DFT)
basis set is generated at UE based on the antenna configuration
and oversampling factors. After that, L orthogonal DFT beams
are selected which are common to both antenna polarization
and across sub-bands. Dominant eigenvectors per subband are
represented as a linear combination (LC) of these selected L
DFT beams.

Let B = [b0, . . . bL−1] denote the beam matrix whose
columns are the L selected beams. Then, the linear combi-
nation coefficients are given by

W2 = inv(W1)HN,K = WH
1 HN,K , (2)

where W1 =

[
B 0
0 B

]
have orthogonal column vectors there-

fore, Hermitian of the matrix is also its inverse.



The Rel-15 codebook can be viewed as a dual-stage CSI
codebook, where the reconstructed precoder channel matrix is
given by

ĤN,K =W1W2, (3)

where W1 comprises of orthogonal beam selection and W2

comprises of subband coefficient amplitude and phase that is
different for each antenna polarization. In Eq. (3), normaliza-
tion was omitted to simplify the description. This dual-stage
CSI codebook is illustrated pictorially in Fig. 2.

Fig. 2: Illustration of Rel-15 type-II CSI codebook based
feedback scheme.

In a later release, Rel-16 type-II CSI feedback [12], HN,K is
compressed jointly in both spatial and frequency domain (FD).
In particular, the correlation in the rows of W2 is exploited. To
that extent, the compression in the FD domain is performed
by LC of M FD DFT basis vectors, i.e. columns of Wf for
FD compression as in

C =W2Wf , (4)

where Wf = [f0 . . . fM−1]. The UE reports SD, FD basis
vectors, W1, W2 and C comprises of frequency and spatial
domain coefficients. Then, the reconstructed precoder channel
matrix for Rel-16 is given as

ĤN,K =W1CW
H
f , (5)

where C is the coefficient matrix composed of linear combi-
nation coefficients as in Eq.(4).

In this paper, we show that our proposed architecture outper-
forms the above described 5G NR high-resolution codebook-
based CSI feedback in both metrics of comparison, i.e., NMSE
and cosine-similarity defined in later section, with reduced
feedback bits.

IV. PROPOSED ARCHITECTURE

In the field of deep learning, autoencoders have gained a
lot of interest in recent times. Autoencoder is an unsuper-
vised artificial neural network that learns how to efficiently
compress/encode data and then, learns how to reconstruct
the data back from the reduced encoded representation to a
representation that is as close to the original input as possible.
The autoencoder achieves this compression by exploiting the
correlation in the original input data.

Fig. 3: Proposed autoencoder architecture.

Note that the convolutional layer plays a significant role in
neural networks especially for computer vision tasks. Since
the CSI matrix can be viewed as an image depicting the
physical layer channel pattern, most previous work on AI-
based CSI feedback such as CsiNet and ACRNet, are based
on a convolutional neural network (CNN) [4].

Thus, in this paper, we propose to use an auto-encoder
framework based on CNNs for CSI feedback named Po-
larDenseNet as illustrated in Fig.3, which further improves
feedback compression and recovery performance over existing
schemes by exploiting dual-polarized antenna structure and
various recent neural network architectures and techniques.

Autoencoder has two main components, an encoder that
takes the precoder channel matrix as input and transforms it
into a compressed codeword (i.e., a bitstream) which is sent
by UE as CSI feedback through the UL feedback channel.
It is assumed that the compressed codeword is received by
BS without an error owing to the error-correcting codes and
re-transmission schemes. Then, at BS a decoder takes the
compressed codeword as input and reconstructs the precoder
channel matrix.

Let θ = {θen, θde} represent the set of trainable parameters
of the machine learning model, then the reconstructed precoder
channel ĤN,K at the BS can be represented as

ĤN,K = fde(Q(fen(HN,K ; θen)); θde), (6)

where fen(.), fde(.) represents the encoder and decoder re-
spectively and Q(.) represents the quantization operation. For
training, we perform end-to-end learning for all the kernels
and bias values of the encoder and decoder jointly. The goal
is to minimize the mean square error (MSE) given as

MSE =
1

S

S∑
i=1

||Ĥi
N,K −Hi

N,K ||2F , (7)

where S represents the total number of samples in the training
set. The final feedback overhead, i.e., the number of feedback
bits, is decided by the compression ratio, γ, and quantization
bits, β, i.e. the number of bits used to represent a real number,
as

Nbits = Z × γ × β, (8)

where Z is the original dimension of HN,K , i.e., 2×N ×K.



Fig. 4: Encoder and Decoder architecture for the proposed PolarDenseNet. The input shape (number of input channels, height,
width) is mentioned on the blocks with thick arrows representing various composite NN layers and thin arrows representing
simple concatenation, split, or fowarding operations.

To evaluate the reconstruction performance we adopt the
widely used metric in the DL-based CSI feedback, the nor-
malized MSE (NMSE) given by

η = E

[
||ĤN,K −HN,K ||2F
||HN,K ||2F

]
. (9)

We also consider the cosine-similarity as another perfor-
mance metric, given by

ρ = E

[
1

K

K∑
k=1

|ĥHk hk|
||ĥk||2||hk||2

]
, (10)

where ĥk, hk are the column vectors of the reconstructed and
original precoder channel matrix, respectively. The range of
values for ρ is [0, 1], with values closer to 1 implying that the
reconstructed vector is similar to original precoder vector.

The UE first compresses the estimated CSI and then quan-
tizes the compressed codeword to further reduce the feedback
overhead. Once the BS obtains the feedback bits, the BS
decompresses the received feedback bitstream into the original
CSI form and utilizes it for MIMO beamforming precoder
selection. Hence, the key point of the architecture is the design
of neural networks (NNs) for stronger precoder channel matrix
compression and recovery ability. To this end, we demonstrate
our proposed model in detail in the following subsection.

A. Details about the PolarDenseNet NNs

Motivated by the architecture of CSINet and ACRNet
autoencoders that are shown to have great performance with
F-CSI feedback on COST-2100 model, we propose our archi-
tecture as illustrated in Fig.4.

The input to the encoder is the precoder channel matrix
HN,K ∈ R2×N×K , where the value 2 represents the real
and imaginary parts of the matrix. Given the dual-polarization
of the antennas, we expect a high correlation within a given
polarization, but less correlation across the channels between
two different polarization. An abrupt transition between the
upper half and lower half channel matrix is observed as
illustrated in Fig.3, because the upper and lower halves of

the channel matrix represent the first and second antenna
polarization, respectively.

Thus, we extract features separately by splitting the input
matrix into two halves and sending them to two different
convolution paths, i.e., convolution layers. In each path, there
are two convolutional layers with different kernel sizes. The
first one has a kernel size of 8×1 and the second one 1×8. The
kernel sizes are designed to capture the spatial and frequency
domain correlation, separately. Also, it is proven to have less
complexity in terms of parameters to have two convolutional
layers with 1 × n, n × 1 kernel sizes than to have one layer
with n× n kernel [13].

Later, we concatenate the features from both convolution
paths. The reason for this joint processing is that the un-
derlying physics governing the channel states between the
two polarizations are the same, i.e., one antenna element is
stacked on top of another antenna element having the opposite
polarization. Therefore, there exists a correlation between the
first half and the second half channels, which will be extracted
using the kernels after concatenation.

We further concatenate the features to enable maximum fea-
ture retain-ability and have a dense encoder block (DenseEn-
Block) that is inspired from the dense convolution networks
[14], which connects each layer to every other layer in a
feed-forward fashion. These networks have several compelling
advantages: they alleviate the vanishing gradient problem,
strengthen feature propagation, encourage feature reuse, and
substantially reduce the number of parameters. The DenseEn-
Block consists of three convolution layers and output fea-
ture concatenation. We further define dense decoder blocks
(DenseDeBlocks) used in the decoder that has similar archi-
tecture. The integration of these blocks is illustrated in Fig.
4.

Following a flatten layer at the encoder, the final layer of
the encoder is a dense layer that reduces the dimension of
the input to the desired length. One can implement pooling
to reduce the dimensions, i.e., a form of downsampling, and
use transpose convolutions [15] later at the decoder to upscale,
but the current architecture using dense layers yielded better



results in our experiments.
All convolutional layers have zero padding on the perimeter

of the input matrix to maintain the dimensions of the matrix
and are followed by batch normalization and Leaky rectified
linear activation unit (LReLU) activation layer. The batch
normalization layer has proved to affect the training of the
model, dramatically reducing the number of epochs required.
It can also have a regularizing effect, reducing generalization
error much like the use of activation regularization. On other
hand, the ReLU function has rapidly become the default
activation function when developing most types of neural
networks, given its benefits over hyperbolic tangent activation
(Tanh) and sigmoid activation functions [16]. We consider
LReLU to overcome the “dying ReLU” problem where there
could be dead neurons in the network since ReLU prunes the
negative values to zero. The equation for LReLU is given as

LReLU(x) =

{
x , x ≥ 0,

αx, x < 0,
(11)

where we set the parameter α to be 0.3 in this paper. The last
step at the encoder is quantization, where we use a simple
uniform 2-bit quantization.

V. SIMULATION SETUP AND RESULTS

In this section, we perform numerical simulations to eval-
uate and analyze the performance of the proposed AI-based
model. First, we elaborate on the simulation settings, including
channel model and network training details. Then, we compare
the performance under different simulation cases between the
proposed AI-model and Rel-16 type II codebook which is
considered as the baseline.

A. Experimental Settings

We generated the precoder channel matrix HN,K using the
system level simulator, considering a carrier frequency of 4
GHz with a bandwidth of 10 MHz. Further, we considered
a sub carrier spacing of 15 kHz, thus each transmission time
index (TTI) corresponds to 1 ms with 14 OFDM symbols. Note
that our model has 624 sub-carriers and since each resource
block (RB) is of 12 sub-carriers, our model has 52 RBs.

We considered the 3GPP standard 3D Urban Macro (UMa)
channel model [17] with inter-site distance (ISD) of 500 m
with uniform linear array (ULA) of N = 32, transmit antennas
and Nr = 4, receive antennas. Finally, we considered a
subband size of 4 RBs, thus we have the total number of
subbands K to be 13.

We generated the channel matrix at every 5 ms, which is
also every 5 TTI given the numerology explained above, along
with the reconstructed channel based on Rel-15 and Rel-16
codebook-based CSI feedback in the system level simulator
for multiple UEs and for multiple seed values for improving
the generalization of the model.

We used the generated channel as input to the Polar-
DenseNet for end-to-end training of parameters θ. We trained
the model on 70,000 training samples, with 10,000 validation

Fig. 5: Heat map of the precoder and reconstructed precoder
channel matrices, (HN,K , ĤN,K) for various compression
ratios (a) γ = 1/8, NMSE = -8.85 dB, (b) γ = 1/16, NMSE
= -5.32 dB, (c) γ = 1/20, NMSE = -4.52 dB.

samples, and calculate the normalized mean square error
for the reconstructed channel for 10,000 testing samples.
The training is performed using Keras TensorFlow with an
NVIDIA Quadro RTX 6000 GPU.

As for deep learning hyper-parameters, the batch size is 200
and the loss function is MSE with Adam optimizer. We adopt
the warm-up aided cosine annealing scheduler introduced in
[9], which can be derived as follows

lr = lrmin +
1

2
(lrmax − lrmin)

(
1 + cos

(
1− Tw
T − Tw

π

))
,

(12)
where Tw stands for the index of current epoch and lr is the
corresponding learning rate. The number of training epochs is
set to 400 and the number of warm up epochs is set to 30.
The initial learning rate lrmax is set to 1e-2 while the minimal
learning rate lrmin is set to 1e-4.

B. Simulation results

Note that the model changes in terms of sizes of the neural
networks and parameters for different compression ratios, γ.
Thus, we train the PolarDenseNet for various compression
ratios, γ = [1/8, 1/16, 1/20]. The reconstruction of the
precoder channel matrix is better for less compression, i.e.,
the higher compression ratio of 1/8 compared to that of 1/16.
Fig.5, illustrates the heat map of the original precoder channel
matrix HN,K and the reconstructed channel matrix ĤN,K for
various compression ratios.

C. Comparison with 5G NR schemes

We compare the performance of CSI feedback of our
proposed AI-model with 5G NR codebook-based schemes, i.e,
Rel-15/Rel-16 type-II, by evaluating both the NMSE (η) and
cosine-similarity (ρ). We compare these performance metrics
for various configurations of parameters such as the number of



TABLE I: NMSE in dB and Cosine-similarity ρ of various
schemes

Feedback scheme NMSE ρ Feedback Bits
Rel-15, L = 4 -3.8 0.94 351
Rel-15, L = 2 -2.1 0.89 176

Rel-16, L = 4,M = 3 -1.6 0.82 173
Rel-16, L = 2,M = 3 0.3 0.69 58

PolarDenseNet, γ = 1/8 -8.85 0.93 208
PolarDenseNet, γ = 1/16 -5.32 0.85 104
PolarDenseNet, γ = 1/20 -4.52 0.81 80

Fig. 6: Cosine-similarity results comparing the performance
of the PolarDenseNet for various compression ratios γ =
[1/8, 1/16, 1/20] with various Rel-16 type-II configurations
under AWGN noise.

SD/FD beams (L/M ), as supported by 3GPP standards with
various compression ratios of the PolarDenseNet as illustrated
in Table I.

As illustrated by the results, our proposed AI model outper-
forms the conventional 5G-NR schemes in terms of precoder
reconstruction accuracy with less feedback overheard.

D. Robustness of the model to noise

To validate the performance of the AI-model under noisy
conditions, we simulate CSI feedback by introducing three
types of additive Gaussian white noise (AWGN) whose signal-
to-noise ratio (SNR) is 0 ∼ 5 dB, 5 ∼ 10 dB, and 10 ∼ 15
dB to the precoder channel matrices as input samples. The
white noise following the same SNR distribution is applied
for both training and testing. Then, Fig. 6 illustrates the
simulation results comparing the cosine-similarity (ρ), where
the cosine-similarity of the AI-model is better than Rel-16
type-II codebook based schemes for various configurations and
SNR ranges.

VI. CONCLUSION

In this paper, we propose an AI-based model, Polar-
DenseNet, for CSI feedback that is inspired from the dense
convolutional networks and leverages the dual-polarization of

antennas. Numerical results show that it has better recon-
struction performance of the precoder channel matrix with
reduced feedback overhead than the conventional Rel-15/Rel-
16 codebook-based type-II CSI feedback. We further demon-
strated and confirmed the robustness of the model under
AWGN noise. Thus, the proposed framework can successfully
replace the state-of-the-art 5G NR codebook-based schemes.
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