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Abstract—Blockchains are appealing technologies with vari-
ous applications ranging from banking to networking. IOTA
blockchain is one of the most prominent blockchain specifically
designed for IoT environments. In this paper we investigate
the convergence of two Consensus proposed by IOTA: Fast
Probabilistic Consensus and Cellular Consensus, when run on top
of various topologies. Furthermore, we investigate their resilience
to various types of adversaries. Our extensive simulations confirm
that both Fast Probabilistic Consensus and Cellular Consensus
have poor convergence rates even under low power adversaries
and have poor scaling performances except for the case of Watts
Strogatz topologies. Our study points out that the design of
IOTs dedicated blockchains is still an open research problem
and gives hints design. This why the foundation IOTA works on
a complete version of consensus, Coordicide, for the new IOTA,
while regarding these two as components of.

Index Terms—Consensus, Byzantine fault, IOTA

I. INTRODUCTION

Internet of Things (IoT) devices are used in a large range
of applications such as smart grids, smart foraging, smart
buildings, smart supply chains or smart medical applications
and the IoT environment [1] is expected to further expand even
more ubiquitous deployment thanks to the fifth generation of
networks (5G) [2] and beyond.

Due to the vulnerabilities of IoT to various attacks and the
very harmful potential consequences, the currently dominating
approach in the management of IoT devices is centralizing
control operations at IoT gateways, which are considered as
the natural function to absolve access control, data filtering and
mixing operations. However, centralization does not appear
viable when one envisions hundreds of thousands of devices
per km2 or per cell [1], especially when those devices can be
constrained in size and power supply.

The use of Distributed Ledger Technologies (DLT) can
respond to both security and decentralization needs in the
management of IoT devices. Distributed Ledger Technologies
(DLT) such as blockchains provide a secure way to share infor-
mation between a high number of independent nodes operating
under different authorities, while ensuring high availability
and immutability. Distributed Ledger Technology pioneered
by Bitcoin technology created a new design philosophy for

executing and storing transactions in a decentralized and
secure fashion [3].

A blockchain is a distributed ledger that mimics the func-
tioning of a classical traditional ledger (i.e. transparency and
falsification-proof of documentation) in an untrusted envi-
ronment where the computation is distributed. Traditional
blockchain systems such as Bitcoin [3] or Ethereum [4]
maintain a continuously-growing list of ordered blocks that
include one or more transactions that have been verified
by the members of the system, called miners. Blocks are
linked using cryptography and the order of blocks in the
blockchain is the result of a form of agreement (consensus)
among the system participants. Bitcoin technology and similar
proposals (e.g Ethereum) came with several drawbacks that
prevent them from being used as standards for IoT industry.
Therefore, alternative solutions have been opened by IOTA
[5]. IOTA’s data structure is a Directed Acyclic Graph (DAG)
based distributed ledger, also known as the Tangle, aimed to
overcome limitations of Bitcoin-like distributed ledgers when
used in IoT environment while preserving equivalent security
levels. Transactions are continuously appended to the tangle.
Similar approaches have been proposed by Spectre or Phantom
[6], [7]. However, IOTA and similar approaches have not yet
been adopted by the IoT industry because of 1) lack of strong
consistency guarantees and 2) unclear resistance to attacks. In
order to respond to these criticism IOTA proposed recently
in [8] attacks resilient consensus mechanisms that plugged
into the IOTA Tangle will offer strong consistency guarantees.
Two consensus algorithms are proposed: Fast Probabilistic
Consensus (FPC) and Cellular Consensus (CC). These two
proposals have been partially evaluated in [9], [10].

In this work we investigate the performances of IOTA
consensus in several aspects. First, we run Fast Probabilistic
Consensus (FPC) and Cellular Consensus (CC) on top of
various topologies, from theoretical to practical (2D Grid,
Torus and Watts-Strogatz model [11]) then we evaluate their
resilience to adversarial behavior. Our evaluation is conducted
with OMNET++ simulator enriched with three adversarial
models introduced in [8]. Even though most of the results
reported in our study are negative they contain hits in order
to design an efficient IoT dedicated blockchain.
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II. IOTA DISTRIBUTED CONSENSUS

In this section, we briefly describe the operating principles
of the two consensus mechanisms proposed by IOTA [8]. The
basic idea is all honest nodes in the system should agree
dynamically with a commun opinion by a distributed way,
so that this opinion cannot be changed by others easily.

Consider a connected network composed of N nodes, enu-
merated as {1. . . i. . .N}. Some lossless links connect nodes
in the network. Nodes connected directly are neighbors.

We follow the setting proposed in [9], [10], assuming that
the time is discrete and divided into rounds.

Each node has an opinion status, Oi(r) ∈ {0, 1} at the round
r. Consensus is achieved, if ∀i, j ∈ N,Oi(rend) = Oj(rend),
where rend is the last round of simulation.

An opinion held by most of the nodes is a major opinion.
The convergence rate is the percentage of runs leading to a
consensus stage given P0, where P0 is the probability that a
node has opinion 0 at round 0. If a node does not have opinion
0 at round 0 it will have opinion 1.

A. Fast Probabilistic Consensus (FPC)

The idea of Fast Probabilistic Consensus algorithm is based
on the query/reply of opinion from nodes in the network.
Algorithm executed by each node is as follows:

• Query randomly a number of nodes in network at each
discrete time round t;

• Wait for the chosen nodes to respond and give their
opinions;

• Calculate the mean of the received opinions.
Once the node executing Fast Probabilistic Consensus algo-
rithm has calculated the mean, if it is the first round, he will
compare it to a threshold τ , if the mean is bigger than τ ,
then its opinion becomes 1, otherwise becomes 0. If it is not
the first round, the node will generate a random variable Ut

following a uniform law in function of τ between [β, 1 − β]
(where β is the uniform low parameter). If the mean is bigger
than Ut, the opinion becomes 1, if it is smaller, the opinion
becomes 0 and if they are equal, the opinion stays the same
as the previous round.

In [9], FPC has two special assumptions. The first is that
all nodes in the network have a common random values
sequences. This random values sequences should theoretically
be provided by a trusted third party in other network layer.
Through this common sequence, all nodes will ”randomly”
select the same threshold, Ut, at each execution round t. The
second assumption is that each node has the complete view of
all N nodes in network, and can freely query Q nodes among
them. Although the experiments in the [10] show that even if
nodes have only 50% of the network view, the algorithm still
works.

However, in an IOT network environment where millions
of devices can join and exit at any time, neither of these as-
sumptions is realistic. In order to adapt FPC to distributed IOT
environment, we made the following adjustments: 1) Remove
the assumption about the common random values sequence.

2) The node only knows the nodes directly connected to it,
the neighbors. In order to represent the process of randomly
querying Q nodes of original FPC, we use the Random Walk
method. Through random walks, nodes that only know its
neighbors can still query other nodes within the range of
random walks that are not directly connected.

When a node need to query nodes in each round, it launches
a number of random walks of distance D. When a random
walk stops at a node, this node will be chosen as a node
to be queried. When a node launches a random walk within
distance D, it will choose randomly one of its neighbors
and send a message containing a list of visited nodes and
a positive distance value, D− 1, as the distance decremented
of 1. At this point, the list of visited nodes will only have the
node that launched the random walk. Once one node receives
that message, it will verify whether the distance remaining is
greater than 0. If so, it adds itself in the list of visited nodes,
decreases the distance value and sends the message to one
of its neighbors. This neighbor is chosen uniformly between
the neighbors that have not already been visited so that no
random walk can go through the same node twice. If all of
the neighbors have already been visited, no random walk will
be launched. A node stops launching the random walk if the
remaining distance value reaches 0.

B. Cellular Consensus(CC)
In Cellular Consensus(CC), each node acts as an individual

agent, that changes its opinion in case of conflict with its
neighbors and adopts the major opinion among its neighbors.

At the beginning of each round, every node sends a ”heart-
beat” of its signed current opinion and the opinions from the
previous round of his neighbors, each one signed by the issuing
node.

When a node receives an opinion given by one of its neigh-
bors, it will evaluate this opinion by a ”proof” accompanying
the opinion. This ”proof” is materialized by the opinions of
the neighbor’s neighbors. That will allow nodes to monitor
each other and to detect if someone is lying independently of
its neighbors. If this ”proof” shows that the neighbor is lying,
it will immediately be blacklisted by the node and none of his
opinions will be taken into account.

Since the previous opinions of the neighbors cannot be
faked, every node can validate that the received opinion is
indeed correct.

In detail, the cellular consensus algorithms work as follows.
At each step of the algorithm, each node holds an opinion,
which can be 0, 1 or a temporary opinion state −1.

If the major opinion among neighbors of node i in round r
is:

• 0, then the opinion of node i in round r + 1 will be 0,
• 1, then the opinion of node i in round r + 1 will be 1,
• non-existent (i.e. there is no majority opinion), then the

opinion of node i in round r + 1 will be −1.

III. TOPOLOGY PRESENTATION

In this section we introduce three network typologies that
used in our experimentation: 2D Grid, Torus , two topologie



theoretical often used as reference topologie in algorithm
analyzing, and Watts-Strogatz [11], a realistic network model
which is well-suitable for IoT.

A. 2D Grid

The first topology studied is the simplest of all. We consider
a grid or matrix, which contains nodes. Each nodes’ neighbors
will be those adjacent to them. Their number therefore varies
according to the position of the node in the grid. Indeed, if a
node ends up in a corner, it will only have 2 neighbors. Also,
if it ends up on an edge, it will have 3 neighbors. Finally, if
this one is in the center of the grid, it will have 4 neighbors.

B. Torus

The second topology studied is an improvement of the
2D grid and avoids getting stuck in the corners and on the
edges. To do this we will transform our grid into a torus
[12]. We therefore connect the top and bottom edges together,
and repeat the same process for the right and left edges. By
connecting the edges between them, we add neighbors to the
nodes which are in the corners and on the edges. Indeed, if
we are in the top left corner, we add the bottom left corner
and the top right corner to the list of our neighbors. If we are
on an edge, we add the node which is on the opposite edge.
Finally, if we are located in the center, nothing changes. The
number of neighbors is therefore equal to 4 for any node in
the network.

Fig. 1. Transformation of a 2D grid into a torus

C. Watts-Strogatz model graphs

The Watts-Strogatz model [11] is a graph generation model,
possessing the small world property (the computation of the
shortest path between two nodes is logarithmic). This method
takes in parameters N the number of nodes, K the average
degree of the nodes in the network and P the probability
allowing to change the edges. The goal of the process is to start
from a ring graph in order to process every edge of a node.
Indeed, each edge can change recipient with the probability P
passed as a parameter.

IV. BYZANTINES ADVERSARIES

In order to simulate possible attacks and predict critical
security cases, three mentioned byzantine adversaries [10]
were implemented:

Fig. 2. Watts-Strogatz method process

A. Cautious adversaries.

These nodes are able to lie on every round of the process
with a probability Plying. However, the opinion sent during
the same round is always the same even though the queries
come from different nodes.

B. Semi-Cautious adversaries

These nodes will not lie, however, they may not respond to
a query, with a probability Psilence. Thus delaying the process
of convergence and reducing the number of accessible nodes
in the network.

C. Berserk adversaries

This adversary is stronger than the previous two adversaries.
It behaves similar to Cautious, except that it is able to provide
different responses to different queries received in the same
round. Thus, during the same round, it can send his true
opinion, then lie and respond with a wrong opinion.

V. SIMULATION RESULTS

In this section we will present a selection of our exten-
sive simulations related to the resilience of IOTA consensus
algorithms with various adversaries and different network
topologies. We use OMNet++ simulator enriched with the
three topologies and the three adversaries models. We run our
simulations on a physical machine with 8 cores 16 threads and
16 GB RAM. We also run simulations in a virtual machine
with 6 VCPU cores and 16 GB RAM.

Our extensive simulations show that there is no difference
between Berserk adversaries and Cautious adversaries in terms
of convergence rate. That is because, in long runs, both ma-
licious nodes will give the same quantity of false information
to their neighbors in average. If we consider M the number of
rounds and X the number of queries that the malicious node
will receive per round on average, a Cautious adversary will
lie in M

2 rounds which makes an average quantity of lies of
M×X

2 . As for the Berserk adversary, it will lie in average of X
2

regardless of the round which also makes a total of MX
2 lies.

In the following, we will detail only the resilience of Fast
Probabilistic Consensus and Cellular Consensus to cautious
and semi-cautious adversaries.



A. Fast Probabilistic Consensus resilience

We list here the basic parameters involved in Fast Proba-
bilistic Consensus.

• Distance (lenght) of the random walks: D = 4, a relative
small valeur to represent a limited knowledge range of
neighbors;

• Number of nodes queried 10;
• Initial threshold : τ = 0.5;
• Uniform law parameter : β = 0.25;
• K = 10, P = 1 for Watts-Strogatz model
• Plying = 50% for Cautious;
• Psilence = 50% for Semi-Cautious;
• Number of rounds : M = 30,

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 3. Convergence rate ccording to the initial division probability P0 for
different network sizes, without malicious nodes

1) Convergence rate according to the initial division prob-
ability P0 for different network sizes without malicious nodes:
We first studied the impact of the number of nodes, N , and
the initial opinion distribution, P0 on the convergence rate. In
Figure 3, we show the convergence rate function to the initial
division probability P0 in each topology and for different
network sizes from N = 49 to N = 1024. In Torus, with small
network sizes, the convergence rate is 100% regardless of the
value of P0. While in Grid, even with small network sizes, the
convergence rate drops drastically when P0 ∈ [0.35, 0.75]. In
terms of network size, for the Grid and the Torus topologies,
the more nodes are in network, the lower convergence rate is.
Hence, Fast Probabilistic Consensus is not scalable. On the

contrary, the Watts-Strogatz topology seems to converge well
regardless of the number of nodes change.

Fig. 4. Convergence rate according to the initial division probability P0

for different average number of neighbors K in a Watts-Strogatz without
malicious nodes

2) Convergence rate according to the initial division prob-
ability P0 for different average number of neighbors k in a
Watts-Strogatz graph without malicious nodes: In Figure 4,
we adjust the average number of neighbors of each node, K,
from 4 to 20. As we can see, if a node has more neighbors,
it should converge more easily towards the majority opinion
of the network. For K = 20, the network always converges,
however, the network had already a good convergence rate
with K = 4. This implies that the number of direct neighbors
of a node in FPC does not mainly affect the convergence rate.

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 5. Convergence rate according to the initial division probability P0 for
different number of rounds M without malicious nodes

3) Convergence rate according to the initial division prob-
ability P0 for different number of rounds M without malicious
nodes: Figure 5 shows how the number of rounds can affect



the convergence rate by setting M from 10 to 50. We can
observe that from 20 rounds to 50 rounds, there is no note-
worthy difference, that means that for all topologies, 20 rounds
is enough to get convergence. In further simulations, we kept
30 rounds just to be sure that the network will have enough
time to converge (if it converges). Interestingly, for the rest
of simulations, even we introduce adversaries, increasing the
execution round will not help at all.

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 6. Convergence rate according to the initial division probability P0 for
different network sizes, with 33% Cautious Adversaries

4) Convergence rate according to the initial division prob-
ability P0 for different network sizes, with 33% Cautious Ad-
versaries: We inspected first the Fast Probabilistic Consensus
resilience when 33% of total nodes in the network (N/3) are
Cautious adversaries. This is motivated by the fact that N/3
resilience is the upper bound in terms of Byzantine resilience
for consensus protocols.

we observed that in Figure 6, the convergence rate drops
below 5% for all studied topologies regardless of the initial
opinion distribution P0 or the network size N . This is due to
the fact that the Cautious adversaries can spread freely their
lies across the network when nodes ask their opinions via the
Fast Probabilistic Consensus queries. Honest nodes therefore
cannot make a correct decision. In the following simulations,
we fix the network size by choosing a reasonable medium
network size, N = 225 and study the resilience of Fast
Probabilistic Consensus to various percentages of Cautious
adversaries.

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 7. Convergence rate according to the initial division probability P0 for
different percentages of Cautious adversaries Pmalicious

5) Convergence rate according to the initial division prob-
ability P0 for different percentages of Cautious adversaries
Pmalicious: In Figure 7, we vary the percentage of malicious
nodes from 10% up to 50%. We can clearly notice a huge
difference between Pmalicious = 0% and Pmalicious = 10%.
When the network is corrupted with only 10% of Cautious
adversaries for both Grid and Torus, the convergence rate
drops to 10% and 20%, respectively. Watts-Strogatz resists
up to 10 % Cautious adversaries with a convergence rate
of around 80%. Even though Watts-Strogatz has a better
resilience to Cautious than Grid and Torus, the convergence
rate is catastrophic for all topologies starting with 20% of
malicious nodes.

6) Convergence rate according to the initial division prob-
ability P0 for different network sizes, with 33% Semi-Cautious
Adversaries: We an observe from Figure 8 that for each
topology, Semi-Cautious adversaries do not have an important
impact. It seems that the curves are the same as when there
is no malicious nodes. This can be explained by the fact that
Semi-Cautious adversaries do not lie, they just do not answer
sometimes which does not corrupt the network. In theory, it
should only slow down the network so the next graphs that we
will see are going to make the percentage of Semi-Cautious
vary and see if a big amount makes a difference or not.

7) Convergence rate according to the initial division prob-
ability P0 for different percentages of Semi-Cautious adver-
saries Pmalicious: When the percentage of Semi-Cautious



(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 8. Convergence rate according to the initial division probability P0 for
different network sizes, with 33% Semi-Cautious Adversaries

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 9. Convergence rate according to the initial division probability P0 for
different percentages of Semi-Cautious adversaries Pmalicious

adversaries increases from 10% to 50%, we do not see any
notable difference in terms of convergence rate in Figure 9,
apart from a slight decrease. This means that the number
of Semi-Cautious adversaries in the network does not affect
the convergence, hence we can conclude on the fact that
these types of malicious nodes are the least dangerous for the
network. It also shows that if some devices are slow and they
can’t respond to the queries in time (this type of behavior is
similar to being a Semi-Cautious adversary), the network will
not be put at disadvantage because of these devices.

B. Cellular Consensus results

Cellular Consensus (CC) has been evaluated using the same
base configuration as Fast Probabilistic Consensus (FPC):

• K = 10, P = 1 for Watts-Strogatz model;
• Plying = 50% for Cautious;
• Psilence = 50% for Semi-Cautious;
• Number of rounds : M = 30;

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 10. Convergence rate according to the initial division probability P0 for
different network sizes N , without malicious nodes

1) Convergence rate according to the initial division prob-
ability P0 for different network sizes N , without malicious
nodes: Through Figure 10, for the three topologies, we
observe that the number of nodes, N , is still an important
parameter for the convergence of the network as in the case
of Fast Probabilistic Consensus. Indeed, when the number
of nodes increases, the convergence rate decreases for both
Grid and Torus topologies. However, in terms of initial option
distribution P0, Cellular Consensus on Grid and Torus become



more sensitive compared with Fast Probabilistic Consensus.
Convergence rates decrease drastically when P0 ∈ [0.25, 0.85]
and never pass 50%. In Watts-Strogatz model, Cellular Con-
sensus has similar behavior as Fast Probabilistic Consensus
and has a good scalability.

Fig. 11. Convergence rate according to the initial division probability P0 for
different average number of neighbors K, in Watts-Strogatz graph without
malicious nodes

2) Convergence rate according to the initial division prob-
ability P0 for different average number of neighbors K, in
Watts-Strogatz graph without malicious nodes: Contrary to
Fast Probabilistic Consensus, in Figure 11, we show that
adjusting K for Watts-Strogatz topology impacts clearly the
convergence rate in Cellular Consensus: when K gets smaller,
Watts-Strogatz topology becomes more sensitive to the initial
opinion distribution P0 and networks size N . We therefore test
different K values for the Watts-Strogatz model to evaluate
the resilience of Cellular Consensus to Cautious and Semi-
Cautious Adversaries. Recall that Cellular Consensus is based
on the communication between neighbors and that we have
the average number of neighbors K < 4 for Grid, K = 4 for
Torus and K = 10 for Watts-Strogatz in our simulations. We
conclude here that without malicious nodes, the higher the
average number of neighbors is, the better the convergence
rate will be.

3) Convergence rate according to the initial division prob-
ability P0 for different network sizes N , with 33% Cautious
Adversaries: First we study the convergence rate when N/3
(33%) nodes are Cautious adversaries. When we introduce
Cautious adversaries in Cellular Consensus, we observe, in
Figure 12, the same tendency as without malicious nodes by
adjusting network size N however, the convergence rate is
much lower. Indeed when the malicious nodes are detected,
they are immediately blacklisted which means that some nodes
lose neighbors, which leads to this decrease. However, com-
pared with Fast Probabilistic Consensus, Cellular Consensus
has a better resilience to Cautious Adversaries since it can
detect malicious nodes and block them once detected. In
the sequel, we fix the network size N = 225 as in Fast
Probabilistic Consensus.

4) Convergence rate according to the initial division prob-
ability P0 for different average number of neighbors K, in
Watts-Strogatz graph with 33% Cautious adversaries: In the
following we study the convergence rate of Cellular Consensus
in Watts-Strogatz model when varying K and considering
N/3 (33%) Cautious adversaries. In Figure 13, the results

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 12. Convergence rate according to the initial division probability P0 for
different network sizes N , with 33% Cautious Adversaries

Fig. 13. Convergence rate according to the initial division probability P0

for different average number of neighbors K, in Watts-Strogatz graph with
Cautious adversaries

confirm that the average number of neighbors influences the
convergence rate.

5) Convergence rate according to the initial division prob-
ability P0 for different percentages of Cautious adversaries
Pmalicious: When Pmalicious varies, we observed in 14 a
decrease in the convergence rate. We observe that the results
obtained with Torus are better than those in Grid. As for the
results obtained with the Watts-Strogatz topology, they are
consistently good and sometimes even excellent with K = 20.

6) Convergence rate according to the initial division prob-
ability P0 for different network sizes N , with 33% Semi-
Cautious Adversaries: When we introduce Semi-Cautious
adversaries in the network, we observe in Figure 15 that
when 0, 3 ≤ P0 ≤ 0, 7, the convergence rate is the same
than the case without malicious nodes for 2D Grid and Torus
topologies. In addition, for Watts-Strogatz topology, when



(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 14. Convergence rate ccording to the initial division probability P0 for
different percentages of Cautious adversaries Pmalicious

(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 15. Convergence rate according to the initial division probability P0 for
different network sizes N , with 33% Semi-Cautious Adversaries

P0 is in this interval, we have better results that without
byzantines nodes. This phenomenon is explained by the fact
that when a network is in disagreement, the nodes which do
not respond, make it possible to take a decision on the opinion,
and therefore to promote convergence. It seems that this
process, appears only when the average number of neighbors
is high. However, when 0 ≤ P0 < 0, 3 or 0, 7 < P0 ≤ 1,
the convergence rate is lower than normal, which seems quite
logical. Indeed, when the network is in agreement, the Semi-
Cautious adversaries disturb him and cause a drop of the
convergence rate.

Fig. 16. Convergence rate according to the initial division probability P0

for different average number of neighbors K, in Watts-Strogatz graph with
Semi-Cautious adversaries

7) Convergence rate according to the initial division prob-
ability P0 for different average number of neighbors K, in
Watts-Strogatz graph with 33% Semi-Cautious adversaries:
The results in Figure 16 show that when the average number of
neighbors is low, K <= 4, the convergence rate is relatively
low for 0 ≤ P0 < 0, 3 or 0, 7 < P0 ≤ 1 and similar to a
network without malicious nodes for 0, 3 ≤ P0 ≤ 0, 7. When
the average number of neighbors is higher, the results can
be better. Same as in Cautious case, by adjusting K, Watts-
Strogatz might have a good resilience to this type of attack.

8) Convergence rate according to the initial division prob-
ability P0 for different percentages of Semi-Cautious adver-
saries Pmalicious: When we vary the Pmalicious of Semi-
Cautious adversary in Figure 17, we observe a decrease in
convergence which seems quite logical. By comparing the
different topologies, we observe that the results obtained with
the Torus are better than those obtained with the 2D grid. As
for the results obtained with the Watts-Strogatz topology, they
are consistently excellent with k = 20. As we have seen in the
case of Cautious adversaries, we see that when the number of
byzantines nodes is low (0% ≤ Pmalicious ≤ 10%) or high
(30% ≤ Pmalicious ≤ 50%) the convergence rate does not
evolve a lot.

VI. CONCLUSION

In this paper we extensively evaluate the resilience of
Fast Probabilistic Consensus and Cellular Consensus (two
agreement building blocks introduced for IOTA blockchain
[8]). Our evaluation focused on the impact of the underlying
network topology on the convergence rate of the algorithms
and their resilience to various adversaries (cautious, semi-
cautious and Berserk). We showed that the initial opinion
state distribution of each node and the total number of nodes



(a) 2D Grid

(b) Torus

(c) Watts-Strogatz

Fig. 17. Convergence rate according to the initial division probability P0 for
different percentages of Semi-Cautious adversaries Pmalicious

in the network will seriously affect the convergence results,
especially in 2D Grid and Torus topologies. These effects will
not be alleviated by increasing the run time.

In Fast Probabilistic Consensus, Cautious and Berserk ad-
versaries will cause serious convergence issues even with low
power adversaries. However, semi-cautious adversaries seem
to not be a menace.

In the Cellular Consensus, all three adversaries have an
impact on the convergence, but none of them is as serious
as in the case of Fast Probabilistic Consensus.

Interestingly, the Watts-Strogatz topology when the density
is properly adjusted can even eliminate the effects of adver-
saries.

We plan to continue this work by giving mathematical
modeling and explaining our results formally.
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