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Abstract—In this paper, we investigate the design of a novel
multicarrier (MC) modulation on delay-Doppler (DD) plane,
to couple the modulated signal with a doubly-selective channel
having DD resolutions. A key challenge for the design of DD
plane MC modulation is to find a realizable pulse orthogonal
with respect to the DD plane’s fine resolutions. To this end,
we first indicate that a feasible DD plane MC modulation
is essentially a type of staggered multitone modulation. Then,
we propose an orthogonal delay-Doppler division multiplexing
(ODDM) modulation, and design the corresponding transmit
pulse. Most importantly, we prove that the proposed transmit
pulse is orthogonal with respect to the DD plane’s resolutions
and therefore a realizable DD plane orthogonal pulse does
exist. Finally, we demonstrate the superior performance of the
proposed ODDM modulation in terms of out-of-band radiation
and bit error rate.

I. INTRODUCTION

High mobility is one of the most important scenarios of

the next generation Beyond 5G/6G cellular systems, where

the severely fast time-varying a.k.a doubly-selective chan-

nels make reliable communication a very challenging task.

It is known that orthogonal frequency division multiplexing

(OFDM) modulation, being adopted in the current 4G and 5G

cellular systems, cannot work well in such a high mobility

environment [1]. In contrast to the OFDM’s time-frequency

(TF) plane modulation, the recently proposed orthogonal time

frequency space (OTFS) modulation [2], [3] suggests to modu-

late information-bearing signals on delay-Doppler (DD) plane.

The basic idea of the OTFS is to match the resolutions of

the TF plane used for signal modulation to those of the TF

plane used to represent the doubly-selective channel, which

is modeled as a DD channel, aiming at coupling between

the signal and the channel. Then, by treating the channel’s

dispersive effects as potential diversity rather than undesired

impairments, the OTFS can achieve better performance than

the OFDM modulation in a high mobility environment.

Since the DD plane is divided with specified time (delay)

and frequency (Doppler) resolutions, a modulation performed

in accordance with the DD plane’s resolutions, namely a DD

plane modulation, is naturally a multicarrier (MC) modulation.

Obviously, a DD plane MC modulation requires a pulse

orthogonal with respect to the DD plane’s resolutions. For the

sake of conciseness, in this paper, we call the pulse orthogonal

with respect to the DD (or TF) plane’s resolutions as DD (or

TF) plane orthogonal pulse, and use TF (or DD) plane and TF

(or DD) domain interchangeably. Also, without special notice

or explanation, the TF plane refers to the signal plane with

coarse resolutions adopted in the OFDM modulation.

Obviously, a pulse confined to one fine grid of the DD

plane is a DD plane orthogonal pulse. However, according to

the uncertainty principle, this particular DD plane orthogonal

pulse doesn’t exist. In fact, the OTFS modulation may be

considered as a practical workaround for this difficulty [2].

The OTFS’s DD domain signal is first mapped to a TF domain

signal via the inverse symplectic finite Fourier transform

(ISFFT), and then conveyed by the TF plane rectangular pulse,

which is essentially a TF plane orthogonal pulse [2]. In other

words, the OTFS signal is still orthogonal with respect to the

TF plane’s coarse resolutions, and its ideal pulse is said to

satisfy the TF plane bi-orthogonal robust property with respect

to the time and frequency translations induced by the doubly-

selective channel. Unfortunately, such a TF plane ideal pulse

cannot be realized in practice [3]. To achieve the coupling

between the modulated signal and the DD channel, a DD plane

MC modulation is a nature and better choice. However, to the

best of our knowledge, currently there is no DD plane MC

modulation, because whether a realizable DD plane orthogonal

pulse exists or not, is still unknown.

In this paper, we investigate the DD plane MC modulation,

and answer the above fundamental question for the DD

plane MC modulation design. We propose a novel orthogonal

delay-Doppler division multiplexing (ODDM) modulation, and

design the corresponding transmit pulse. Most importantly,

we prove that the proposed transmit pulse is orthogonal with

respect to the DD plane’s resolutions and therefore a realizable

DD plane orthogonal pulse does exist. We show that the

proposed ODDM is a DD plane MC modulation and can

achieve perfect coupling between the modulated signal and the

DD channel. Our contribution can be summarized as follows:

• By clarifying that the time resolution on signal plane is

symbol interval rather than symbol period, we indicate

that a feasible DD plane MC modulation is essentially a

type of the staggered multitone (SMT) modulation [4].

• Analogous to the OFDM, we propose an ODDM mod-

ulation and present it as a staggered upsampled-OFDM

in the digital domain. We also indicate that the ODDM

can be viewed as a pulse-shaped OFDM (PS-OFDM) and

propose the corresponding transmit pulse.

• We prove the orthogonality of this particular transmit
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Fig. 1. ODDM modulation

pulse with respect to the DD plane’s resolutions, and show

that the proposed transmit pulse is exactly the desired DD

plane orthogonal pulse for DD plane MC modulation.

• The associated DD domain channel input-output relation

of the proposed ODDM modulation is derived by directly

exploiting the well-known frequency domain properties

of OFDM symbol with timing and frequency offsets. We

show that the equivalent channel matrix has an elegant

block-circulant-like structure.

• The superior performance of the proposed ODDM mod-

ulation over the OTFS is confirmed from performance

comparisons in terms of out-of-band (OOB) radiation and

bit error rate (BER).

II. ODDM MODULATION

A. TF and DD planes

Suppose that a doubly-selective channel is composed of %̃

paths. Passing a band-limited and time-limited signal through

the doubly-selective channel, we observe a corresponding

band-limited and time-limited %-path (% ≥ %̃) equivalent DD

channel with delay resolution 1

�0
and Doppler resolution 1

)0
,

where �0 and )0 are the sampling rate and the signal duration,

respectively. Let ;? , : ? ∈ Z, the equivalent DD channel is

given by [5]

ℎ(g, a) =

%∑

?=1

ℎ?X(g − g?)X(a − a?), (1)

where g represents delay variable, a represents Doppler vari-

ables, and ℎ?, g? = ;?
1

�0
, and a? = : ?

1

)0
are the gain, delay,

and Doppler of the ?th path, respectively.

Let us first consider an OFDM-modulated signaling, we

have the following grid consideration on the TF plane:

• TF plane grid Π : { ¤=), ¤< 1

)
} for ¤= = 0, . . . , # − 1 and

¤< = 0, . . . "−1, where # refers to the number of OFDM

symbols, and " refers to the number of subcarriers for

each OFDM symbol. In addition, each OFDM symbol

has the duration of ) , and 1

)
is the sub-carrier spacing of

the OFDM symbol.

For the OFDM signals, we have �0 =
"
)

and )0 = #) .

Therefore, the DD channel’s resolutions are )
"

and 1

#)
,

respectively. Comparing the TF plane grid Π for the OFDM

to the DD channel’s resolutions, it is clear that there is

a resolution mismatch between the OFDM signal and the

doubly-selective channel, which will cause complicated inter-

symbol interference (ISI) and inter-carrier interference (ICI),

and then subsequently severe performance degradation. To

deal with this problem, we propose a DD plane modulation

by modulating signals on the following DD plane

• DD plane grid Γ :
{
< )
"
, = 1

#)

}
for < = 0, . . . , " −1 and

= = 0, . . . # − 1, where < and = denote the <-th delay

and =-th Doppler, respectively.

to couple the modulated signal with the DD channel having

fine resolutions.

B. ODDM digital sequence

One can see that the DD plane is just a TF plane with

fine grids corresponding to the delay and Doppler resolutions,

where an MC modulation requires a corresponding DD plane

orthogonal pulse. For MC modulation, a common sense [4] so

far is that the area of grid is greater than or equal to 1, for

example, we have ) × 1

)
= 1 for the TF grid Π corresponding

to a realizable transmit pulse. On the other hand, we have
)
"
× 1

#)
=

1

"#
≪ 1 for the DD grid Γ, where the obvious DD

plane orthogonal pulse confined to Γ violates the uncertainty

principle and therefore cannot be realized. As a result, it seems

impossible to achieve an MC modulation on the DD plane.

Here, we would like to clarify an important concept in

the context of MC modulation, that the time resolution on

signal plane is not symbol period but symbol interval. In the

meantime, the frequency resolution or the frequency spacing

is the inverse of symbol period. The tiny grid of the DD

plane implies that the symbol period is longer than the symbol

interval, and therefore successive MC symbols are staggered.

Hence, a feasible DD plane MC modulation is essentially a

type of the SMT modulation [4].

Leaving the question about the existence of realizable DD

plane orthogonal pulse for the time being, we first propose an

ODDM modulation, which is an orthogonal MC modulation

that modulates signals in accordance with the DD plane’s delay

and Doppler resolutions. Recall that Γ =
{
< )
"
, = 1

#)

}
for

< = 0, . . . , " −1 and = = 0, . . . # −1, the proposed ODDM is

generated in a similar way as an #-subcarrier OFDM, whose

subcarrier spacing, symbol period, and symbol interval are
1

#)
, #) , and )

"
, respectively. Because the symbol interval

is )
"

, the total bandwidth of ODDM will be around "
)

,

rather than 1

)
in the conventional #-subcarrier OFDM with

subcarrier spacing 1

#)
. To obtain the ODDM, the # discrete

samples of one OFDM symbol need to be upsampled by " .

Fig. 1 shows the block diagram of the ODDM. Let an " × #

matrix X consisting of "# transmit quadrature amplitude
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modulation (QAM) symbols, the ODDM in digital domain

can be represented as a staggered upsampled-OFDM in Fig. 1,

where T denotes the transpose operator, while the upsampling

factor and the stagger interval are " and )
"

, respectively.

C. Pulse shaping and ODDM waveform

For # subcarriers spaced by 1

#)
to carry # QAM symbols

Y = [(0, . . . , (#−1]
T , let s = [B0, . . . , B#−1]

T be the #-

point inverse discrete Fourier transform (IDFT) of Y. Since

in the OFDM modulation, each symbol is one cycle of a

periodic signal, the pulse shaping of OFDM can be performed

by first interpolating the cyclically extended s using the

ideal interpolation filter (IIF) Sinc( C
)
) to generate B̃(C) =

∑# /2−1

==−# /2
( [=]# 4

92c =
#)

C , where [·]# stands for the mod #

operator. Then, a transmit pulse 6C G (C) based windowing is

applied to B̃(C) to obtain the analog OFDM symbol B(C) =∑# /2−1

==−# /2
( [=]# 6C G (C)4

92c =
#)

C . Because the transmit pulse in

the conventional OFDM is an #)-length rectangular pulse

Rect#) (C) whose Fourier transform is #) Sinc( 5 #)), B(C)

is only barely banded to
(
− 1

2)
, 1

2)

)
. Therefore, in a practical

OFDM system, some edge subcarriers are unloaded to not only

sharp the spectrum but also ease the filtering at the transceiver.

Meanwhile, once these edge subcarriers are unloaded and B(C)

can be treated as essentially bounded to
(
− 1

2)
, 1

2)

)
, the pulse

shaping can be approximately simplified to interpolating s

using Sinc( C
)
), by treating s as the Nyquist sampling result

of B(C).

In the proposed ODDM modulation, we do upsample each

digital MC symbol by " to stagger them by the stagger

interval )
"

. In other words, a corresponding transmit pulse

6C G (C) is required to guarantee ISI-free among " staggered

MC symbols with # orthogonal subcarriers, and hence each

MC symbol becomes a PS-OFDM symbol. Since the band-

width is increased " times by the upsampling, it is natural

to consider what happens to the signal spectrum if we use

the wideband IIF Sinc( "C
)
) to generate an analog symbol.

Note that although it may not be a Nyquist sampling, a 1

)
-

rate sampling still can be used to obtain # samples of an

OFDM symbol from its analog version, for example, obtaining

s from B(C) when 6C G (C) = Rect#) (C). Then, as shown in

Fig. 2, the aliasing caused by the 1

)
-rate sampling spreads

the spectrum of the analog OFDM symbol over the frequency

axis, where several edge subcarriers are not plotted and the

shape of #) Sinc( 5 #)) is truncated for display purpose. After

passing the digital samples through the ideal interpolation filter

Square-Root Nyquist Pulse

Fig. 3. Transmit pulse D (C)

Sinc( "C
)
), the signal spectrum is bounded to

(
− "

2)
, "

2)

)
, where

the conventional OFDM signal spectrum roughly bounded to(
− 1

2)
, 1

2)

)
is also pointed out for comparison.

Notice that Sinc( "C
)
) is exactly an ISI-free pulse with

interval )
"

, the signal spectrum in Fig. 2 inspires us that

the ODDM’s transmit pulse should be Nyquist with interval
)
"

, and at the same time have a period of #) . In other

words, the pulse is locally wideband and globally narrow-

band. Bearing in mind that " symbols are staggered, let

us consider a time-symmetric real-valued square-root Nyquist

pulse 0(C) with a time duration of 2& )
"

, where & ≪ "
2

and∫ +∞

−∞
|0(C) |23C = 1

#
. We then propose to use

D(C) =

#−1∑

¤==0

0(C − ¤=)), (2)

a pulse train shown in Fig. 3, as the transmit pulse 6C G (C) for

the ODDM, where
∫ +∞

−∞
|D(C) |23C = 1.

In the context of PS-OFDM, the analog OFDM waveform

with the transmit pulse D(C) can be written as G̃< (C) =∑#−1

==0
- (<, =)4 92c

=C
#) D(C), where - (<, =) is the signal at the

=-th subcarrier of the <-th symbol and # subcarriers are

shifted to positive frequencies for simplicity of notation. We

then have " staggered #-subcarrier OFDM symbols pulse-

shaped by D(C) to form an ODDM frame

G(C) =

"−1∑

<=0

#−1∑

==0

- (<, =)D

(
C − <

)

"

)
4 92c

=
#)

(C−< )
"

) , (3)

where −& )
"

≤ C ≤ #)+& )
"

. Furthermore, due to the channel

delay spread, an (! − 1) )
"

-length of CP is appended to the

head of the frame. Considering the added CP, we can extend

the definition of D(C) to D2? (C) =
∑#−1

¤==−1
0(C− ¤=)), then the CP-

included ODDM waveform spanning over −(! + & − 1) )
"

≤

C ≤ #) +& )
"

becomes

G2? (C) =

"−1∑

<=0

#−1∑

==0

- (<, =)D2?

(
C − <

)

"

)
4 92c

=
#)

(C−< )
"

) , (4)

where D2? (C) = D(C) for C ∈
(
−& )

"
, (# − 1)) +& )

"

)
and

D2? (C) = 0 for C ∈
(
−) +& )

"
,−& )

"

)
. For D(C), we have the

following lemma,

Lemma 1: D(C) satisfies the orthogonal property that

�D,D

(
<
)

"
, =

1

#)

)
= X(<)X(=), (5)

for |< | ≤ " − 1 and |=| ≤ # − 1.

Proof: See Appendix A.

As a result, D(C) is exactly the DD plane orthogonal pulse that

we are looking for.



III. ODDM DEMODULATION

After receiving an ODDM frame distorted by the doubly-

selective channel, the receiver performs the matched filter-

ing to receive the transmitted signal. The orthogonality of

D(C) makes it fulfill the perfect reconstruction condition with

respect to Γ. Also, because the DD channel’s delay and

Doppler are integer multiples of delay resolution and Doppler

resolution, the deviation of the channel input-output relation

becomes significantly simple.

A. DD domain channel input-output relation

From (4), we have the received signal for −(! +&−1) )
"

≤

C ≤ #) + (! + & − 1) )
"

as

H(C) =

%∑

?=1

ℎ?G2? (C − g?)4
92ca? (C−g?) + I(C),

=

%∑

?=1

"−1∑

<=0

#−1∑

==0

ℎ?- (<, =)D2?

(
C − (< + ;?)

)

"

)

× 4 92c
(=+:? )

#)
(C−(<+;?)

)
"

)4 92c
:?<

"# + I(C). (6)

Because of D2? (C) = D(C) for C ∈
(
−& )

"
, (# − 1)) +& )

"

)
,

after the matched filtering based on D(C), we obtain the signal

at the =-th subcarrier of the <-th symbol as

. (<, =) =

∫
H(C)D

(
C − <

)

"

)
4− 92c

=
#)

(C−< )
"

)3C,

=

%∑

?=1

ℎ? -̃ ( ¤<, ¤=)4
92c

:? (<−;? )

"# + I(<, =), (7)

where -̃ ( ¤<, ¤=) = - ( ¤<, ¤=) for ¤= = [=−: ?]# and ¤< = <− ;? ≥

0, and I(<, =) is the DD domain noise sample. When ¤< < 0,

because of the CP, the ¤<-th symbol is just a ) cyclic time-

shift of the [ ¤<]" -th symbol. Since cyclically time-shifting

a PS-OFDM symbol with a subcarrier spacing of 1

#)
by )

corresponds to a phase rotation term 4− 92c
¤=

#)
)

= 4− 92c
¤=
#

applied to its frequency domain signal, for ¤< < 0 in (7), we

have -̃ ( ¤<, ¤=) = 4− 92c
¤=
# - ( [ ¤<]" , ¤=).

The sample-wise result in (7) can be vectorized to obtain

a more insightful symbol-wise DD channel input-output re-

lation. Without loss of generality, assume that the maximum

delay and Doppler of the channel are (! − 1) )
"

and  1

#)
,

respectively. The % paths can be arranged in a (2 + 1) × !

DD domain channel matrix G, where each row and column

of G correspond to a Doppler and a delay index, respectively.

Clearly, the total number of non-zero elements in G is %.

Similar to x< = [- (<, 0), . . . , - (<, # − 1)]T , namely

the <-th column of XT , we can use an # × 1 vector

y< = [. (<, 0), . . . , . (<, # − 1)]T to represent the frequency

(i.e. Doppler) domain signal of the <-th received ODDM

symbol. Seen from the <-th received ODDM symbol, the

path with a delay of ; )
"

brings an ISI from the (< − ;)-

th ODDM symbol, where the path’s Doppler :̂ 1

#)
cyclically

shifts the subcarrier of the interfering (< − ;)-th OFDM

symbol by :̂ = : −  − 1. Also, since the (< − ;)-th ODDM

symbol starts for
(<−;))
"

, the Doppler also introduces a phase

rotation 4 92c:̂
1

#)
(<−;))

" = 4 92c
:̂ (<−;)
"# . As a result, for the

<-th received ODDM symbol, the ISI from the (< − ;)-th

ODDM symbol, which is introduced by all paths with the

same delay of ; )
"

but different Dopplers, can be governed by

H<
;
=
∑

2 +1

:=1
6(:, ;)4 92c

:̂ (<−;)
"# C:̂ , where C is the #×# cyclic

permutation matrix.

From the above analysis, we know that for each y<, the

signal term from x<−; is H<
;

x<−;, for 0 ≤ ; ≤ !−1. When <−

; < 0, like (7), additional phase rotation term D is applied to

x[<−; ]" , where D = diag{1, 4− 9
2c
# , . . . , 4− 9

2c (#−1)
# }. Therefore,

let z< denote the <-th noise vector, the input-output relation

in the DD domain can be written in a matrix form as

y = Hx + z, (8)

where y = [yT
0
, yT

1
, · · · , yT

"−1
]T , x = [xT

0
, xT

1
, · · · , xT

"−1
]T ,

z = [zT
0
, zT

1
, · · · , zT

"−1
]T , and H is the equivalent DD domain

channel with size "# × "# given by

H =



H0

0
H0

!−1
D · · · · · · H0

1
D

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

H!−2

!−2

. . .
. . . H!−2

0
0 H!−2

!−1
D

H!−1

!−1

. . .
. . .

. . . H!−1

0

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

0 H"−1

!−1

. . .
. . .

. . . H"−1

0



.

(9)

For sparse channels, most of H<
;

are zero matrices. While

for those non-zero H<
;

, if there is only one path at that delay

;, H<
;

is simply an # × # cyclic shift permutation matrix

up to a scale factor. Moreover, even there are multiple paths

with different Dopplers at the same delay ;, H<
;

is still an

# × # circulant matrix. Meanwhile, it can be observed that

regardless of the channel sparsity, the channel matrix H in

(9) has an elegant block-circulant-like structure, which can be

exploited in signal detection.

B. Signal detection

From (8) and (9), it is clear that an effective data detector

is required to unlock the full time and frequency diversity

potentials offered by ODDM in order to obtain reliable error

performance. Considering that the main focus of the paper

is a novel DD plane MC scheme, we employ a commonly

deployed DD domain message-passing (MP) detector [6], [7],

where the total interference and noise at each observation node

is assumed to follow a Gaussian distribution. The detector’s

computational complexity is in the order of "#%, where %

is also the number of nonzero entries in each row of the DD

domain channel matrix in (9).



IV. REMARKS ON TF SIGNAL DISTRIBUTION

For a signal with bandwidth �0 and duration )0, it is well-

known that its dimension or degrees of freedom (DoF) is

approximately �0)0 [8]. As a result, to transmit �0)0 = "#

complex QAM symbols, we essentially need a TF region

whose area is not less than "# . On the other hand, the

"# DD plane grids in Section II only occupy an area of

"# × 1

"#
= 1, and therefore there is no way to transmit "#

QAM symbols if we are limited to this small TF region. In

other words, not only the TF resolutions but also the totally

occupied TF region should be considered in the design of a

modulation.

Since different TF resolutions correspond to different TF

signal distributions inside the total TF region, which is

bounded by the DoF, it is meaningful to compare the TF signal

distribution of the ODDM to that of the OTFS. Due to the

space limitation, only a brief summary of the comparison is

given below. For OTFS, the DD domain signal is mapped

to the TF domain via the ISFFT, therefore its TF signal

distribution is just that of the OFDM. As a result, without

an ideal pulse, the OTFS suffers from the blurred ISI and ICI

caused by the resolution mismatch. On the other hand, by use

of D(C), the ODDM staggers " symbols with an interval of
)
"

. Also, it can be shown that each ODDM symbol has a

spectrum similar to that in Fig. 2, where the # subcarriers

spaced by 1

#)
are spread " times, to form a signal structure

equivalent to having cyclic prefix and suffix in frequency

domain. Therefore, the TF plane in the ODDM is actually

“oversampled" to a DD plane to perform modulation in a

2D uniformly distributed fashion, achieving an orthogonality

with fine resolutions. Consequently, the ODDM enjoys the

prefect coupling between the modulated signal and the DD

channel and only experiences the well-controlled on-the-grid

ISI and ICI introduced by the channel. In particular, the cyclic

signal structure in both time and frequency domains results in

a block-circulant-like DD domain channel matrix H in (9).

It is also noteworthy that the ODDM and the OTFS have

the same time domain digital sequence shown in Fig. 1. When

& ≪ "
2

, it can be proved that the D(C)-based pulse shaping for

the ODDM can be approximated by an 0(C)-based filtering [9].

Therefore, a digital OTFS signal with an 0(C)-based filtering

approximates an ODDM waveform.

V. SIMULATION RESULTS

In this section, simulations are conducted to verify the

performance of the proposed ODDM modulation, especially

compared to the OTFS modulation. The simulation param-

eters are: carrier frequency 5GHz, 1

)
= 15kHz, CP length

3.125`s. For the channel, similar to [6], we adopt the Extended

Vehicular A (EVA) model, where each path has a single

Doppler generated using Jake’s formula a? = amax cos(\?), the

maximum Doppler amax is determined by the user equipment

(UE) speed and \? is uniformly distributed over [−c, c]. For

the ODDM, 0(C) is a square-root raised cosine pulse with roll-

off factor 0.25 and & = 16, while for the OTFS, the TF plane

rectangular pulse is employed.
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The comparison of power spectral density (PSD) is shown

in Fig. 4. There is no surprise to find that because of the

D(C)-based pulse shaping, the ODDM has much lower OOB

radiation than the OTFS, and up to 25 dB improvement can

be observed. As we mentioned before, the practical OFDM

system cannot fully utilize all subchannels, leading to a

reduced spectral efficiency considering some null-subcarriers

placed at the band edge. This fact also applies to the OTFS,

which however may become an issue for practical systems.

Because the information-bearing signals are modulated in the

DD domain, it is still unclear that how to arrange them in the

DD domain to achieve unloaded edge subcarriers in the TF

domain after the ISFFT. A possible solution is to reduce " ,

which however is the number of subcarriers that is usually a

power of 2 in practice to exploit low-complexity fast Fourier

transform and therefore cannot be changed freely. On the

other hand, the proposed ODDM scheme can fully utilize all

subchannels. By tuning the roll-off factor, a trade-off between

the bandwidth and OOB radiation can be struck to achieve

the desirable spectral efficiency. Furthermore, since " now



is the number of ODDM symbols rather than the number of

subcarriers, it can be chosen flexibly to adjust the bandwidth

together with the roll-off factor.

We also evaluate the BER performance of the uncoded

ODDM and OTFS modulations, both with MP detection. For

the ODDM, the MP detection is based on the DD domain

channel matrix H in (9). Fig. 5 shows the BER performance

with 4-QAM signal, " = 512, # = 64. At low to medium

SNRs, the ODDM achieves similar performance to the OTFS

in various high mobility channels with UE speeds of 120 km/h

and 500 km/h, which means they both have robust performance

against the channel Doppler effect. At high SNRs, ODDM

outperforms the OTFS by around 2 dB at the BER of 1×10
−6,

thanks to the matched filtering and the exploiting of the exact

DD domain channel input-output relation in the detection.

VI. CONCLUSION

We studied the problem of MC modulation on DD plane,

and reveal the link between the DD plane MC modulation

and the conventional SMT modulation. We then proposed

the ODDM modulation, whose staggered upsampled-OFDM

representation in digital domain was presented. The transmit

pulse of the ODDM was also proposed, and its orthogonality

with respect to the DD plane’s resolutions was proved. By

virtue of this favorable orthogonality, we derived an exact

DD domain channel input-output relation of the proposed

ODDM, where the equivalent DD domain channel matrix has

an elegant block-circular-like structure. Finally, because of the

perfect coupling between the modulated signal and the DD

channel, the superior performance of the ODDM over the

OTFS in terms of OOB radiation and BER was demonstrated

by simulations.

APPENDIX A

PROOF OF THE ORTHOGONALITY OF D(C)

Since the real-valued filter 0(C) only has support on
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where
(0)
= is due to the fact that the pulses 0(C − ¤=))

and 0(C − ¤=) − < )
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) do not overlap but 0 (C − ¤=)) and
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where the approximation error is negligible by further taking

the shape of 0(C) into account. Meanwhile, for −" +1 ≤ < <

−" + 2&, we can have results similar to (12), with different

¤< and the corresponding different range for the summation

indexed by ¤=. The combination of (11) and (12) completes

the proof.
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