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Abstract—Cell-Free Massive Multiple-input Multiple-output
(mMIMO) consists of many access points (APs) in a coverage area
that jointly serve the users. These systems can significantly reduce
the interference among the users compared to conventional
MIMO networks and so enable higher data rates and a larger
coverage area. However, Cell-Free mMIMO systems face multiple
practical challenges such as the high complexity and power
consumption of the APs’ analog front-ends. Motivated by prior
works, we address these issues by considering a low complexity
hybrid beamforming framework at the APs in which each AP
has a limited number of RF-chains to reduce power consumption,
and the analog combiner is designed only using the large-scale
statistics of the channel to reduce the system’s complexity. We
provide closed-form expressions for the signal to interference
and noise ratio (SINR) of both uplink and downlink data
transmission with accurate random matrix approximations. Also,
based on the existing literature, we provide a power optimization
algorithm that maximizes the minimum SINR of the users for
uplink scenario. Through several simulations, we investigate the
accuracy of the derived random matrix approximations, trade-
off between the 95% outage data rate and the number of RF-
chains, and the impact of power optimization. We observe that the
derived approximations accurately follow the exact simulations
and that in uplink scenario while using MMSE combiner, power
optimization does not improve the performance much.

I. INTRODUCTION

Access Points (APs) with coherent transmission can in-
crease the received power without requiring additional transmit
power and reduce the interference among the user’s signals
leading to increased Signal to Interference and Noise Ratio
(SINR) [1]–[5]. In the context of Massive Multiple-input and
Multiple-output (mMIMO) systems, this coherent transmission
is referred to as Cell-Free mMIMO, where a network of
interconnected APs simultaneously serve the users over a
designated area [3], [4] an illustration of such networks is
shown in Fig. 1.

Cell-Free mMIMO systems have attracted a lot of atten-
tion in the literature for potential deployment in the next
generations of wireless networks which are envisioned to
operate at high frequencies such as Millimeter Wave [6], [7].
Data transmission at high frequencies suffer from high path
loss due to propagation characteristics of the channel at high
frequencies. To mitigate the high path-loss, the transceivers
need to use large antenna arrays which has lead to high power
consumption at the transceivers. This is a major obstacle for
practical implementation of these systems [7]. To reduce the
power consumption, it is suggested to use hybrid transceivers
in which, the antennas are connected to a few RF-chains

Fig. 1: Cell free Massive MIMO system.

through a network of phase shifters and/or analog switches
[8], [9].

There is a large literature on the Cell-Free mMIMO. For ex-
ample, [10] considers Cell-Free mMIMO system in the context
of internet of things where each AP only has one antennas.
They provide the uplink and downlink per user equipment
SINR expressions considering Minimum Mean Square Error
(MMSE) combining and maximum ratio percoding, respec-
tively. Furthermore, they derive accurate random matrix based
approximations of the uplink SINR expression which only
depend on the large scale statistics of the system along with
power optimization methods for uplink and downlink scenarios
to maximize the minimum SINR among the users. The paper
[6] considers a Cell-Free mMIMO systems in the context
of mmWave systems where the APs use hybrid APs and
provides hybrid beamforming method based on large scale
fading coefficients of the channel along with SINR expressions
for uplink and donwlink scenarios considering zero-forcing
precoding and combiner, respectively.

Here, we consider a Cell-Free mMIMO system with hybrid
APs. At each AP we devise a hybrid beamfoming scheme
in which the analog beamformer is designed based on the
large scale statistics of the channel, and then after estimating
the resulting effective channels between the APs and users,
the digital beamfomer is designed based on the estimated
channel using MMSE combiner for uplink and RZF precoder
for downlink. We provide per user SINR expressions for both
uplink and downlink scenarios along with accurate random
matrix approximations which only depend on large scale
statistics of the system (Sec. III and Sec. IV). Furthermore, we
provide optimality achieving power optimization method for
the uplink scenario that maximizes the minimum SINR among
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the users (Sec. III). Finally, we provide various simulations
of practical systems to validate the accuracy of the derived
approximations and investigate the impact of the number of
RF-chains, the considered hybrid beamforming method, and
power optimization on the system’s perfomance (Sec. V).

II. SYSTEM MODEL

A. Cell-Free Network Model

We consider a Cell-Free mMIMO network with M APs,
each equipped with N antennas, where all APs are connected
via fronthaul connections to a Central Processing Unit (CPU).
There are K single-antenna users in the network and the
channel between AP m and user k is denoted by hmk ∈ CN .
We use block fading channel model and assume that hmk is
constant over time-frequency blocks of τc channel uses and in
each block, hmk can be modeled as an independent realization
of a correlated Rayleigh fading distribution:

hmk ∼ CN (0,Rmk) (1)

where Rmk ∈ CN×N is the spatial correlation matrix which
we assume is known at the APs.

As shown in Fig. 2, we assume that each AP performs
hybrid beamforming using NRF RF-chains (NRF ≤ N ). To
reduce the system complexity, and communication overhead,
we design the analog precoder network at each AP (matrices
Wm, m ∈ [M ]) using only the spatial correlation matrices
available at the APs 1. After designing the analog precoder,
we will have an effective channel of dimension NRF between
each user and AP. We consider a time division duplexing
system, where each time-frequency fading block consists of
τp,

τc − τp
2

, and
τc − τp

2
channel uses dedicated for channel

estimation of the effective channel, uplink transmission, and
downlink transmission, respectively. Analog precoder design
and channel estimation are discussed below and uplink and
downlink data transmission along with our results are dis-
cussed in Sec. III and Sec. IV, respectively.

B. Analog Precoder Design Using Large Spatial Correlation

To the best of our knowledge, there are only two schemes on
design of the analog precoder based on the spatial correlation
matrices [11], [12]. The analog beamforming method proposed
in [12] aims to maximize the sumrate of the users, but here
we are interested in max-min fairness and want to maximize
the minimum rate of the users. Therefore, similar to [13], we
use eigen beamforming method [11].

In the eigen beamforming method, each RF-chain is al-
located to a user and its corresponding analog combiner
vector is derived as follows. Assume RF-chain i at AP m
is allocated to the user k and let us denote its analog precoder
column with wm,i. Using the eigen value decomposition of
Rmk = UH

mkΛmkUmk, we have

wm,i =
1

N
ej∠um , (2)

1We use the notation [N ] to denote the set {1, 2, . . . , N}
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Fig. 2: Hybrid Beamforming at each AP.

where um is the eigen vector corresponding to the largest
eigne value of Rmk and ∠· is an element-wise operator
returning the angle of each element of its input. If multiple
RF-chains are assigned to a user, we use the eigne vectors
corresponding to that many largest eigen values, each for an
RF-chain.

As mentioned above, using the eigen beamforming method
requires allocating each RF-chain to a user. We have a total of
MNRF RF-chains that need to be allocated among the users.
However, finding the optimal user allocation is not a tractable
problem. So, we use the heuristic algorithm proposed in [6]
to assign the RF-chains. This method aims to maximize the
minimum sum of the average energy of the effective channels
(channel after analog precoding) to the users. Since each RF-
chain is allocated to a user, we assume K ≤MNRF so each
user is allocated at least one RF-chain.

C. Effective Channel Estimation
For channel estimation, we assume that user k is assigned

a unique random pilot ψk ∈ Cτ with ‖ψk‖2 = τp which is
transmitted through τp channel-uses. At AP m, the received
signal is linearly combined into NRF streams using the analog
precoder Wm and then forwarded to the CPU for channel
estimation. Let us denote the received vector at AP m and
channel-use i by ymi ∈ CNRF , we have

Ym =
√
PpW

H

mHmΨT + WH

mZm, (3)

where Pp is the transmit power of the pilots, Ym =
[ym1,ym2, . . . ,ymτp ], Hm = [hm1,hm2, . . . ,hmK ], Ψ =
[ψ1, ψ2, . . . , ψK ], and Zm = [zm1, zm2, . . . , zmτp ] is the noise
matrix whose elements are i.i.d. CN (0, 1). Following basic
arithmetic, we can rewrite (3) as follows

yem =
√
Pp (Ψ⊗ INRF

) hem + zem, (4)

where yem = [yT
m1,y

T
m2, . . . ,y

T
mτp ]T ∈ CτpNRF , hem =

[(WH
mhm1)T, (WH

mhm2)T, . . . , (WH
mhmK)T]T ∈ CKNRF ,

and zem = [(WH
mzm1)T, (WH

mzm2)T, . . . , (WH
mzmτp)T]T. Let

us denote Ψe = Ψ⊗INRF . Using LMMSE channel estimation
which minimizes the MSE distortion, we can estimate the
vector hem as

ĥem =
√
PpRemΨH

e (ΨeRemΨH

e + Cezm)
−1

yem, (5)



where

Rem = E [hemhH

em] = diag{Remk}k∈[K], (6a)
Remk = WH

mRmkWm, (6b)
Cezm = E [zemzH

em] = IK ⊗WH

mWm, (6c)

where we use the notation diag{Ai}i∈[N ] to denote a block
diagonal matrix whose ith matrix on the diagonal is Ai. Based
on (5), the estimated channel between user k and AP m is

ĥemk=
√
PpRemk (ψH

k ⊗ INRF
)

(ΨeRemΨH

e + Cezm)
−1

yem.
(7)

For our analysis, we are interested in the cross-covariance
matrix of the estimated effective channels between CPU and
users k and k′ which is provided in the following proposition.

Proposition 1. (Covariance Matrix of Estimated Channel)
Consider the effective channel between user k and CPU hek =
[hT

e1k,h
T
e2k, . . . ,h

T
eMk]T, for users k and k′, we have

Cekk′ = diag{Cemkk′}m∈[M ], (8)
Cemkk′ = PpRemk (ψH

k ⊗ INRF
)×

(ΨeRemΨH

e + Cezm)
−1

(ψk′ ⊗ INRF
) Remk′

(9)

Proof. From (7), for the cross-covariance matrix of the esti-
mate effective channel between user K and AP m and user
k′ and AP m′ is

E
[
ĥemkĥ

H

emk′

]
=

PpRemk (ψH

k ⊗ INRF
) (ΨeRemΨH

e + Cezm)
−1 E [yemyH

em′ ]

× (ΨeRem′Ψ
H

e + Cezm)
−1

(ψk′ ⊗ INRF
) Rem′k′

= δ(m−m′)PpRemk (ψH

k ⊗ INRF
) (ΨeRemΨH

e + Cezm)
−1

× (ψk′ ⊗ INRF
) Remk′ . (10)

On the other hand, the cross-covariance matrix of the estimated
effective channels between CPU and users k and k′ is

E
[
ĥekĥ

H

ek

]
= E

 ĥe1k

...
ĥeMk

[ĥH

e1k, . . . , ĥ
H

eMk

]
.

Using E
[
ĥemkĥ

H

emk′

]
from (10) completes the proof. �

In this paper, we base all our analysis and proofs on the
assumption that all of the matrices are full rank. However,
based on the values of matrix Wm the matrix ΨeRemΨH

e +
Cemz might not be invertible, if so we use Moore-Penrose
pseudo-inverse, instead of the inverse. Moore-Penrose pseudo-
inverse is known to be optimal for LMMSE estimation [14,
Theorem 3.2.3]. For the rest of the paper, unless necessary,
we remove the sub-index e to avoid notation clutter.

III. UPLINK TRANSMISSION

After channel estimation of the effective channels, we have
the uplink data transmission. In this section, we discuss SINR
expression for uplink transmission along with random matrix
approximations of the SINR expression based on large scale
statistics of the system, and users’ power optimization.

A. Achievable Rate SINR Expression

Following [3], [15], given user k has uplink SINR of SINRuk ,
it can achieve the uplink rate of

Ruk =
τc − τp

2τc
log2(1 + SINRu

k). (11)

To calculate SINRu
k , consider user k received signal at AP m

ymk =
∑
k

√
P u
k hksk + zm, (12)

where P u
k is the maximum average uplink transmit power for

user k, sk is the transmit symbol of user k with E
[
|sk|2

]
= 1,

zm = WH
mx, x ∼ CN (0, IN ) is the noise vector at

AP m, and hmk and Wm are the effective channel after
analog beamforming between AP m and user k and analog
beamforming matrix at AP m, respectively.

To decode the transmit signals, we perfom centralized
decoding and process all the received signals from the APs
jointly at the CPU. Using the combining vector vk to decode
sk, the received decoded signal for user k can be written as

ŝk =

vH

k

√P u
k ĥksk +

∑
k′ 6=k

√
P u
k′ ĥk′sk′ +

∑
k′

√
P u
k′ h̃k′sk′ + z

 ,

where h̃k = hk − ĥk is the estimation error of the user k
effective channel to the CPU and z =

[
zT
1, . . . z

T
M

]T
. As a

result, the kth user SINR becomes

SINRu
k =

P u
k |vH

k ĥk|2

vH

k

(∑
k′ 6=k P

u
k′ ĥk′ ĥ

H

k′ + D
)

vk
, (13)

D =
∑
k

P u
k (Rk −Ck) + Cz, (14)

where Cz = diag{WH
mWm}m∈[M ]. Following generalized

Rayleigh quotient result [16, Lemma B.10], to maximize the
SINRu

k, we need to use the MMSE combiner which is

vk = Ω−1ĥk, Ω =
∑
k′

P u
k′ ĥk′ ĥ

H

k′ + D, (15)

and the maximum SINR for user k becomes

SINRu
k = P u

k ĥH

kΩ−1k ĥk, Ωk =
∑
k′ 6=k

P u
k′ ĥk′ ĥ

H

k′ + D. (16)

Next, we provide random matrix approximations of the
SINR expression in (16).

B. Random Matrix Approximation

Finding an accurate approximation of SINR which is only
based on large scale statistics of the system is of great
importance as it can be used to evaluate the system’s perfor-
mance and optimize its parameters without the knowledge of
the channel realizations. Next theorem, provides two random
matrix approximations for the SINR expression in (16) which
only depend on large scale statistics.



Theorem 1. The SINR expression in (16) can be approxi-
mated as follows.

First approximation:

SINRu
k ≈P u

k tr CkD
−1

− P u
k

∑
k′ 6=k

P u
k′tr Ck′D

−1CkD
−1

1 + P u
k′tr Ck′D−1

.
(17)

Second approximation:

SINRu
k ≈

P u
k

MNRF
tr CkT, (18)

where

T =

(
D

MNRF
+

1

MNRF

∑
k

P u
k

1 + ek
Ck

)−1
, (19a)

with ek = lim
t→∞

ek(t), for ek(0) = 1, for all k (19b)

ek(t+ 1) =
P u
k

MNRf
×

tr Ck

(
D

MNRF
+

1

MNRF

∑
k

P u
k

1 + ek(t)
Ck

)−1
,

(19c)

Proof. The proof is provided in Appendix B. �

As we will see in Sec. V, the first approximation is only
accurate when the total number of RF-chains is greater than the
number of users MNRF > K. But, the second approximation
is accurate for any values of K and MNRF. However, it is
more computationally complex.

C. Power Optimization

Next, we discuss the user power optimization for maximiz-
ing the minimum SINR among the users which corresponds
to maximizing the worst rate of the system. To optimization
the transmit powers, we make use of the result in [17]. More
specifically, in our next theorem, we show that the SINR
expressions in (16) and (18) follow the definition of the
competitive utility functions [17, Assumption 1] and the power
constraints are monotonic constraints [17, Assumption 2].
Therefore, we can repurpose [17, Algorithm 1] as shown in
Alg. 1 to find optimal users’ transmit powers. This algorithm is
centralized in the sense that the CPU performs the optimization
to find the optimal power allocation for the users and then
sends the power values to the users.

Theorem 2. Using Alg. 1, the transmit power of the users
can be optimized to achieve optimal max-min SINR among
the users for the SINR functions in (16) and (18).

Proof. The proof is provided in Appendix C. �

IV. DOWNLINK TRANSMISSION

After channel estimation and uplink data transmission, we
have the downlink transmission. In this section, we discuss
SINR expression for downlink transmission along with random
matrix approximations of the SINR expression based on large
scale statistics of the system.

Algorithm 1: Uplink user power optimization

1 Initialize: Pu(0) = [P u
1 (0), P u

2 (0), . . . , P u
K(0)]T > 0;

2 while not converged do
3 P u

k (t+ 1) =
Pu

k (t)
SINRu

k(P
u(t)) ; // Update power

vector Pu(t+ 1)

4 Pu(t+ 1) = Pu(t+1)
max{Pu(t+1)} ; // Scale power

vector Pu(t+ 1)

5 Output: Pu(t+ 1)

A. Achievable Rate and SINR Expression

Following [3], [15], given user k has downlink SINR of
SINRdk, it can achieve the downlink rate of

Rdk =
τc − τp

2τc
log2 2(1 + SINRd

k). (20)

Next, we calculate the users’ SINRs. Define P d
mk as the

transmit power used at AP m for downlink data transmission
to user k and vdmk as the encoder vector at AP m used for
user k. The received signal at user k is

yk =
∑
M

√
P d
mkE[hH

mkv
d
mk]sk

+
∑
M

√
P d
mk

(
hH

mkv
d
mk − E[hH

mkv
d
mk]
)
sk

+
∑
M

∑
k′ 6=k

√
P d
mk′h

H

mk′v
d
mk′sk′ + zk,

(21)

where sk is the transmit signal to user k and zk is the noise
vector whose elements are i.i.d. Gaussian CN (0, 1).

We assume that the CPU uses the RZF combiner which is

v̂dk = Ω−1RZFĥk, ΩRZF =
∑
k′

ĥk′ ĥ
H

k′ + ρI, (22)

where ρ is the regularization factor and v̂dk = [v̂d1k, . . . v̂
d
MK ]

with v̂dmk denoting the combiner vector used at AP m. Note
that we cannot use v̂dk directly as the transmit power constraint
at the APs is not satisfied. Also, if scaling of the combiner
vector for each AP is different then the resulting combiner
vector will not have the interference cancellation property of
the RZF. Therefore, here, we scale v̂dk such that the AP with
maximum norm combiner vector v̂dmk uses transmit power P dk
for user k. We have

vdk =
v̂dk

maxm

√
E{|v̂dmk|2}

. (23)

As a result, for SINRd
k, we have

SINRd
k =

P dk |E{hH

kvdk}|2∑
k′ 6=k P

d
k′E

{
|hH

kvdk′ |2
}

+ P dkV
{
hH

kvdk
}

+ 1
,

(24)
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Fig. 3: Empirical CDF of spectral efficiency based on exact uplink SINR expression (16) and (a) approximation (17),
(b) approximation (18). (c) Empirical CDF of spectral efficiency based on exact downlink SINR expression (24) and its
approximation in (25).

B. Random Matrix Approximation
Next theorem, provides a random matrix approximations for

SINRd
k in (24) which only depend on large scale statistics.

Theorem 3. The SINR expression in (24) can be approxi-
mated as follows.

SINRd
k ≈

P dkαk∑
k′ 6=k P

d
k′βkk′ + 1

, (25)

where

αk =

(
1

νk

tr CkS

MNRF + tr CkS

)2

(26)

βkk′ =
1

ν2k′(MNRF + tr Ck′S)2
×
[
tr RkS

′
k′

− 2Re

{
tr CkS tr CkT

′
k′

MNRF + tr CkS

}
+ (MNRF + tr CkS)2(tr CkS)2 tr CkS

′
k′

] (27)

ν2k =
maxm∈[M ] tr Ck[m]S′[m]

(MNRF + tr CkS)
2 , for all k (28)

where Ck[m] and S′[m] are the mth matrices of size NRF ×
NRF located on the diagonal of Ck and S′, respectively,

S =

(
ρI

MNRF
+

1

MNRF

∑
k

1

1 + ek
Ck

)−1
, (29a)

with ek = lim
t→∞

ek(t), for ek(0) = 1, for all k (29b)

ek(t+ 1) =
1

MNRf
×

tr Ck

(
ρI

MNRF
+

1

MNRF

∑
k

1

1 + ek(t)
Ck

)−1
,

(29c)

and

S′ = S2 + S
1

NRF

K∑
k=1

Cke
′
k

(1 + ek)2
S, (30a)

e′k = (I− J)
−1

v, (30b)

[v]k =
1

NRF
tr
(
CkS

2
)
, [J]kk′ =

tr (CkSCk′S)

N2
RF(1 + ek′)2

, (30c)

TABLE I: Simulation Setup and Parameters.

Parameter Value
fc (Carrier frequency) 1.9 GHz

BW (Bandwidth) 20 MHz
Noise figure 9 dB

τc (Length of coherence Interval) 200
τp (Length of pilot sequence) 16

Pu (UL maximum transmit power per data symbol) 20 mW
Pp (UL maximum transmit power per pilot symbol) 20 mW

Pd (DL maximum transmit power per user) 200 mW
K (Number of simultaneous users) 16

Cell area 100×100m2

S′k′ = SCk′S + S
1

MNRF

K∑
k=1

Ck′e
′′
k

(1 + ek)2
S, (31a)

e′′k = (I− J)
−1

vk′ , (31b)

[vk′ ]k =
1

MNRF
tr (CkSCk′S) , (31c)

Proof. The proof is provided in Appendix D. �

Optimizing the total transmit power of each user to max-
imize the minimum downlink SINR among the users is an
interesting venue left for future publication due to space
constraint.

V. SIMULATIONS AND NUMERICAL EVALUATIONS

For our simulations, we use the parameters presented in
Table I. Even though orthogonal pilots can be used since
pilot length = 16 = K, we use random pilots in our
simulations. First, we investigate the accuracy of the provided
approximations in Thm. 1 and Thm. 3 for the uplink and down-
link SINRs, respectively, then we investigate the impact of
number of RF-chains and power optimization on the system’s
performance for uplink scenario.

A. SINR Approximations

The empirical CDF of uplink spectral efficiency based on
exact SINR (16) and its first and second approximations (17),
(18) are plotted for different number of users and RF-chains
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Fig. 4: 95% outage spectral efficiency for different number of
APs, antennas, and RF-chains.

in Fig. 3a and Fig. 3b, respectively. We observe that the
second approximation is good almost everywhere while the
first approximation is only good when MNRF > K. However,
the first approximation has smaller computation complexity
compared to the second one.

The empirical CDF of uplink spectral efficiency based on
exact downlink SINR in (24) and its approximation in Thm. 3
is provided in Fig. 3c. We observe that the approximation
accurately estimates the exact CDF everywhere.

B. Uplink Power optimization and Impact of number of RF-
chains

The 95% outage spectral efficiency for different number of
APs, antennas, and RF-chains are plotted in Fig. 4. Here, the
solid lines are calculated based on the exact expression (16)
when all users transmit with full power and the dashed lines
are when the transmit power of the users are optimized using
the Alg. 1 using the SINR approximation in (18). We observe
that maximizing the minimum SINR does not improve the
performance of the system visibly. Moreover, Fig. 4 gives an
important insight on the trade off between the number of RF-
chains and system performance for different values of M and
N considering the discussed BF technique in Sec. II-B.

VI. CONCLUSION

In this paper, a Cell-Free mMIMO system with hybrid
APs is considered ,where each AP uses a hybrid beamfoming
scheme in which the analog beamformer is designed based on
the large scale statistics of the channel, and the digital beam-
former is designed based on the estimated effective channel
between the APs and users. Using MMSE combiner for uplink
and RZF precoder for downlink, SINR expressions for both
uplink and downlink scenarios along with accurate random
matrix approximations of the SINR expressions which only
depend on large scale statistics of the system are provided.
Furthermore, optimality achieving power optimization method
that maximizes minimum SINR among the users for the uplink
scenario is presented. Finally, through various simulations of
practical systems the accuracy of the derived approximations
is validated and the impact of power optimization, and number
of RF-chains on the system’s perfomance is investigated.
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APPENDIX A
USEFUL LEMMAS AND THEOREMS

For our derivations, we make use of the following results

Lemma 1. (Matrix Inversion Lemma)[18] Let U be an M×
M invertible matrix and x ∈ CM×1, c ∈ C for which U +
cxxH is invertible. Then

xH
(
U + cxxH

)−1
=

xHU−1

1 + cxHU−1x
. (32)

Lemma 2. [19, Lemma 4 and 5] Let A ∈ CM×M and x,y ∼
CN (0, 1

M IM ). Assume that A has uniformly bounded spectral
norm (with respect to M ) and that x and y are mutually
independent and independent of A. Then,

xHAx− 1

M
trA a.s.−−−−→

M→∞
0, (33a)

xHAy
a.s.−−−−→

M→∞
0. (33b)

Lemma 3. [19, Lemma 6] Let A ∈ CM×M , be deterministic
with uniformly bounded spectral norm and B ∈ CM×M , be
random Hermitian, with eigenvalues λBM

1 ≤ λBM
2 · · · ≤ λBM

M

such that, with probability 1, there exist ε > 0 for which
λBM
1 > ε for all large M . Then for v ∈ CM×1

1

M
tr AB−1 − 1

M
tr A

(
B + vvH

)−1 a.s.−−−−→
M→∞

0 (34)

almost surely, where B−1 and
(
B + vvH

)−1
exist with prob-

ability 1.

Theorem 1. [19, Thm. 1] Let S ∈ CM×M and Q ∈ CM×M
be Hermitian non-negative definite and let X ∈ CM×K be
random with independent column vectors xk ∼ CN (0, 1

MRk)
and Rk, k = 1, ...,K have uniformly bounded spectral norms
(with respect to M). Then, for any z > 0,

1

M
tr Q

(
XXH + S + zI

)−1 − 1

M
tr QT

a.s.−−−−→
M→∞

0, (35)

where T ∈ CM×M is given by

T =

(
1

M

K∑
k=1

Rk

1 + ek
+ S + zIM

)−1
. (36)

Here, ek = limt→∞ ek(t) and ek(t) is obtained by

ek(t) =
1

M
tr Rk

(
1

M

K∑
k′=1

Rk′

1 + ek′(t− 1)
+ S + zIM

)−1
.

(37)
where t = 1, 2, ... and e(0)k (z) = 1/z for k = 1, 2, ...,K.

Theorem 2. [19, Thm. 1] Let be Θ Hermitian nonnegative
definite with uniformly bounded spectral norm (with respect
to N). Under the conditions of Theorem 1,

1

M
trQ

(
XXH + S + zIM

)−1
Θ
(
XXH + S + zIM

)−1
− 1

M
tr QT′

a.s.−−−−→
M→∞

0.
(38)

where

T′ = TΘT + T
1

M

K∑
k=1

Rke
′
k

(1 + ek)2
T, (39)

where ek is the same as in Theorem 1 and

e′ = (IK − J)−1v, (40a)

vk =
1

M
trRkTΘT, (40b)

Jkk′ =
1

M2(1 + ek′)2
trRkTRk′T (40c)

APPENDIX B
PROOF OF THM. 1

For our approximations, we consider that the elements of
matrix Ckk′ for k 6= k′ are close to zero. Note that this is
not generally true. Two possible cases where this is correct
is when orthogonal pilots or random pilots with large length
are used. However, through numerical evaluations, we observe
that even for small pilot length this value is small and does
not impact the approximation.

First Approximation: Consider the SINR expression in
(16), using Woodbury inversion lemma, we have

SINRu
k = P u

k ĥH

kD−1ĥk−

P u
k ĥH

kD−1Ĥ/k

(
IK + ĤH

/kD
−1Ĥ/k

)−1
ĤH

/kD
−1ĥk,

(41)

where Ĥ = [
√
P u
1 ĥ1,

√
P u
2 ĥ2, . . . ,

√
P u
K ĥK ] and Ĥ/k means

that the column k is removed. Let us consider the term

ĤHD−1Ĥ =
√
P u
1 ĥH

1√
P u
2 ĥH

2
...√

P u
K ĥH

K

D−1
[√

P u
1 ĥ1,

√
P u
2 ĥ2, . . . ,

√
P u
K ĥK

] (42)

⇒
[
ĤHD−1Ĥ

]
k,k′

=
√
P u
k P

u
k′ ĥ

H

kD−1ĥk′ . (43)

For k = k′, we have

ĥH

kD−1ĥk
In−−−−−−→

Distribution
xHC0.5

k D−1C0.5
k x, x ∼ CN (0, IMNRF

)

Lemma 2−−−−−→ tr C0.5
k D−1C0.5

k = tr CkD
−1.

(44)

For k 6= k′, note that we can write[
ĥk
ĥk′

]
=

[
Ak, Bk

Ak′ , Bk′

] [
x
y

]
, x,y ∼ CN (0, IMNRF) (45)

⇒
[

Ak, Bk

Ak′ , Bk′

]
=

[
Ck, Ckk′

Ck′k, Ck′

]0.5
(46)

we have

ĥH

kD−1ĥk′
In−−−−−−→

Distribution
(Akx+Bky)HD−1(Ak′x+Bk′y)

Lemma 2−−−−−→ tr (AkA
H

k′ + BkB
H

k′) D−1

= tr Ckk′D
−1 ≈ 0, (47)



Based on (44) and (47), we have(
IK + ĤH

/kD
−1Ĥ/k

)−1
≈ diag

{
1

1 + P u
k′tr Ck′D−1

}
k′ 6=k

.

(48)

Substituting this in (41), we get

SINRu
k = P u

k ĥH

kD−1ĥk − P u
k

∑
k′ 6=k

P u
k′

∣∣∣ĥH

kD−1ĥk′
∣∣∣2

1 + P u
k′tr Ck′D−1

. (49)

Based on (44), already have an approximation for the first
term. Next, we approximate the nominator.∣∣∣ĥH

kD−1ĥk′
∣∣∣2 = ĥH

kD−1ĥk′ ĥ
H

k′D
−1ĥk

In−−−−−−→
Distribution

xHC0.5
k D−1ĥk′ ĥ

H

k′D
−1C0.5

k x,

Lemma 2−−−−−→ tr C0.5
k D−1ĥk′ ĥ

H

k′D
−1C0.5

k = tr ĥH

k′D
−1CkD

−1ĥk′
In−−−−−−→

Distribution
yHC0.5

k′ D−1CH

kD−1C0.5
k′ y,

Lemma 2−−−−−→ tr Ck′D
−1CkD

−1, (50)

where x and y are i.i.d. CN (0, IMNRF
). Substituting the (50)

and (44) in (49), completes the proof.
Second Approximation: Consider the SINR expression in

(16).

P u
k ĥH

kΩ−1k ĥk
In−−−−−−→

Distribution
P u
k xHC0.5

k Ω−1k C0.5
k x,

Lemma 2−−−−−→ P u
k tr C0.5

k Ω−1k C0.5
k = tr CkΩ

−1
k

Lemma 3−−−−−→ P u
k tr CkΩ

−1

Theorem 1−−−−−→ P u
k

1

MNRF
tr CkT, (51)

where x ∼ CN (0, IMNRF
), Ω, Ωk, and T are as in (15), (16)

and (19), respectively. Note that to use Theorem 1 here, we
again assume that the matrix Ckk′ is close to zero.

APPENDIX C
PROOF OF THM. 2

For our proof we need the following definitions

Definition 1 (Competitive Utility Functions [17, Assump-
tion 1]). Function u(p) : RK 7→ RK is a competitive utility
function if

1) Positivity: For all k, u(p) > 0 if p > 0, and uk(p) = 0
if and only if pk = 0 2.

2) Competitiveness: For all k,∈ [K], uk is strictly increasing
with respect to pk and is strictly decreasing with respect
to pk′ , k′ 6= k when pk > 0.

3) Directional Monotonicity: For λ > 1 and p > 0, u(λp) >
u(p).

Definition 2 (Monotonic Constraints [17, Assumption 2]).
Function c(p) : RK 7→ RK is a monotonic constraints
function if

2All the inequalities are meant for elementwise

1) Strict Monotonicity: For all k, ck(p1) > ck(p2) if p1 >
p2, and uk(p1) ≥ uk(p2) if p1 ≥ p2.

2) Feasibility: The set {p > 0 : c(p) ≤ c̄} is non-empty.
3) Validity: For any p > 0, there exists λ > 0 such that

ck(λp) ≥ c̄k, for some k.

It is easy to show that the users power constraints satisfy
the definition of monotonic constraints. Here, we prove that
the SINR expressions satisfy the competitive utility functions
definition.

Let us consider the SINR expression in (16).
First condition: Positivity is satisfied as Ωk is summation

of positive definite matrices and so Ω−1k is also positive
definite. Therefore, SINRu

k > 0 unless P u
k = 0.

Second condition: To prove this condition, we show
that∂SINRu

k

∂Pu
k

> 0 and ∂SINRu
k

∂Pu
k′

< 0, k′ 6= k. For ∂SINRu
k

∂Pu
k

> 0,

∂SINRu
k

∂P u
k

=
∂

∂P u
k

ĥH

kP
u
kΩ−1k ĥk (52)

(a)
= ĥH

k

∂Gk

∂P u
k

ĥk (53)

(b)
= −ĥH

kGk
∂G−1k
∂P u

k

GK ĥk, (54)

where

Gk =

∑
k′ 6=k

P u
k′

P u
k

(
ĥk′ ĥ

H

k′+Rk′−Ck′

)
+Rk−Ck+

1

P u
k

Cz

−1, (55)

∂G−1k
∂P u

k

=−

∑
k′ 6=k

P u
k′

P u
k
2

(
ĥk′ ĥ

H

k′+Rk′−Ck′

)
+

1

P u
k
2 Cz

 , (56)

(a) follows from substituting the value of D from (13) in
the expression of Ωk form (16) and (b) follows for the
equality ∂A−1

∂x = −A−1 ∂A
∂x A−1. Note that based on the

above expression, ∂G−1
k

∂Pu
k

is negative definite and Gk is positive

definite. Define y = GK ĥk, then ∂SINRu
k

∂Pu
k

= −yH ∂G−1
k

∂Pu
k

y > 0.

Next, we show ∂SINRu
k

∂Pu
k′

< 0, k′ 6= k.

∂SINRu
k

∂P u
k′

= P u
k ĥH

k

∂Ωk

∂P u
k′

ĥk

(b)
= −P u

k ĥH

kΩk

(
ĥk′ ĥ

H

k′ + Rk −Ck

)
Ωkĥk. (57)

Note that Ωk and
(
ĥk′ ĥ

H

k′ + Rk −Ck

)
are positive

definite. Define y = Ωkĥk, then, ∂SINRu
k

∂Pu
k′

=

−P u
k yH

(
ĥk′ ĥ

H

k′ + Rk −Ck

)
y < 0.

Third condition: To prove this condition, let us consider
the difference

SINRu
k(λPu)− SINRu

k(Pu) =

P u
k ĥH

k

((
Ωk(λPu)

λ

)−1
−Ωk(Pu)−1

)
ĥk (58)



using Woodbury inversion lemma we have(
Ωk(λPu)

λ

)−1
−Ωk(Pu)−1 =

Ωk(λPu)

λ
− Ωk(λPu)

λ

(
Ωk(λPu)

λ
−Ωk(Pu)

)
Ωk(λPu)

λ

=
Ωk(λPu)

λ
+

Ωk(λPu)

λ

(
Ωk(Pu)− Ωk(λPu)

λ

)
Ωk(λPu)

λ
(59)

It is easy to check that both Ωk(λPu)
λ and Ωk(Pu)− Ωk(λPu)

λ
are positive definite matrices. Let us denote them by matrices
A and B respectively. We have

SINRu
k(λPu)− SINRu

k(Pu) =

P u
k ĥH

kAĥk + P u
k ĥH

kABAĥk. (60)

Similar steps as previous conditions, we can show that both
terms are positive and

SINRu
k(λPu)− SINRu

k(Pu) > 0. (61)

This concludes the proof for SINR expression in (16).
To prove that (18) is also a competitive utility function, a

similar set of steps as of the proof for (16) can be used plus
the well known results that for A positive definite trAB > 0
when B is positive definite and trAB < 0 when B is negative
definite.

APPENDIX D
PROOF OF THM. 3

To prove this theorem, we use a similar procedure as of the
one used for [20, Theorem. 5]. Consider the SINR expression
in (15). We perfom approximation of each term separately.
First we approximate E{|v̂dmk|2} as.

|v̂k|2 = ĥH

k

(∑
k′

ĥk′ ĥ
H

k′

)−2
ĥk,

Lemma 1−−−−−→
ĥH

k

(∑
k′ 6=k ĥk′ ĥ

H

k′

)−2
ĥk(

1 + ĥH

k

(∑
k′ 6=k ĥk′ ĥH

k′

)−1
ĥk

)2 (62)

using Lemma 2, Lemma 3, and Theorem 1 for the nominator
and Lemma 2, Lemma 3, and Theorem 2 for the denominator,
we have

|v̂k|2 ≈
1

M2N2
RF

tr CkS
′(

1 + 1
MNRF

tr CkS
)2 , (63)

where S and S′ are as in (29) and (30), respectively. Note
that, the matrices S′ and Ck are block diagonal with M block
matrices of size NRF ×NRF each only depending to the large
scale statistics corresponding to one of the APs. Moreover, we

have |vk|2 =
∑
m∈[M ] |vdmk|2. Rewriting the left and right

hand side of (62), we have

∑
m∈[M ]

|v̂dmk|2 ≈
∑

m∈[M ]

1
M2N2

RF
tr Ck[m]S′[m](

1 + 1
MNRF

tr CkS
)2 , (64)

where Ck[m] and S′[m] are the mth block matrices of size
NRF × NRF located on the diagonal of Ck and T′, re-
spectively. Based on the one-to-one correspondence observed
between the left and right hand side of (64), we approximate
the |v̂dmk|2 as

|v̂dmk|2 ≈
1

M2N2
RF

tr Ck[m]S′[m](
1 + 1

MNRF
tr CkS

)2 , (65)

Let us define νk = maxm

√
|v̂dmk|2. Next, we approximate

|E{hH

kvdk}|2.

vdHk hk =
1

νk
ĥH

k

(∑
k′

ĥk′ ĥ
H

k′ + ρI

)−1
hd
k

Lemma 1−−−−−→ 1

νk

ĥH

kΩ−1RZF,kh
d
k

1 + ĥH

kΩ−1RZF,kĥk
, (66)

where ΩRZF,k is as in (22) where from the summation we
remove the element k′ = k. Using Lemma 2, Lemma 3, and
Thm. 1, we have

ĥH

kΩ−1RZF,kĥk ≈
1

MNRF
tr CkS, (67)

Substituting (67) in (66), we get

|E{hH

kvdk}|2 ≈
1

ν2k

( 1
MNRF

tr CkS)2(
1 + 1

MNRF
tr CkS

)2 (68)

Next, we approximate the term
∑K
k′=1 E

{
|hH

kvdk′ |2
}

.

∣∣vdHk′ hk∣∣2 Lemma 1−−−−−→ 1

ν2k′

∣∣∣∣∣ ĥH

k′Ω
−1
RZF,k′hk

1 + ĥH

k′Ω
−1
RZF,k′ ĥk′

∣∣∣∣∣
2

. (69)

We already have an approximation for ĥH

kΩ−1RZF,k′ ĥk from
(67). As for the nominator, we are in fact interested in its
absolute value to power two.∣∣∣ĥH

k′Ω
−1
RZF,k′hk

∣∣∣2 =
∣∣∣ĥH

k′Ω
−1
RZF,k′hkh

H

kΩ−1RZF,k′ ĥk′
∣∣∣

Lemma 2−−−−−→ 1

MNRF

∣∣∣hH

kΩ−1RZF,k′Ck′Ω
−1
RZF,k′hk

∣∣∣ . (70)

Substituting

Ω−1RZF,k′ = Ω−1RZF,k,k′ −
Ω−1RZF,k,k′ ĥkĥ

H

kΩ−1RZF,k,k′

1 + ĥkΩ
−1
RZF,k,k′ ĥk

, (71)



where ΩRZF,k,k′ =
∑
k′′ 6=k,k′ ĥk′′ ĥ

H

k′′ + ρI, we have

hH

kΩ−1RZF,k′Ck′Ω
−1
RZF,k′hk = hH

kΩ−1RZF,k,k′Ck′Ω
−1
RZF,k,k′hk

+

∣∣∣hH

kΩ−1RZF,k,k′ ĥk

∣∣∣2 ĥH

kΩ−1RZF,k,k′Ck′Ω
−1
RZF,k,k′ ĥk

(1 + ĥkΩ
−1
RZF,k,k′ ĥk)2

− 2Re

{
ĥH

kΩ−1RZF,k,k′hkh
H

kΩ−1RZF,k,k′Ck′Ω
−1
RZF,k,k′ ĥk

1 + ĥkΩ
−1
RZF,k,k′ ĥk

}
.

Applying Lemma 2, Lemma 3, and Thm. 2, we have

hH

kΩ−1RZF,k,k′Ck′Ω
−1
RZF,k,k′hk ≈

1

M2N2
RF

tr RkS
′
k′ (72a)

ĥH

kΩ−1RZF,k,k′Ck′Ω
−1
RZF,k,k′ ĥk ≈

1

M2N2
RF

tr CkS
′
k′ (72b)

hH

kΩ−1RZF,k,k′Ck′Ω
−1
RZF,k,k′ ĥk ≈

1

M2N2
RF

tr CkS
′
k′ (72c)

where S′k′ is as in (31). Similarly, using Lemma 2, Lemma 3,
and Thm. 1, we have

ĥH

kΩ−1RZF,k,k′hk ≈
1

MNRF
tr CkS (73a)

ĥH

kΩ−1RZF,k,k′ ĥk ≈
1

MNRF
tr CkS. (73b)

Substituting (73) and (72) in (70) and the result in (69), we
have

E
{
|hH

kvdk′ |2
}
≈

1

ν2k′(MNRF + tr Ck′S)2
×
[
tr RkS

′
k′

− 2Re

{
tr CkS tr CkS

′
k′

MNRF + tr CkS

}
+ (MNRF + tr CkS)2(tr CkS)2 tr CkS

′
k′

]
(74)

Also, we approximate V
{
hH

kvdk
}
≈ 0. Therefore, using (68)

and (74) in (24), completes our derivation.
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