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Abstract—Machine learning (ML) applications for wire-

less communications have gained momentum on the stan-

dardization discussions for 5G advanced and beyond. One

of the biggest challenges for real world ML deployment

is the need for labeled signals and big measurement

campaigns. To overcome those problems, we propose the

use of untrained neural networks (UNNs) for MIMO

channel recreation/estimation and low overhead reporting.

The UNNs learn the propagation environment by fitting

a few channel measurements and we exploit their learned

prior to provide higher channel estimation gains. Moreover,

we present a UNN for simultaneous channel recreation for

multiple users, or multiple user equipment (UE) positions,

in which we have a trade-off between the estimated channel

gain and the number of parameters. Our results show that

transfer learning techniques are effective in accessing the

learned prior on the environment structure as they provide

higher channel gain for neighbouring users. Moreover,

we indicate how the under-parameterization of UNNs can

further enable low-overhead channel state information

(CSI) reporting.

Index Terms—Machine Learning, channel estimation,

digital twin.

I. INTRODUCTION

Standardization discussions for the next generation

of wireless communications have started and artificial

intelligence and machine learning (AI/ML) solutions are

being considered, especially for next generation radio

access network (NG-RAN) and air interfaces, i.e., 3GPP

release 18 workshop [1] may lead to a study item

on AI/ML applications for the PHY layer. Moreover,

reducing the overall power consumption of the system

is a target for 5G advanced and 6G. In this context,

we assume the use of a digital twin environment [2]

where learning of the AI/ML solutions takes place, and

can later aid planning, deployment and management of

wireless networks. In order to leverage the potential of a

digital twin for the environment, full knowledge of the

channel state information (CSI) is needed such that most

of the real propagation effects can be represented. Here,

we propose a ML solution based on untrained neural

networks (UNNs) for channel recreation/estimation at

the initial operation phase (day zero) where not many

CSI measurements are available. For instance, we can

design a UNN to learn the environment characteristics

based on a single time snapshot channel measurement.

However, it is beneficial for the UNN to collect some

few channel measurements over time. Our method is

an enabler for PHY functionalities and other AI/ML

methods which need CSI as labels, e.g., fingerprinting,

CSI-prediction, and multi-modal data-aided networks

(lidar, radar, environment images, etc.) [3]. Moreover,
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our proposed ML solution can further leverage full CSI

reporting between the user equipment (UE) and the base

station (BS).

Untrained neural networks (UNNs) were first pro-

posed in [4] where the term untrained relates to the fact

that a huge data collection for training is not needed.

Instead, the neural network can be fitted to a single

data sample. Therefore, the updates of gradient descent

move from the training phase to the inference phase.

The solution of inverse problems, such as denoising,

is feasible because the structure of deep convolutional

networks act as a prior to an image-like signal [4].

The work in [5] goes further and proposes a underpa-

rameterized deep decoder architecture for UNNs. For

wireless systems, this means we can fit a UNN to directly

estimate the multidimensional wireless channel based

on a small measurement campaign, i.e., a few time

snapshots, without the need of ‘true’ labels.

The application of UNNs for real inverse problems is

quite recent. For instance, the work in [6] proposes to use

a convolutional deep decoder UNN to accelerate mag-

netic resonance imaging which has superior performance

than total variation norm minimization. In [7], a MIMO

channel estimator using UNN is proposed to overcome

pilot contamination. However, the authors evaluate the

performance using the LTE-EPA channel model which

does not reveal one of the main advantages of UNN

channel estimators: prior knowledge on the propagation

environment which is stored in the UNN structure.

The storage of prior knowledge, the short data-

collection phase and the small number of parameters of

UNNs have motivated us to further investigate their use

for CSI recreation. We refer to channel recreation instead

of channel estimation to emphasize that channel estima-

tion gain is not the main goal of our UNN architecture

design. The UNN is optimized to estimate the wireless

channel with at least the same signal to noise ratio (SNR)

as the corresponding channel measurement. Therefore,

the UNN learns prior knowledge about the propagation

environment. In this work, we propose to take advantage

of the learned prior knowledge by means of transfer

learning [8]. In addition, we propose to expand the

UNN structure to be able to recreate simultaneously

the channel of multiple neighboring UEs. Moreover, we

indicate how the UNN structure can be exploited for

low-overhead full CSI reporting. In contrast to prior art,

we evaluate the performance of our UNN channel esti-

mators on geometrically modeled channels which better

represent environment specific fading characteristics.

In this paper, Section II presents the wireless propa-

gation environment, Section III presents the UNN based

single user CSI estimator and the transfer learning ap-

proach. After that, Section IV presents the UNN based

simultaneous CSI estimator for multiple UEs. Finally,

Section V present our simulation results and Section VI

concludes our paper.

Regarding the notation, a, a, A and A represents,

respectively, scalars, column vectors, matrices and D-

dimensional tensors. The superscript T , denotes trans-

position. For a tensor A ∈ CM1×M2×...MD , Md

refers to the tensor dimension on the dth mode. A

d-mode unfolding of a tensor is written as [A](d) ∈

CMd×Md+1...MDM1...Md−1 where all d-mode vectors are

aligned as columns of a matrix. The d-mode vectors

of A are obtained by varying the dth index from 1

to Md and keeping all other indices fixed. Moreover,

A×dU is the d-mode product between a D-way tensor

A ∈ CM1×M2···×MD and a matrix U ∈ CJ×Md . The

d-mode product is computed by multiplying U with all

d-mode vectors of A.

II. SYSTEM AND CHANNEL MODELS

For the problem of channel recreation and transfer

learning with UNNs, we consider an urban environ-
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Fig. 1. Propagation environment simulated in IlmProp. Numbered axis

represents the positions in meters.

ment with a fixed base station (BS) equipped with

an uniform rectangular array (URA) containing Nant

antenna elements, moving user equipments (UEs) with

single antennas, operating with Nsub OFDM subcarriers,

and collecting Nsp time snapshots. This scenario was

modeled with the IlmProp, a geometry based channel

simulator developed at Ilmenau University of Tech-

nology [9]. Figure 1 presents the urban environment

with the BS represented by a red sphere, buildings in

blue cuboids, scatters in green spheres, and seven UEs

moving on a linear trajectory towards the BS. In addition,

the numbered x− y-plane represent the position on the

map in meters.

The channels generated by IlmProp are the ground

truth values Hsim ∈ CNsub×Nsp×Nant . From

those, we derive the noisy channel measurements

HC
mes ∈ CNsub×Nsp×Nant as

HC
mes = Hsim +N , (1)

where N ∈ CNsub×Nsp×Nant is a zero mean circularly

symmetric complex Gaussian noise process. The HC
mes

are further used to recreate the CSIs.

After we derive the optimum weights for a UNN to

recreate the CSIs of Nsp different locations, we can

send the UNN weights together with its structural details

(such as random input rule, and number of upsampling

operations) from UE to BS. Hence, the BS would be

able to recreate the same CSI as the reporting UE. Since

UNNs are under-parameterized, we achieve compression

of the full-CSI (HC
mes). In this work, we present how to

achieve CSI compression by different UNN structures

that take advantage of the channel correlation between

neighboring UEs. Nonetheless, as we discuss in Sec-

tion III-D, it is possible to apply other compression

schemes on top of the UNN weights to achieve an even

higher compression rate. The use of UNN structures for

CSI reporting is an alternative to variational auto-encoder

(VAE) solutions, which are trained to generate code-

words that represent the channels. The motivation for

our method is to inherently also learn the environment,

i.e., to generate a ML based digital twin or mirror world

of the environment.

III. SINGLE USER CSI ESTIMATION AND TRANSFER

LEARNING

Due to the claim in [4] that the network structure

stores the prior-information, we aim to access this

prior by means of transfer learning. In wireless channel

estimation, access to prior information can provide a

channel estimation gain if the correlation between the

channels is considered. Physically, neighboring UEs are

favorable candidates as they experience similar prop-

agation effects in an environment. Hence, a UNN is

learning the propagation environment while fitting the

channel measurements, without any direct knowledge

of the environment map. In this section, we present

the UNN channel estimator based on the deep decoder

architecture [5] for a single UE. We introduce the data

pre-processing, the UNN architecture, and how gradient

descent is used to update the weights. Moreover, we

propose to use transfer learning to take advantage of the

stored prior in the UNN weights.
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Fig. 2. General structure of a untrained neural network (UNN) P

that maps ZL = P (K,Z0). After I gradient iterations, the wireless

channel is estimated as Hest = P (K∗,Z0).

A. Data pre-processing for UNN

The input signal to a UNN is a random noise seed

Z0 ∈ Rb×c×k0 , where b = Nsub/2
L−2, c = Nsp/2

L−2,

k0 is the depth of the random seed which is a hyper-

parameter, and L is the number of layers. The input ten-

sor Z0 is drawn from a uniform distribution U(−a,+a)

defined on the interval [−a,+a] and kept fixed during the

iterations to update the gradient descent. The measured

channel HC
mes is preprocessed as

• Each time snapshot within HC
mes is normalized by

its Frobenius norm, and then multiplied by a scaling

factor to ease convergence.

• HC
mes ∈ CNsub×Nsp×Nant is rearranged by concate-

nating Re{HC
mes} and Im{HC

mes} in the dimension

corresponding to the antenna elements.

After those operations, Hmes ∈ RNsub×Nsp×2Nant is

directly used to compute the cost function.

B. UNN architecture for single UE CSI estimation

The UNN deep decoder architecture is a composition

of L layers which are of three types: (L−2) inner layers,

one pre-output layer (L − 1) and one output layer (L).

Figure 2 shows a generic organization of those layers,

the random noise seed Z0 in blue, the inner layers in

orange, the pre-output layer in yellow, and the output

layer in olive. All the layer types contain convolutional

filters Wl ∈ R1×1×kl−1×kl where l = {1, 2, . . . L}, kl−1
and kl are hyper-parameters which define the number of

filters on the respective (l−1)th and lth layers. However,

the types of layers differ with respect to the upsampling

computation and the operation of batch normalization.

The inner layers contain linear and non-linear opera-

tions. The linear computation consists of a convolutional

filter Wl and a bilinear upsampling operation, where

Al ∈ R2lb×2l−1b and Cl ∈ R2lc×2l−1c are the one

dimensional linear upsampling matrices in the subcarrier

and time snapshots dimensions, respectively. Next, the

rectifier linear unit (ReLu) activation function is applied,

and a batch normalization is computed per kl filter as

BatchNorm(Zlj) =
Zlj −mean(Zlj)√

var(Zlj)
γlj + βlj , (2)

where j = [1, 2, . . . , kl], mean and variance (var) are

computed among the batch samples [10] which for UNN

is one. The trainable parameters of the BatchNorm

operation are Rl = [γl,βl] ∈ Rkl×2. For instance, the

output of the first inner layer Z1 can be written as

Z1 = BatchNorm(ReLu(Z0×3[W1](4)×1A1×2C
T
1 )),

(3)

where [W1](4) is the 4-mode unfolding of the convolu-

tional filters operating at the antenna elements dimen-

sion. The pre-output layer differs from the inner layers

because it does not apply upsampling. Hence, it can be

written as

ZL−1 = BatchNorm(ReLu(ZL−2 ×3 [WL−1](4))).

(4)

After that, the output layer is used to adjust the range of

values as well as the size expected in the output kL =

2Nant, such that

ZL = TanH(ZL−1 ×3 [WL](4)), (5)

where WL ∈ R1×1×kl−1×2Nant , and TanH is the

hyperbolic tangent activation function. Since the up-

samplig operations are pre-defined, the trainable param-
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eters reduce to the convolutional filters Wl and the

regularization parameters Rl of the batch normalization

operation. Therefore, Kl = {Wl,Rl} is the set of

trainable parameters of the lth layer, and K refers to

all the trainable parameters of the L layers.

C. Updating the weights of a UNN

The UNN is a model P : RN → RNsubNsp2Nant where

N < NsubNsp2Nant is its total number of parameters

used to map the input tensor Z0 to the output tensor ZL

as ZL = P (K,Z0).

The loss function of the UNN is the mean squared

error (MSE) which is computed as

L(K) = E{‖ P (K,Z0)−Hmes ‖2F }. (6)

The trainable parameters K are updated by I gradient

descent iterations such that

K∗ = argmin
K

L(K), and Hest = P (K∗,Z0). (7)

Therefore, Hest is the channel estimated for a single

UE by the UNN P when optimized for a specific Hmes.

Since there is no big data collection phase, UNNs do not

have generalization capabilities.

D. Transfer Learning for UNNs

Since the input tensor Z0 is fixed, the mapping

weights K∗ are only able to recover the considered

Hmes during the I gradient iterations. In addition, a

change in the construction of the random seed makes

the estimation task impossible. For instance, if we gen-

erate Z ′0 from a different seed number compared to

Z0, Hest 6= P (K∗,Z ′0) the output of the UNN P is

something different from Hest. Nonetheless, according

to [4], the priors are stored in K∗. Therefore, we propose

to apply transfer learning in order to take advantage of

the prior-knowledge for wireless channel estimation.

Let us consider two neighboring UEs with the same

number of antennas in a certain propagation envi-

ronment, H1,mes ∈ RNsub×Nsp×2Nant and H2,mes ∈

RNsub×Nsp×2Nant are the measured wireless channel for

each of them. In order to estimate the channel for H1,est

UE 1, the weights of the UNN estimator are initialized

from random values K1,0 and iterated such that

K∗1,0 = argmin
K1,0

‖ P (K1,0,Z0)−H1,mes ‖2F , (8)

and H1,est = P (K∗1,0,Z0). Here, we assume K∗1,0 is the

set of projection tensors which operates sequentially over

Z0 to reconstruct H1,est. Next, we propose to estimate

the channel of UE 2 H2,est as

K∗2,1 = argmin
K∗

1,0

‖ P (K∗1,0,Z0)−H2,mes ‖2F , (9)

where the weights are not initialized from random values

K2,0, but from the weights of its neighbor, UE 1 in this

case. Hence, H2,est = P (K∗2,1,Z0) and the number of

gradient iterations are the same for UE 1 and UE 2. This

implies that we are constraining the gradient descent to

search for a sub-space of solutions for UE 2 close to the

sub-space of UE 1 since

‖ K∗1,0 −K∗2,1 ‖F < ‖ K∗1,0 −K∗2,0 ‖F . (10)

Moreover, if H1,mes and H2,mes are correlated, the

channel gain obtained for H2,est(K∗2,1) = P (K∗2,1,Z0)

is higher than the gain of H2,est(K∗2,0) = P (K∗2,0,Z0)

as K∗1,0 is a prior to K∗2,1.

This proposal is aligned with transfer learning [8]

since we derive knowledge for a 1st task (estimate

H1,est) and use it to solve a 2nd task (estimate H2,est).

Since neighboring wireless channels are likely to be

correlated due to their propagation environment, the

transfer learning is very suitable. Moreover, even if a

channel estimation gain is not achieved, the distance

between the weights are reduced which can be further

leveraged by compression schemes when reporting the

UNN-estimator parameters.
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IV. SIMULTANEOUS CSI ESTIMATION FOR MULTIPLE

USERS

In this section, we propose to extend the UNN-

estimator to simultaneously estimate the channels of

M multiple neighboring UEs. Since neighboring UEs

tend to have correlated channels, a UNN with three

dimensional convolutional kernels can be optimized to

find the weights that best fit the channel measurements.

Despite the expansion of dimensions, the number of

trainable parameters would not explode if there is enough

correlation between the UEs considered. This is different

from transfer learning, as here we start from a random

initialization and output channels for M UEs simulta-

neously. In the following subsections, we present the

construction of the signals at the input and the output,

as well as the architecture and its weights optimization.

A. Data preparation

Similar to the UNN for single user CSI estimation, the

input signal is a random noise seed ZM
0 ∈ Rb×c×d×k0

where b = Nsp/2
n, c = Nsub/2

n, d = M/2n,

k0 is the number of hyper-parameters of the input, L

is the number of layers, and n = {1, 2, . . . L − 2}

is the number of layers with upsampling operation in

the given dimension. The input tensor ZM
0 is drawn

from a uniform distribution U(−a,+a) defined on the

interval [−a,+a] and kept fixed during the iterations

to update the gradient descent. The channels measured

for each mth UE Hm,mes ∈ RNsp×Nsub×2Nant , where

m = {1, 2, . . . ,M}, are concatenated as HM
mes ∈

RNsp×Nsub×M×2Nant .

B. UNN architecture for multiple UE CSI estimation

For estimating the CSI of multiple users, we propose

to use a three dimensional convolutional kernel and apply

trilinear upsampling to expand the UNN architecture

defined for single user CSI estimation as in Section III-B.

Hence, all the convolutional filters of the L layers

are WM
l ∈ R1×1×1×kl−1×kl where l = {1, 2, . . . L}.

Moreover, the upsampling operation of the inner layers

is defined by three one dimensional linear upsampling

matrices: Al ∈ R2lb×2l−1b, Cl ∈ R2lc×2l−1c, and

Dl ∈ R2ld×2l−1d. The output of the first inner layer

ZM
1 , for example, is

ZM
1 = BatchNorm(ReLu(

ZM
0 ×4 [WM

1 ](5) ×1 A1 ×2 C
T
1 ×3 D1)).

(11)

Here, we point out that depending on the design choice

of Nsp, Nsub and M , we can disable the upsampling

matrices accordingly. For instance, we should not con-

sider Al if just one time snapshot is available on the

channel measurement. Next, the pre-output layer is

ZM
L−1 = BatchNorm(ReLu(ZM

L−2 ×4 [WM
L−1](5))),

(12)

and the output layer is computed as

ZM
L = TanH(ZM

L−1 ×4 [WM
L ](5)). (13)

C. Optimization of the weights

Let us define the UNN mapping function as

Q : RN → RNsubNspM2Nant where N <

NsubNspM2Nant is the number of trainable parameters.

Hence, the output of the UNN structure with three

dimensional convolutional filters is ZM
L = Q(KM ,ZM

0 )

where the weights KM are initialized from random

values.

The MSE is used as loss function to compute the

gradient descent updates. After I gradient iterations, the

optimum parameters are

KM∗ = argmin
KM

‖ Q(KM ,ZM
0 )−HM

mes ‖2F , (14)

and the channel estimated for the M users is HM
est =

Q(KM∗,ZM
0 ).
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TABLE I

SIMULATION PARAMETERS FOR ILMPROP.

Parameter Value

Carrier frequency 2.6 GHz

Bandwidth 20 MHz

Nsub 64

Velocity [0.08, 0.14] m/s

Nsp 64

Total of UEs 7

Nant 36

V. SIMULATIONS AND RESULTS

As presented in Section II, we use IlmProp to simulate

a street canyon scenario as in Figure 1 where UE 1

is the closest to the building, and UE 7 is the most

distant. Table I presents the parameters we use to setup

the simulation. For the measured channels, we vary the

SNR in the range of 0 dB to 20 dB. The UNN chan-

nel estimators are simulated using Python and PyTorch

without any graphics processing unit (GPU). The results

are compared according to the normalized mean squared

error NMSE = E
{
‖Hest−Hsim‖2F
‖Hsim‖2F

}
.

First, we define the UNN structure to estimate single

UE CSI channels. We choose to have four inner layers,

each with number of filters k1:L−2 = 64 and both

upsampling matrices, Al and Cl, activated in all inner

layers. In addition, we use one pre-output layer with

kL−1 = 64 filters and one output layer with kL = 72

convolutional filters. Therefore, there are L = 6 layers

and the random noise seed Z0 ∈ R4×4×64 is drawn

from a uniform distribution as U(−0.15,+0.15) where

k0 = 64. Second, the trainable parameters K are ini-

tialized from random values and I = 25000 gradient

updates are performed to find the best K∗ for each UE,

separately. The design choice of the hyper-parameter k

and iterations I were made to fulfill our requirement of

CSI recreation, where the estimated channel should have

the same or a higher SNR than the measured channel.

The presented architecture for single UE CSI recreation

contains 25728 trainable parameters which correspond

to 17.45% of the coefficients in HC
mes ∈ C64×64×36.

Figure 3 presents the results for single UE CSI es-

timation where we apply the same UNN architecture

(L = 6, k1:L−2 = 64), with random initialization, for

the six UEs with varying SNRs. For reference, we also

plot the performance of the minimum mean squared error

(MMSE) channel estimator without any noise reduction

technique and the genie-aided MMSE estimator. From

Figure 3, we see that only UE 5 at SNR = 20 dB

is not able to meet the design requirement. This failure

as well as the variance in channel estimation gain at

SNR = 20 dB are mainly due to the different small

fading characteristics of each UE. Moreover, for low

SNRs (0, 5, 10 dB), there is a channel gain of about

10 dB for all the six UEs. This is due to the fact that

UNNs have a high impedance to fit noise [4]. Hence, the

design of the UNN-estimator should be done at high-

SNR values, where the noise levels are smaller, and it

can be reused for low-SNR values. This understanding is

compatible with the results in [7]. However, their authors

prefer to reduce the number of hyper-parameters (k) and

the number of iterations (I) when the measured SNR

degrades. Such design choice further reduced the chan-

nel estimation gain. Moreover, [7] could not study the

propagation environment effects on the UNN estimator

performance since it applied channel models based on

statistical distributions.

Figure 4 presents the results of transfer learning (TL)

for single UE CSI estimation at measurement SNR =

20 dB. For reference, we plot in blue the results for

each UE with random initialization. As UE 3 has the

best estimation gain, we take its weights as starting

point for optimizing the weights K∗2,3 and K∗4,3 for

UE 2 and UE 4, respectively. After that, we estimate
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Fig. 3. Simulation results for varying the measurement SNR and

NMSE of the estimated channel. The same UNN architecture and

number of gradient updates were used for all estimation tasks. For

reference, we plot the performance of channel estimation with the

MMSE estimator, without any noise reduction technique, and the genie

aided MMSE estimator.

Fig. 4. Results for the single-CSI estimation with transfer learning

and simultaneous CSI recreation for multiple UEs with channel mea-

surements at SNR = 20 dB.

UE 1 initializing from K∗2,3 and UE 5 initializing from

K∗4,3, and so on. This propagation of transfer learning

from UE 3 is plotted in red. We can see that the

transfer learning approach was successful to find a

solution K∗5,4−3 that provides CSI reconstruction within

our design requirements. As the channel gain for UE 6

estimated with transfer learning from UE 3 is smaller

than the estimation gain of UE 6 starting from random

initialization, we take UE 6 as a second basis for transfer

learning. The transfer learning results for UEs 5 and

7, and then UE 4 are plotted in pink. Hence, UE 6

Fig. 5. Frobenius norm difference of the convolutional filters between

each layer. Filters derived from random initialization are in complete

line, while filters from transfer learning are in dashed lines.

is a better transfer learning basis for UEs 5 and 7.

However, it does not provide advantage for UE 4. In

Figure 5 we plot the Frobenius norm of the difference

between the filters Wl in each layer when initialized

from random values (no TL) and when using initializa-

tion from the neighbor’s weights. Those results indicates

that equation 10 is correct, the derived sub-spaces (K∗2,3,

K∗4,3, and K∗7,6) where constrained to be close to the

initialization sub-spaces (K∗3,0 and K∗6,0). For reporting

the optimal weights, the worst case requires transmission

of all parameters per UE, which is only 17.45% of the

full channel coefficients. However, if the filters are closer

to each other, differential compression schemes can be

applied to further reduce the number of parameters to be

reported.

Based on the previous results, we set two candidate

UE-groups for simultaneous CSI recreation. We derive

a UNN architecture for estimating simultaneously UEs

2, 3 and 4, and a second architecture for UEs 5, 6

and 7. For UEs 2, 3 and 4, the UNN architecture has

L = 6 layers, 3D convolutional filters with k1:L−2 = 64,

and upsampling operation only in the subcarriers and

time snapshots dimensions (Dl is deactivated). Hence,

ZM
0 ∈ R4×4×3×64 is drawn from a uniform distribution

November 16, 2021 DRAFT
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U(−0.15,+0.15) and the number of gradient iterations

is I = 50000. The estimation error is presented in purple

at Figure 4. This architecture meets the design goal, but

provides less estimation gain than the UNN estimator

with transfer learning. However, since the convolutional

filters are of size one, the number of trainable parameters

for multiple CSI recreation of UEs 2, 3 and 4 is the

same as for single UE CSI recreation. This means that,

we achieve a higher compression rate as the number of

trainable parameters corresponds to just 5.82% of the

coefficients in HC 3
mes ∈ C64×64×3×36.

For multiple CSI recreation of UEs 5, 6 and 7, there

are L = 7 layers from which 4 are inner layers with

upsampling Dl deactivated, and 2 pre-output layers with

hyper-parameters k1:L−1 = 64. The random seed is

ZM
0 ∈ R4×4×3×64 and I = 100000 iterations for

gradient update. We plot the estimation result in Figure 4

using a green line. There is about 4 dB difference

between the multiple-CSI estimator and the transfer

learning estimator. Compared with the multiple-CSI

recreation for UEs 2, 3 and 4, we need more parameters

(k) and more iterations. Nonetheless, the architecture for

multiple-CSI recreation of UEs 5, 6 and 7 needs only

6.77% of the number of coefficients in HC 3
mes . We change

the number of iterations I = 150000 for the multiple-

CSI recreation of UEs 5, 6 and 7. The result is plotted in

light blue on Figure 4. There is a further 1 dB gain, but

the convergence is very slow (50k iterations to improve

just 1 dB). This indicates that the simultaneous channel

estimation for UEs 5, 6 and 7 is more challenging.

VI. CONCLUSION

In this paper we propose to use transfer learning to

take advantage of the prior knowledge stored in the UNN

structure. Moreover, we present a UNN architecture for

simultaneous CSI estimation for multiple UEs which

can further reduce the number of trainable parameters.

In addition, we show the compression benefits of UNN

structures which can further leverage low-overhead CSI

reporting. Our results show that the UNN structure is

able to inherently learn the environment characteristics

when fitting the measured channels. By transfer learning,

we are able to access this prior knowledge and have

a higher channel estimation gain. Due to the channel

correlation between neighboring UEs, we can simulta-

neously estimate CSI for multiple UEs with a 3-d kernel

UNN architecture that reduces the number of trainable

parameters at the price of smaller channel estimation

gain. Future work may consider the use of compression

schemes on top of UNN structures to increase the

compression rate.
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