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Abstract—Recently, the concept of open radio access network
(O-RAN) has been proposed, which aims to adopt intelligence
and openness in the next generation radio access networks
(RAN). It provides standardized interfaces and the ability
to host network applications from third-party vendors by x-
applications (xAPPs), which enables higher flexibility for network
management. However, this may lead to conflicts in network
function implementations, especially when these functions are
implemented by different vendors. In this paper, we aim to
mitigate the conflicts between XAPPs for near-real-time (near-
RT) radio intelligent controller (RIC) of O-RAN. In particular, we
propose a team learning algorithm to enhance the performance
of the network by increasing cooperation between xAPPs. We
compare the team learning approach with independent deep
Q-learning where network functions individually optimize re-
sources. Our simulations show that team learning has better
network performance under various user mobility and traffic
loads. With 6 Mbps traffic load and 20 m/s user movement speed,
team learning achieves 8% higher throughput and 64.8% lower
PDR.

Index Terms—Team learning, O-RAN, deep Q-network

I. INTRODUCTION

The demand for mobile communications has been contin-
uously growing. With the emergence of new applications,
e.g., virtual reality and massive machine type communications,
the data traffic volume has reached an unprecedented level.
In addition, these new applications require better quality
of service with agility, intelligence and flexibility. In order
to meet the increasing demands while keeping capital and
operational costs low, architectural reformation is needed to
adopt openness and intelligence in the radio access network
(RAN). Therefore, the recent concept of open radio access
network (O-RAN) is proposed in [1f]. In addition to O-RAN
there might be other dissaggregated, virtualized, multi-vendor
RAN architectures in the future.

The O-RAN architecture is designed in a layered and
modular fashion, which makes network service more flexible
and cost effective. The concept of x-application (xAPP) refers
to the network control and optimization applications provided
by third-party users. In O-RAN architecture, the near real-time
(near-RT) radio intelligent controller (RIC) serves as a safe and
reliable platform for xAPPs, providing standardized interfaces
and hardware support to ensure compatibility. However, in
practice, placing multiple XxAPPs, with overlapping objectives,
into the same RAN may lead to conflicts. Sometimes these
conflicts might be subtle and hard to detect as the xAPPs
are very likely to be developed by different vendors. There

are mainly three kinds of conflicts between these xAPPs,
namely direct conflicts, indirect conflicts and implicit conflicts
[2]. For instance, a power allocation XAPP may allocate a
high transmission power to one resource block. But at the
same time, a radio resource allocation xAPP may allocate
this resource block to a user with a small traffic load. These
conflicts will waste the scarce bandwidth resource and increase
power consumption, thus it is critical to handle such conflicts.

To this end, we propose a team learning based algorithm to
eliminate conflicts between xAPPs in O-RAN. In particular,
we define a team learning method to simultaneously handle
the power and radio resource allocation xAPPs. Note that,
our technique is not limited to O-RAN, the developed team
learning principles also apply to future multi-vendor RAN
architectures. Several prior works have studied the joint op-
timization of power allocation and radio resource allocation.
[3]] proposed a federated learning algorithm to jointly optimize
transmit power and radio resource allocation for vehicular
networks. In [4], a reinforcement learning based method is
proposed for joint power and radio resource allocation in 5G.
In [3]], a joint power allocation and radio resource allocation
algorithm is proposed for multi-user beam forming. These
existing studies assume a traditional RAN architecture where
both power allocation and radio resource allocation is done by
the algorithms developed by a single vendor. In O-RAN, or
other future RAN architectures, network functions of multiple
vendors might be used together.

Our work is different than existing works by a more realistic
O-RAN architecture and a novel team learning technique that
can be used in any multi-vendor environment. In the remaining
parts of the paper, we will refer to O-RAN only as an existing
example of a multi-vendor RAN. Firstly, in O-RAN, different
network resources, such as power and radio resources, are
generally managed by different XAPPs of various vendors.
Compared with the existing joint resource allocation scheme,
the xAPP based architecture enables higher flexibility for
network management. Secondly, we propose a novel team
learning based algorithm. Team learning is applicable when
a team of agents are in the same environment and share part
of the observational information [6]. They learn and choose
actions in a distributed manner and cooperate for the same
team goal. Compared with most existing multi-agent learning
algorithms, members in team learning have a higher degree of
independence.

In this work, we consider different XAPPs as members of



a team with the same goal of maximizing the throughput of
the system. Firstly, we designed two xAPPs, namely power
allocation and radio resource allocation, as two agents and
both of them use deep Q-network (DQN) to make decisions.
Then, we assume agents can exchange information with each
other, and they make decisions based on the environment and
other agents’ intention. By information exchanging, agents can
cooperate better as a team and avoid conflicts over the control
of the network. Finally, experimental results show that using
our team learning algorithm, we can achieve better network
performance. Our proposed team learning method presents
8.8% higher throughput and 64.8% lower packet drop rate
under 6 Mbps traffic with a user moving speed at 20 m/s.
The rest of this paper is organized as follows. Section
Ej introduces related works, and Section @] defines system
model. Section analyzes the main architecture of team
learning based xAPPs interaction. The proposed team learning
algorithm is defined in Section [V] Experimental results are
shown in Section [VI] and Section concludes the paper.

II. RELATED WORKS

In recent years, there has been a large number of studies
applying machine learning (ML) methods to wireless commu-
nications [7]]. For example, in [8], a DQN-based algorithms
is proposed for power allocation in wireless networks. [9]]
proposed an correlated Q-learning algorithm to optimally
allocate resources for network slicing. In [10], the authors
designed an algorithm to learn the optimal handover control
strategy by using deep neural networks (DNNs). In [11]], a
framework is defined to deploy artificial intelligence (AI)
based algorithms in virtualized RANs. These algorithms only
consider optimizing a single wireless network function and do
not take into account the impact of other functions.

Furthermore, there are works that consider the joint alloca-
tion of several resources. In [4]], the authors proposed a rein-
forcement learning-based algorithm to jointly optimize power
and radio resource allocation for ultra-reliable low latency
communications in 5G. [12] jointly optimized the radio and
cache resource allocation by transfer learning based method.
[13] studied joint power allocation and channel assignment
for non-orthogonal multiple access network based on deep
reinforcement learning and attention-based neural network.
These papers have achieved good results in their respective
contexts, but they are not applicable to conflict mitigation
in O-RAN. In the O-RAN architecture, xAPPs are generally
managed by different vendors. It maintains a higher degree
of independence in the learning process with only necessary
information sharing. On the other hand, above algorithms are
often implemented by joint training or shared parameters.
However, in the O-RAN architecture, different xAPPs may use
heterogeneous frameworks and different learning parameters,
which makes existing algorithms not applicable.

III. SYSTEM MODEL

In this paper, we consider a downlink orthogonal frequency-
division multiplexing cellular system with N base stations
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Fig. 1. System model.

(BSs) serving K users simultaneously. The considered wire-
less system architecture is shown in Fig. [T} BSs are controlled
by the near-RT RIC and non real-time (non-RT) RIC of O-
RAN architecture. Radio controller of O-RAN architecture
is divided into two parts, near-RT RIC and non real-time
(non-RT) RIC. Near-RT RIC is used for RAN control and
optimization. The role of the non-real-time layer is to provide
guidance, as well as ML models to support near-RT RIC
functions [[14]. Near-RT RIC can communicate with BSs
through interface E2 and non-RT RIC can communicate with
BSs by interface O1. Interface Al is used for communications
between two RICs.

A resource block refers to the smallest unit of resources that
can be allocated to a user and it is composed of 12 subcarriers.
In our model, several consecutive resource blocks is bundled
as a resource block group (RBG), and each BS has M RBGs
respectively. Here we consider the RBG as the smallest time-
frequency resources to be allocated [4]. At time ¢, the list
of users associated to BS n can be described as H;', where
> men [H{'| = K. The transmission power allocated to the
m'" RBG of BS n can be described as P;"™.

The signal interference noise ratio (SINR) between BS n
and user k on RBG m at time ¢ is described as 7,""*. It can
be formulated as:
an,m,k‘gn,kpn,'m

Zn’eNﬂq,’;én Zk’eK”/ an/’m,k/gn/’kpn/,m + 0.27

(D
where ™™ * is a binary indicator that denotes whether BS n
allocates RBG m to user k. g™* denotes the channel coeffi-
cient between BS n and user k. The transmission capacity of
BS n on RBG m can be formulated as:

n,m,k __
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where B,, denotes the bandwidth of RBG m. We assume
user traffic follows Poisson arrivals with a mean arrival rate
A and pending traffic is queued in a transmission buffer with
limited buffer size. If the length of queuing data is longer
than the buffer size, then the extra data will be discarded. The
transmission rate of BS n on RBG m can be formulated as:

R _ {Cn,m’ oM < ZkeK an,m,kLk (3)
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where T' denotes the length of time slot and L* denotes the
amount of remained data of user & in the transmission buffer.
We consider user mobility in our system model. The user
keeps a constant velocity and changes moving directions in
each time slot with some probability.
Finally, the objective of the system is to maximize the total
transmission rate for all BSs. It can be given as:

n,m
- . ZneNYmem R,
o gk

s.t. — ,
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where P,,;, and P,,,, denote the maximum and minimum
transmission power.

IV. TEAM LEARNING BASED XAPPS MANAGEMENT IN
O-RAN

A. xAPP Interactions without Team Learning

When we deploy two intelligent xAPPs in the near-RT RIC
layer of O-RAN architecture, conflicts may arise if they have
overlapping objectives. In the absence of team learning, the
system that contains two xAPPs is shown in Fig. 2] Firstly,
the intelligent xAPP A and B observe states from system and
select actions accordingly. Then xAPP A and B simultaneously
apply actions to the system, causing changes to the system that
produces a reward and this reward is given back to xAPP A
and B, respectively. The experience of XAPP A and xAPP B
will be recorded in their own experience relay memory and
used for DQN model training. Finally, the DQN module will
generate strategies about action selection for two xAPPs.

In Fig. |Z[, when an XAPP acts, it does not take into account
the actions of other xAPPs. The selected action may be the
optimal choice in its own view, but the performance of other
xAPPs may be affected. For example, xAPP A may assign a
high transmission power to a RBG. At the same time, XAPP B
may reassign this RBG to user with a small traffic load. When
xAPP A and xAPP B take actions together, the high transmis-
sion power does not bring high throughput as expected by
xAPP A, but increases the power consumption and generates
more interference. The goal of our team learning algorithm
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is to eliminate conflicts between actions from different team
members.

B. xAPP Interactions with Team Learning

In the Fig. 2] each xAPP only observes the state from the
environment. However, in team learning based architecture, the
xAPPs will include the action of other xAPPs in its own state,
which means they can learn to avoid conflicts and cooperate
better. In this paper, we propose an information exchange
based team learning architecture, which is shown by Fig. [3]
Different than Fig. 2] xAPP A keeps two experience replay
memories and trains two DQNs. The first DQN is used to
select a first-round action based on its own observation from
environment. This action will be shared with XAPP B, and
xAPP B selects its own action based on both the observation
from environment and first-round action from xAPP A. Then
the action of xAPP B will feed into XAPP A and will help
xAPP A make a second-round action with the second DQN.

V. TEAM LEARNING BASED XAPPS MANAGEMENT
ALGORITHM

A. Deep Q-learning

In this paper, two xAPPs, power allocation and radio
resource allocation, are both implemented by DQN. Q-learning
is a popular value-based and model-free reinforcement learn-
ing algorithm. The core idea is that an agent uses a table of
Q-values to represent the cumulative reward by taking a certain
action a under a certain state s to maximize its expected long
term reward. It can be formulated as:

Q(s,a) = Elr' +9Q(s", a"Y)|s' = 5,a" =a], (5)

where E[.] refers to the expectation operator. 7' refers to the
reward at time ¢. «y is the discount coefficient.

However, Q-learning suffers from long convergence time
when faced with a huge state-action space, and consequently
DQN is proposed. DQN uses Deep Neural Networks (DNNs)
to estimate the Q-values and updates the parameters of DNNs



with a stochastic gradient descent algorithm, which can be
formulated as:

01t = 0" + afrt + ymazr Q(s', a1 0%)
a/
- Q(St> at; et)]vQ(St7 at; 6t)7
where 0 is the parameters of DQN. VQ(s!,a’;0") is the
gradient. During the simulation, the current state, action, next

state and reward are recorded as (s!, a’, s'™1, rt). The recorded
data is used for experience replay of DQN training.

(6)

B. Power Allocation xAPP

In this paper, we define two DQN models for power
allocation. The first model is to determine the first-round
action of power allocation, which is used to assist decision
making of radio resource allocation. The state of this model is
only related to the environment. The markov decision process
(MDP) for the first DQN model of power allocation XAPP is
given below:

o State: State includes transmission rate, transmission
power, channel state information (CSI) and the length
of queued data in the buffer [8]. The state of an agent is
given as:

Sit=A{Ty" RS p™ L In € N} (7N
The T

n,m

given by:

is the logarithmic normalized CSI, which is
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L;"™ is the length of queued data in the buffer, which
can be given as:

LP™ = Spegap™r Lk ©)

o Action: In our model, we divide the transmission power
into B levels according to the maximum and the mini-
mum transmission power. The action is to choose a power
level for each RBG of each BS, which is given as:

Praz — P
n,m — Pmln’ Pm,Ln max man
ay { + B-1
Al =A{a""n € N}
o Reward: The reward is defined as the total throughput
since our objective is to improve throughput:

300y Pmaa:} (10)

n,m
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Y

Where R;™" is the transmission rate of BS n on RBG
m.

The second model is used to determine the power allocation
action for the second-round. This action is the actual action
to be performed by power allocation. The state of this model
is related to the environment and the information passed by

the radio resource allocation. The MDP for the second DQN
model of power allocation is given below:

« State: The sate is given as:

’ ! ’
m __ n,m n,m n,m
St - {Ft 7Rt » Dy )

F;LI,TVL/7 R;L/,'rn/,p;n/,'m/’ L;L/,'rn"n c N} (12)
where m/, n’ is given as:
m',n' €
{m"e M,n" € N, o}, 7" Pk e {a™F =11}
13)
a7 " is obtained from the intended action of radio

resource allocation model.
e Action and Reward: The definition of action and reward
of the second model is the same as the first model.
The first DQN is used to select the intended action which
will be informed to XAPP radio resource allocation. The
second DQN is used to select the actual action.

C. Radio Resource Allocation xAPP

In radio resource allocation, each BS selects and distributes
resource blocks among its own associated users, and we define
a BS as an agent. We only define one DQN for radio resource
allocation because it only needs one round action. The state of
this model is a combination of observation from environment
and information from power allocation. The MDP is defined
by:

« State: the state of radio resource allocation agent includes

transmission rate, transmission power, CSI and the length
of queuing data in the buffer. The state is given as:

n __ n,m,krxn,m _nmk pnm _nmk nm
¢ ={qy Iy, ay Ry, ay t

ol 7Lt7 ,pH’_17|m€M7kEK}7

where p;'}"}" is obtained from the intended action of power
allocation model. Since the radio resource allocation
policy of a BS is only related with its associated users,
we only consider the features related to these users. So
we add indicator o/""™* in the state.

e Action: The action of BS n is to choose a user by:
a?’m = {ko,kl, ---7kD—1‘kd S th}

) 15
A ={a}"™"|m € M} (15

e Reward: The reward of radio resource allocation is the
total throughput of each base station, which is given as:

Tt = EmeMEneNR?m (16)

D. Implementation of team learning in O-RAN architecture

Our proposed scheme of xApp coordination can be imple-
mented as an overlay either in the RT RIC or non-RT RIC, or
split between these two. According to the O-RAN architecture,
model training can be instantiated in the non-RT RIC layer by
Al servers such as Acumos Al [15] while trained models are
deployed in the near-RT RIC layer via containerized images



TABLE I
SIMULATION SETTINGS

Parameter Value

4 Base Stations with 1 kilometre inter-site

Networking Environment distance, 30 users.

Propagation B =120.9+37.6 log10(d)+10 logl10(z) dB

20MHz bandwidth, 100 resource blocks,

Carrier configuration 12 subcarriers per resource block, 12 RBGs.

Maximum transmission power of 38 dBm,
minimum transmission power of 1dBm
Additive white Gaussian noise = -114dBm.

PHY configuration

Poisson distribution with varying load

Traffic model between 3-6 Mbps.

Simulation time 20,000 time slots. 1 time slot is 100ms.

to handle action selection [16]. The RICs and O-CU/O-DU
communicate by bi-directional open interfaces (Al and Ol,
respectively). In particular, in this work, non-RT RIC layer can
obtain the information of power and radio resource allocation
xAPPs and train their DQN models by AI servers. Then the
trained models can be used by the xAPPs in the non-RT RIC
layer for action selection.

VI. NUMERIC RESULTS
A. Simulation settings

Tablell] includes networks settings of our simulations. We
use Python simulation platform and the reinforcement learning
and team learning algorithms are based on the deep-learning
package TensorFlow. The algorithm is simulated with 4 BSs
and 30 users. The amount of data generated by each user per
time slot follows a Poisson distribution with the central value
of the distribution varying from 3 Mbps to 6 Mbps. The users
move with a constant speed during the simulation, and the
probability of changing direction is 0.3 in each time slot.

We use two four-layer neural networks in the DQN for
power allocation and radio resource allocation. According to
the dimension of states and actions, we set the neuron numbers
of two hidden layers of power allocation model as 256 and 128
and the neuron numbers of radio resource allocation model as
512 and 256. The discount factor is set as 0.2. The initial
learning rate of both power allocation and radio resource
allocation is set as 0.001. We run 20000 time slots in each
experiments and apply an adaptive e-greedy learning strategy
with an initial exploration rate of 0.3 [17].

We compared our proposed team deep Q-learning (TDL)
algorithm with independent deep Q-learning (IDL) algorithm,
which is shown in Fig. 2] In IDL, xAPPs only observe
information from the environment and do not communicate
with each other. We change the traffic load of each user
between 3-6 Mbps and the user moving speed between 0-30
m/s and compare the performance of TDL and IDL in different
scenarios.

B. Simulation Results

In this section, we compare the convergence as well as the
throughput of all BSs and the packet drop rate (PDR) of the
system for TDL and IDL.

Fig. ] shows the convergence curves of TDL and IDL during
the learning process and compares the system throughput with
TDL and IDL at 4 Mbps traffic load when the speed of users
is 20 m/s. We can observe from Fig. [ that the throughput with
TDL is more stable and higher than that with IDL during the
whole simulation process. When the simulation performance
is stabilized, the system can achieve a 4.6% higher throughput
with TDL.

Fig. 5] and Fig. [f] show the system throughput and PDR
when the speed of users is 20 m/s and the average traffic
load of users changes from 3 Mbps to 6 Mbps. In Fig. [5}
we observe that the system throughput with TDL is higher
than that with IDL. Correspondingly, we can also see from
Fig. [f] that the PDR with TDL is lower than that with IDL.
The gap between them becomes more noticeable when the
traffic load becomes higher. This is because when the traffic
load is relatively low, less data needs to be transmitted, and
even a poorer allocation policy can handle the transmission
task. When the traffic load is high there is more data to be
transmitted, hence the advantage of a good allocation policy
is more significant. When the traffic load is 6 Mbps, the TDL
achieves 8.8% higher throughput and 64.8% lower PDR than
IDL.
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Fig.|7|shows the system throughput when the average traffic
load of users is 4 Mbps and the speed of users changes from
0 m/s to 30 m/s. Fig. [7] presents that the system throughput of
TDL is higher than that IDL especially when the user speed
is high. This is because in the case of fast moving users, the
allocation strategies will change more frequently, and there
will be more conflicts between XAPPs. As a result, cooperation
becomes more important. Note that, the mobility of users are
limited in a circular region therefore mobility doesn’t cause
handover in our experiments. When the moving speed of users
is 30 m/s, the TDL achieves 5.0% higher throughput than IDL.

The above results show that for different traffic loads and
user speeds, TDL results in higher throughput and lower PDR
compared to IDL.

VII. CONCLUSION

In this work, we proposed a team learning algorithm to
mitigate conflicts between xAPPs in the O-RAN architecture.
This scheme is also applicable to other multi-vendor RANs of
the future. The core idea is to make XAPPs share action infor-
mation they intend to take. Then the intended actions of other
xAPPs will be used as a part of the state for DQN training and
the selection of actions. We used two xAPPs, power allocation
and radio resource allocation, as examples to explain how the

proposed team learning algorithm is specifically implemented
and applied to the O-RAN architecture. Simulation results
show that our proposed team learning algorithm can achieve
higher system throughput and lower PDR compared with cases
where team learning is not applied. In the future, we will
consider other xAPPs and extend our algorithm to use cases
with more than two xAPPs.
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