
A Reinforcement Approach for Detecting P2P
Botnet Communities in Dynamic Communication

Graphs
Harshvardhan P. Joshi and Rudra Dutta

Department of Computer Science, North Carolina State University
Raleigh, NC 27695-8206, USA

Email: {hpjoshi, rdutta} @ncsu.edu

Abstract—Peer-to-peer (P2P) botnets use decentralized com-
mand and control networks that make them resilient to dis-
ruptions. The P2P botnet overlay networks manifest structures
in mutual-contact graphs, also called communication graphs,
formed using network traffic information. It has been shown
that these structures can be detected using community detection
techniques from graph theory. These previous works, however,
treat the communication graphs and the P2P botnet structures
as static. In reality, communication graphs are dynamic as
they represent the continuously changing network traffic flows.
Similarly, the P2P botnets also evolve with time, as new bots
join and existing bots leave either temporarily or permanently.
In this paper we address the problem of detecting such evolving
P2P botnet communities in dynamic communication graphs.
We propose a reinforcement-based approach, suitable for large
communication graphs, that improves precision and recall of P2P
botnet community detection in dynamic communication graphs.

I. INTRODUCTION

Botnets are used for malicious purposes, such as spam and
denial of service, with huge economic costs to the society.
Decentralized command & control structures of peer-to-peer
(P2P) botnets make them more resilient to disruptions. How-
ever, these P2P overlay structures appear in communication
graphs that are built from network flow meta-data, and can be
detected using community detection techniques from graph
theory. This is a promising approach for P2P botnet detection
because it can work independent of device hardware and
software, and is resilient to obfuscations employed by the
botnets.

Several previous works have proposed various community
detection based P2P botnet detection algorithms [1]–[5]. The
communities detected by such algorithms correspond well
with P2P botnets. However, these works assume a static
communication graph, such as a snapshot graph built from
network traffic flows observed within a window of time.
Given that the network traffic flows continue outside that
time window, any community structure analysis in another
time window requires another graph snapshot. Along with
the differences in connections (or edges) between nodes
(or vertices) in these snapshot graphs across different time
windows, new nodes will appear and existing nodes disappear
as new communication endpoints become active or inactive in
each time window, as shown in Fig. 1.

Bots

Snapshot A Snapshot B Snapshot C

Time
tA tB tC

Fig. 1: Dynamic communication graphs and evolving P2P botnet
communities. Each of the snapshot graphs associated with a time
window contribute to the graph in the time frame of interest.

How communities in a communication graph relate to
each other across such sequence of snapshots is an open
question. More directly relevant to the problem of P2P botnet
detection, how P2P botnet communities relate to each other
across communication graph snapshots can determine the
effectiveness of a botnet community detection algorithm over
a longer time period. These questions are addressed in this
paper.

We make the following contributions in this paper:

• formulate the problem of detecting evolving P2P botnets
in dynamic communication graphs,

• propose schemes to leverage temporal information in
the dynamic communication graphs based on reinforcing
community memberships, and

• evaluate the proposed schemes with dynamic botnet and
communication graphs built from real-world traffic data.

In addition, while several works have proposed to use tem-
poral characteristics of traffic like flow-duration, periodicity,
or inter-packet arrival times to detect P2P botnet traffic, such
characteristics can potentially be obfuscated by botnets to
avoid detection. Our proposed approach instead uses a coarser
temporal trend, that the P2P botnet community is likely to be
more stable over time since it needs to maintain connectivity
through such ad-hoc overlay network.

ar
X

iv
:2

20
3.

12
79

3v
1

 [
cs

.N
I]

 2
4

M
ar

 2
02

2

II. BACKGROUND AND RELATED WORK

There have been several works on botnet detection using
botnet communication patterns, including the temporal infor-
mation such as inter-packet interval and the periodicity and
duration of flows. However, to the best of our knowledge,
this is the first work that addresses the P2P botnet community
detection in dynamic communication graphs.

There have been several works in the graph theory and
complex networks fields on community detection in dynamic
graphs. These works usually focus on characterizing or track-
ing communities as they evolve. A comprehensive overview
and survey of community detection in graphs, including in
dynamic graphs, has been presented by S. Fortunato [6].
An online graph clustering algorithm is presented by Zanghi
et al. [7]. This algorithm however has time complexity of
O(N2), and thus is not suitable for very large graphs with mil-
lions of vertices. Multi-layered graphs can be used to represent
dynamic or temporally changing graphs. The stochastic block
models have been used to infer community structure in multi-
layered graphs including dynamic graphs by T. P. Peixoto [8].
Community detection in multi-layered dynamic graphs using
a modularity optimization approach is presented by Mucha et
al. [9]. Suitability of these methods for P2P botnet detection
in very large communication graphs has not been studied.

III. PROBLEM FORMULATION

In this section, we formalize the problem of detecting
evolving P2P botnets in dynamic communication graphs. First,
we define a model of discrete time intervals for capturing
temporal changes to communication graphs. Then, P2P botnet
detection is formally defined for a single communication
graph, and for a sequence of dynamic communication graphs.

A. Discrete Time Model of Dynamic Communication Graphs

In order to simplify the continuous changes in communi-
cation traffic flows on a continuous time scale, we propose
a discrete time model of dynamic changes to communication
graphs, shown in Fig. 2 and define some relevant terms related
to dynamic communication graphs.

Definition 1: A time slice ti is an indivisible period of
time ∆t in which communication traffic flows are observed.
All communication flows within a single time slice is assigned
the same temporal value ti.

A time slice is uniquely associated with a temporal value
on communication traffic flows, and the resulting edges in a
communication graph. For consistency, we use the time at the
start of a time slice as the temporal value associated with the
time slice. The discrete duration of time ∆t is the difference
between the temporal values of two contiguous time slices,
i.e., ti+1 − ti = ∆t. Unless stated otherwise, each time slice
is of the same time duration ∆t.

Definition 2: A time window ωm is a period of
time consisting of one or more contiguous time slices
tm, tm+1, . . . , tn−2, tn−1 in which communication traffic
flows are observed.

t0 t1 t2 ti tn…

∆t

∆⍵ = 𝑖∆t

ti+1 … tjti+2

∆⍵ = (𝑗 − 𝑖)∆t

∆t

…..

time
slice

time window

time frame

⍵0 ⍵i ⍵j

time

Fig. 2: Discrete time model for analyzing dynamic communication
graphs.

The duration ∆ω of the time window ωm is the difference
between the temporal values of its first time slice and the
first time slice of the next time window. That is, ωn − ωm =
tn − tm = ∆ω. Given time slices of equal duration ∆t, the
time window length, as a discrete measure of its duration, is
given by the number of time slices within the time window,
or |∆ω| = n−m.

Definition 3: A time frame Ti is a period of time,
consisting of one or more contiguous time windows
ωi, ωi+1, . . . , ωj−2, ωj−1, that is of interest for P2P botnet
detection.

We limit our inquiry into the composition of the P2P botnet
to a predefined time frame, and for the purposes of this
discussion, the structures of P2P botnets in two distinct time
frames are considered to be independent.

B. P2P Botnet Detection in Dynamic Communication Graphs

Next, we define P2P botnet community detection in the
context of evolving botnet community and dynamic commu-
nication graphs.

In a time window ωi, and the corresponding communication
graph Gi = (Vi, Ei), the P2P botnet C&C communication
manifests as a subgraph GPi

= (VPi
, EPi

), such that, VPi
⊆

Vi and EPi
⊆ Ei. The edges EPi

represent the P2P botnet
C&C traffic observable during the time window ωi, and the
vertices VPi represent the P2P bots participating in the P2P
C&C traffic during that time window. Thus, the subgraph GPi

is an edge induced subgraph of the communication graph Gi

from the edges EPi
corresponding to the P2P C&C traffic

during the time window ωi.
P2P botnet community detection is a partitioning Ci, also

called a set of communities, of a given communication graph
Gi associated with the time window ωi, and containing the
P2P botnet subgraph GPi

. In the context of P2P botnet
detection, the partition Ci = {c1i , c2i , . . . , cki

} is an ordered
set, with communities c1i , . . . , cki

ordered by the number of
P2P botnet vertices they contain, i.e., cri ≤ csi if and only if
|cri ∩ VPi | ≤ |csi ∩ VPi |. The P2P botnet community is the
community cPi

that is the maximum set of the partition Ci,
or, |cPi

∩ VPi
| ≥ |cri ∩ VPi

|,∀cri ∈ Ci.
In a time frame Ti, consisting of n time windows, there

are n communication graphs Gi, Gi+1, . . . , Gn−1, with the
corresponding P2P botnet subgraphs GPi

, GPi+1
, . . . , GPn−1

.
The set of P2P bots for this time frame is the union of all P2P

bots from each time window of the time frame, i.e., VPTi
=⋃n−1

j=i VPj
. Note that the P2P botnet nodes VPTi

are a subset
of all the network nodes visible within the time frame VTi

.
The problem of detecting P2P botnet communities in dy-

namic communication graphs can be defined as partitioning
the set of visible network nodes VTi such that the P2P botnet
community cPTi

is the maximum subset of the P2P botnet
nodes VPTi

.
This paper addresses the problem of how to partition the

communication graphs in each time window into partitions
Ci, Ci+1, . . . , Cn−1, such that the corresponding P2P botnet
communities cPi

, cPi+1
, . . . , cPn−1

are maximum size subsets
of P2P botnet nodes VPi

, VPi+1
, . . . , VPn−1

.

IV. USING TEMPORAL INFORMATION IN DYNAMIC
GRAPHS

A. The Naive Approach

A simple, and perhaps naive, approach to the analysis of
communication graphs from dynamic network communication
traffic is to divide the time frame of interest into disjoint and
independent time windows, ignoring the temporal information
available within the time window. We call the graphs follow-
ing this approach as snapshot graphs, defined as

Definition 4: A snapshot graph Gi = (Vi, Ei) is a
simple and undirected communication graph that represents
the communication flows within a single time window ωi.

A simple graph is a graph with no self loops, i.e., edges
with a single vertex as both its endpoints, or multiple edges,
i.e., more than one edge between any pair of vertices. A
snapshot graph does not distinguish between edges contributed
by individual time slices ti . . . tj within the time window. The
communication graphs used in previous works such as [1]–
[5] are snapshot graphs. In addition, they do not have any
edge attributes with temporal information. The previous works
have shown that P2P botnet community detection works well
in such snapshot graphs. However, it is not clear that this
snapshot-based approach is the best approach at P2P botnet
community detection, within the time window given temporal
information available for each time slice, or for the entire time
frame.

B. Reinforcement Approach

Irrespective of how well the naive approach detects the
evolving P2P botnet communities, it certainly ignores the
temporal information available within each time window.
Since the temporal information relates to the traffic exchanged
between network nodes, it can be added as an attribute to the
edges in the communication graphs. There are several ways
to embed the temporal traffic information as an edge attribute,
for example, as the duration of the underlying network flow
that the edge represents, or the sum of duration of all active
flows between the node pair within the time window, or as a
sequence of time intervals during with the flow is active.

1) Using Temporal Edge Weights: A simple improvement
to the naive approach is to assign a weight wei to the edges
ei of the snapshot graph such that an edge has more weight
if it appears in more time slices within the given window.

Definition 5: A composite graph is an undirected commu-
nication multi-graph that represents the communication flows
within a single time window, that is a union of snapshot graphs
associated with each time slice in the window.
This multi-graph, i.e. a graph with multiple edges between a
vertex pair, can be simplified by combining multiple edges
between a vertex pair into a single edge, with the sum of
weights of original edges as the weight of the combined edge.
Formally, the weight wij of an edge eij = (vi, vj) connecting
vertices vi and vj in the composite graph Gm = (Vm, Em) for
time window ωm, is the sum of weights of all edges between
vi and vj in the constituent time slices tm, tm+1, . . . , tn−1.

The previously proposed community detection algorithms
can be used on such composite graphs with edge weights, as
the algorithms either incorporate edge weights for community
detection, or they can be modified to use edge weights. The
composite graph gives more structural weight to long-running
traffic flows, or contact between node pairs that communicate
with each other frequently over longer periods of time.

2) Using Community Membership: The consensus cluster-
ing approach proposed by Lancichinetti and Fortunato [10]
uses the community membership information collected re-
peatedly, over the same time slice or across time slices, to
build a consensus matrix as a representation of community co-
membership, which in turn becomes an adjacency matrix of a
consensus graph. The communities identified in this consensus
graph can be considered to be the communities of the original
dynamic graphs. However, due to the dense structure of the
consensus graphs they can no longer be represented efficiently
as adjacency list but rather as an adjacency matrix. In addition,
the community detection on these denser graphs (large |E|)
is significantly slower as even the faster community detection
methods have a complexity in the order of O(|E|log|V |).
Hence, this approach is not suitable for very large graphs with
millions of vertices.

Instead, we propose an approach inspired by the consensus
clustering that is more suitable for very large graphs. The com-
munication membership information from snapshot graphs of
individual times slices can be used to reinforce existing edges
in the communication graphs, by building a reinforced graph
as below:

• Partition the time slice graph Gti into communities Cti ,
for each time slice ti in the time window ωj

• Increase the weight of community internal edges (edges
with both vertices in the same community) in each time
slice graph by a reinforcement factor γ.

• Build a composite graph Gj for the time window ωj

using these reinforced time slice graphs.

Definition 6: A reinforced graph is an undirected commu-
nication multi-graph that represents the communication flows
within a single time window, whose edges are reinforced by

the community membership information from each of the time
slices in the window.
Again, just like the composite graph, multiple edges between a
pair of vertices in the reinforced graph are simplified such that
the combined edge has a weight equal to the sum of weights
of the multiple edges. The community detection is repeated
for this reinforced graph and the resultant communities are
considered to be the communities for that time window.

The communities detected using the reinforced graph are
likely to be communities that manifest their community struc-
ture across various time slices in the time window. Since we
hypothesize that the P2P botnet communities are likely to be
more stable than other communities in the communication
graphs, the reinforcement approach outlined here is likely to
improve the accuracy of detecting P2P botnets. Our proposed
approach keeps the reinforced graph sparse, and thus uses
more memory efficient adjacency list representation of the
graph and also results in faster community detection.

V. EVALUATION

A. Experiment Methodology

Using an initial seed list of peers of a botnet and the reverse
engineered P2P protocol for that botnet, the P2P botnet can be
crawled by repeatedly requesting a list of neighbors or peers
from each peer until no new peers are found. This information
can be used to reconstruct the topology of the P2P overlay
network used by the botnet. We use a dataset of P2P graphs
reconstructed from crawling the Sality P2P botnet [11]. The
data contains snapshots of reconstructed Sality P2P network
graphs based on hourly crawling data over a period of 24
hours. These hourly P2P botnet graphs are considered to be
the snapshot graphs for hourly time slices.

For background communication traffic data, we use passive
monitored network traffic traces collected by the MAWI
project in Japan [12]. The network traffic traces collected
through passive monitoring from this backbone link are
available from 2006 through 2020 (present). The traces are
collected daily for about 15 minutes at 1400 (i.e. 2 pm).
Longer traces of 24 hours, 48 hours, 72 hours, and 96 hours
are also available for certain periods, including as part of the
A Day in the Life of the Internet project [13]. We select a set
of traces collected over a period of 24 hours in April 2019,
from samplepoint-G which is the link connecting the MAWI
network to an Internet Exchange [14]. Due to the volume
of traffic in these traces, we use a 15 minute time slice of
the traffic to create a snapshot communication graph that is
combined with the hourly P2P botnet graphs.

B. Planting Dynamic P2P Botnets in Dynamic Communica-
tion Graphs

There are several ways of planting the dynamic P2P botnet
graphs in dynamic background communication graphs. Given
snapshots of P2P botnet graphs GPi

= (VPi
, EPi

), with i =
1, 2, . . . , NP a set of all bots observed across the snapshots
is VPall

=
⋃NP

i=1 VPi , if each vertex is identified uniquely
with a bot such as using its IP address. Similarly, the set

of all nodes observed across the background communication
graph snapshots GCi

= (VCi
, ECi

), where i = 1, 2, . . . , NC ,
is VCall

=
⋃NC

i=1 VCi
, where the vertex is again uniquely

identified with an IP address.

1) How to map botnet nodes to communication graph
nodes?: A simple approach is to randomly map each P2P
botnet node to a background communication graph node
uniquely identified by its IP address, with mapping f :
VPall

→ VCall
, since the number of bots are strictly less

than the total number of observed nodes in the communication
graphs |VPall

| < |VCall
|. There are several reasons however

that this approach is not very realistic.

• The communication graph is generated from monitored
traffic from a particular network, and hence some of the
vertices in the communication graphs are internal nodes
of the network while others are external nodes. Thus,
traffic from these internal nodes is more observable than
the external nodes.

• The communication graphs have power-law like degree
distribution [2]. Randomly selecting from all vertices is
likelier to choose vertices with low degree, making it
easier to detect higher degree botnet nodes.

Since the communication graph is usually generated from
monitored traffic from a particular network, it is more realistic
to randomly map each sampled P2P botnet node to the
monitored nodes in the background traffic. The traffic traces
used in our experiments are anonymized and do not contain
information on which nodes are internal to the network, so we
use a proxy measure to identify such nodes. We note that the
internal nodes of the network are likelier to appear repeatedly
over longer periods of time in the traffic traces compared to
most of the external nodes, though with some exceptions, such
as commonly used services like Google or Facebook. Thus,
we create a list of nodes that are active in each of the time
slices within our time frame of interest, called the always
active nodes, and map the botnet graph nodes to these active
nodes.

A random sample of P2P botnet nodes are selected as
monitored nodes whose traffic is visible as edges in the
communication graphs. Since these nodes communicate with
other P2P botnet nodes that are not monitored, the visible
traffic includes those other P2P nodes as well. In one scenario,
that is the most realistic, these monitored P2P botnet nodes
are mapped to the always active nodes in the traffic traces, as
a proxy to the monitored internal nodes of the network. The
scenario represents the case where all botnet traffic of the
internal nodes is observable but the botnet traffic of external
nodes is only observable to the extent that they communicate
with the internal botnet nodes. In another scenario that we
believe represents a worst case, all P2P botnet nodes are
mapped to the always active nodes. This represents the case
where some of the monitored nodes’ botnet traffic is not
visible in the traffic traces.

C. Effectiveness of Reinforcement Approach

The effectiveness of the three schemes, naive and the
proposed composite and reinforced community detection, are
investigated in this section.

1) Effectiveness Within a Time Window: We first ask how
effective are the various schemes of dynamic P2P botnet
detection within a given time window. In Fig. 3 the recall
and precision of P2P botnet detection with the Louvain
community detection algorithm [15] is shown for different
window sizes, and the three schemes proposed here for
P2P botnet community detection in dynamic graphs. Each
statistic is reported for two scenarios: when all the actual
P2P botnet nodes are mapped to any of the always active
nodes in the traffic traces, and when only the randomly
selected monitored actual P2P nodes are mapped to any of
the always active nodes in the traffic traces. For the worst
case scenario of all P2P botnet nodes mapped to the always
active nodes, the naive scheme has consistently close to 98%
recall, which is significantly higher than the close to 95%
recall with the reinforced community detection scheme for
larger window sizes. However, the precision for the naive
scheme is extremely low, with tens of thousands of false
positives so that some of the P2P botnet nodes missed by
the reinforcement approach are included in the detected P2P
community by the naive approach. It is preferable to trade
a few more false negatives from the reinforcement approach
for the reduction in tens of thousands of false positives. In the
more realistic scenario of only monitored P2P botnet nodes
being mapped to the always active nodes, the recall with
all three schemes is nearly complete. However, the precision
of reinforced community detection is significantly improved
compared to the naive approach. We also note that as the
window size increases, both the recall and precision reduces
since some of the P2P botnet nodes do not stay active over the
entire window while connections are accreted to other non-
P2P nodes.

0.900

0.925

0.950

0.975

1.000

2 4 6
Window Size (hours)

R
ec

al
l

Scheme
naive
composite
reinforce

Map Type
all
monitored

Per Window Statistics

(a) Recall

0.00

0.25

0.50

0.75

2 4 6
Window Size (hours)

P
re

ci
si

on

Scheme
naive
composite
reinforce

Map Type
all
monitored

Per Window Statistics

(b) Precision

Fig. 3: Recall and Precision for different window sizes with the
Louvain algorithm and the reinforcement schemes. The error bars
represent 95% confidence interval.

Similarly, recall and precision for the Label Propagation
algorithm (LPA) [16] is presented in Fig. 4. The LPA has
precision several times that of the Louvain algorithm for the
worst case where all P2P botnet nodes are mapped to the

always active nodes in the background traffic. As discussed
in paper [2], LPA tends to detect smaller communities which
results in much higher precision compared to the Louvain
algorithm for P2P botnet community detection. On the other
hand, LPA tends to have lower recall due to leaving out some
less well connected P2P nodes, though in these experiments
we see only slightly lower recall than the Louvain algorithm
for the naive approach. However, the reinforcement-based
schemes consistently improve the naive LPA recall, while also
improving or maintaining the precision.

Thus, across various window sizes, algorithms, and models
for planting P2P botnet graphs in background communica-
tion graphs, we see that the reinforced community detection
scheme improves precision of community detection within
a time window. In addition, for algorithms like LPA that
are less deterministic, the repeated community detection of
reinforcement approach helps improve the recall as well.

0.900

0.925

0.950

0.975

1.000

2 4 6
Window Size (hours)

R
ec

al
l

Scheme
naive
composite
reinforce

Map Type
all
monitored

Per Window Statistics

(a) Recall

0.25

0.50

0.75

2 4 6
Window Size (hours)

P
re

ci
si

on

Scheme
naive
composite
reinforce

Map Type
all
monitored

Per Window Statistics

(b) Precision

Fig. 4: Recall and Precision for different window sizes with the Label
Propagation algorithm and the reinforcement schemes. The error bars
represent 95% confidence interval.

D. Effectiveness Across Time Windows

Perhaps more relevant to P2P botnet detection in dy-
namic communication graph is the effectiveness of various
approaches across time windows, within a time frame of
interest. Since any network node participating in the P2P
botnet at any time during the time frame is considered a part of
the P2P botnet, we take a similar approach with the detected
P2P botnet communities. As described in section III-B, the
predicted P2P botnet community for the time frame is the
union of P2P botnet communities for the constituent time
windows. It should be noted that this approach is feasible in
our experiments since there is only one P2P botnet community
of interest.

The recall and precision for the Louvain algorithm are
shown in Fig. 5. As with the recall within the time windows,
the recall across time windows within a time frame is nearly
complete for the scenario where only the sampled monitored
botnet nodes are mapped to the nodes in the traffic traces that
are active for the entire time frame. The precision for this case
however is significantly higher for the reinforcement based
schemes of composite and reinforced graphs. On the other
hand, when all the botnet nodes are mapped to the always

active nodes, as the worst case scenario, the recall for the
composite and the reinforced graphs drops to about 95% for
the larger window sizes. The consistently high recall of the
naive approach is explained by its extremely low precision,
as among the tens of thousands of false positives the actual
botnet nodes missed by the other schemes are also included
in the detected P2P community. It is also worth noting that
the confidence intervals reported across time windows are
higher, partly because of the variations in precision across
time windows, but also because of the smaller sample size
because the experiments are repeated only 10 times for the
entire time frame.

The recall and precision for the Label Propagation algo-
rithm (LPA) are shown in Fig. 6. Unlike the Louvain algorithm
the LPA tends to detect smaller, more strongly connected
communities. This results in higher precision within a time
window. This advantage also carries over to the time frame
when the detected P2P botnet communities are aggregated.
The P2P community detected by the naive approach has be-
tween about 1 in 10 to 1 in 20 actual P2P botnet members, in
the worst case. The reinforced graph approach is a significant
improvement with about 1 in 4 to 1 in 5 actual P2P botnet
members in the detected P2P community, with a slight (about
2%) loss in recall for the worst case. In the best case, all
three approaches have comparable recall and precision, though
the reinforced graph approach has significantly less variability
compared to the composite graph approach.

0.900

0.925

0.950

0.975

1.000

2 4 6
Window Size (hours)

R
ec

al
l

Scheme
naive
composite
reinforce

Map Type
all
monitored

Time Frame: 24 hours

(a) Recall

0.0

0.2

0.4

0.6

2 4 6
Window Size (hours)

P
re

ci
si

on

Scheme
naive
composite
reinforce

Map Type
all
monitored

Time Frame: 24 hours

(b) Precision

Fig. 5: Recall and Precision over the entire 24 hour period with the
Louvain algorithm and the reinforcement schemes. The error bars
represent 95% confidence interval.

VI. CONCLUSIONS

In this paper we addressed the problem of detecting
evolving P2P botnet communities in dynamic communication
graphs. We proposed a discrete time model for building a
sequence of communication graphs, and formulated the prob-
lem of P2P botnet detection in these dynamic graphs. Next
we proposed a reinforcement approach to utilize the temporal
information and the community structure information within
each constituent time slice of a time window. We designed
experiments for evaluating our proposed schemes with real-
world dynamic botnet graphs combined with traffic traces
from a large network. The results of the experiments show that

0.900

0.925

0.950

0.975

1.000

2 4 6
Window Size (hours)

R
ec

al
l

Scheme
naive
composite
reinforce

Map Type
all
monitored

Time Frame: 24 hours

(a) Recall

0.00

0.25

0.50

0.75

2 4 6
Window Size (hours)

P
re

ci
si

on

Scheme
naive
composite
reinforce

Map Type
all
monitored

Time Frame: 24 hours

(b) Precision

Fig. 6: Recall and Precision over the entire 24 hour period with the
Label Propagation algorithm and the reinforcement schemes. The
error bars represent 95% confidence interval.

the proposed reinforcement-based scheme improves precision
not only for a particular time window, but also over a sequence
of such time windows.

REFERENCES

[1] D. Zhuang and J. M. Chang, “Peerhunter: Detecting peer-to-peer botnets
through community behavior analysis,” in 2017 IEEE Conference on
Dependable and Secure Computing. IEEE, 2017, pp. 493–500.

[2] H. P. Joshi and R. Dutta, “Improved P2P Botnet Community Detection:
Combining Modularity and Strong Community,” in 2019 IEEE Global
Communications Conference (GLOBECOM), Dec. 2019, pp. 1–6.

[3] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “Bot-
Grep: Finding P2P Bots with Structured Graph Analysis.” USENIX
Security Symposium, vol. 10, 2010.

[4] H. P. Joshi and R. Dutta, “GADFly: A Fast and Robust Algorithm to
Detect P2P Botnets in Communication Graphs,” in 2018 IEEE Global
Communications Conference (GLOBECOM), Dec. 2018, pp. 1–6.

[5] B. Coskun, S. Dietrich, and N. Memon, “Friends of an enemy: Iden-
tifying local members of peer-to-peer botnets using mutual contacts,”
Proceedings of the 26th Annual Computer Security Applications Con-
ference., 2010.

[6] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75–174, Feb. 2010.

[7] H. Zanghi, C. Ambroise, and V. Miele, “Fast online graph clustering
via Erdős–Rényi mixture,” Pattern Recognition, vol. 41, no. 12, pp.
3592–3599, Dec. 2008.

[8] T. P. Peixoto, “Inferring the mesoscale structure of layered, edge-valued,
and time-varying networks,” Physical Review E, vol. 92, no. 4, p.
042807, Oct. 2015.

[9] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela,
“Community Structure in Time-Dependent, Multiscale, and Multiplex
Networks,” Science, vol. 328, no. 5980, pp. 876–878, May 2010.

[10] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex
networks,” Scientific Reports, vol. 2, no. 1, p. 336, Mar. 2012.

[11] S. Haas, S. Karuppayah, S. Manickam, M. Mühlhäuser, and M. Fischer,
“On the resilience of P2P-based botnet graphs,” in 2016 IEEE Confer-
ence on Communications and Network Security (CNS), Oct. 2016, pp.
225–233.

[12] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the WIDE
project,” in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’00. San Diego, California: USENIX
Association, Jun. 2000, p. 51.

[13] C. C. f. A. I. D. Analysis, “A Day in the Life of the Internet (DITL),”
https://www.caida.org/projects/ditl/index.xml.

[14] “MAWI Working Group Traffic Archive,” http://mawi.wide.ad.jp/mawi/.
[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast

unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, Oct.
2008.

[16] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algo-
rithm to detect community structures in large-scale networks,” Physical
Review E, vol. 76, p. 036106, 2007.

	I Introduction
	II Background and Related Work
	III Problem Formulation
	III-A Discrete Time Model of Dynamic Communication Graphs
	III-B P2P Botnet Detection in Dynamic Communication Graphs

	IV Using Temporal Information in Dynamic Graphs
	IV-A The Naive Approach
	IV-B Reinforcement Approach
	IV-B1 Using Temporal Edge Weights
	IV-B2 Using Community Membership

	V Evaluation
	V-A Experiment Methodology
	V-B Planting Dynamic P2P Botnets in Dynamic Communication Graphs
	V-B1 How to map botnet nodes to communication graph nodes?

	V-C Effectiveness of Reinforcement Approach
	V-C1 Effectiveness Within a Time Window

	V-D Effectiveness Across Time Windows

	VI Conclusions
	References

