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Abstract—This paper investigates multiuser multi-input single-
output downlink symbiotic radio communication systems assisted
by an intelligent reflecting surface (IRS). Different from existing
methods ideally assuming the secondary user (SU) can jointly
decode information symbols from both the access point (AP) and
the IRS via multiuser detection, we consider a more practical SU
that only non-coherent detection is available. To characterize the
non-coherent decoding performance, a practical upper bound of
the average symbol error rate (SER) is derived. Subsequently,
we jointly optimize the beamformer at the AP and the phase
shifts at the IRS to maximize the average sum-rate of the
primary system taking into account the maximum tolerable SER
constraint for the SU. To circumvent the couplings of variables,
we exploit the Schur complement that facilitates the design of a
suboptimal beamforming algorithm based on successive convex
approximation. Our simulation results show that compared with
various benchmark algorithms, the proposed scheme significantly
improves the average sum-rate of the primary system, while
guaranteeing the decoding performance of the secondary system.

I. INTRODUCTION

Recently, intelligent reflecting surface (IRS)-assisted sym-
biotic radio (SR) systems [1] have been proposed as one of
the promising technologies to achieve spectrally and energy-
efficient transmission towards the sixth-generation (6G) com-
munications. By exploiting the IRS, SR systems not only
enhance the quality of the primary transmission from the
access point (AP) to its primary users (PUs), but also allow
the IRS to be served as a secondary transmitter to convey
its information to the desired secondary users (SUs). Con-
ventionally, an IRS consists of a large number of low-cost
passive reflection elements (REs) and the phase shift of each
element can reflect/redirect the incident signals to the desired
users in a nearly-passive manner. Thus, the introduction of an
IRS can further enhance the quality of primary transmission
by providing a controllable additional signal propagation path
for dedicated energy-focusing and energy-nulling [2]. On the
other hand, in an SR system, an environment sensor serving
as an information source can be connected to the IRS [3]
for collecting the environmental information such as light
intensity, temperature, and humidity. Thus, the IRS has its
need to transmit the sensed information to a low data-rate SU.
In these scenarios, the IRS can embed its information to the
reflected radio frequency signals originating from the AP. As
such, a mutualistic SR system can be established by intelligent
synergistic resources exchanges. Specifically, the SU shares
the same frequency spectrum, energy, and infrastructure with
PUs, which results in more spectrally and energy-efficient
communications compared with conventional networks [4],
[5].

To realize practical IRS-assisted SR systems, various
schemes have been proposed. For instance, in [6], [7], the IRS
is able to transmit information to the SU by adopting binary
phase shift keying modulation to modulate its information over
the incident signals from the AP. Yet, having the off state of all
IRS elements concurrently deflects the purpose of deploying
an IRS as it leads to a low spectral efficiency in end-to-end
information transmission in the primary system. To further
improve the spectral efficiency of IRS-assisted systems, [3]
and [8] adopted a higher order IRS modulation by exploiting
spatial modulation over IRS elements. However, the problem
formulations in [3] and [8] did not take into account the
quality-of-service (QoS) requirement of decoding IRS symbols
at the SU. As such, the performance of the SU cannot be
guaranteed. Moreover, all the aforementioned papers, i.e., [3],
[6]–[8], ideally assumed that the SU is capable to perform
sophisticated multiuser detection or successive interference
cancellation for decoding the information symbols of the AP
and the IRS jointly, which is generally impossible for a low-
cost SU. Besides, without knowing the symbols transmitted
by the AP, the effective channel state information (CSI) is
generally unknown at the desired SU as it is a product
of instantaneous CSI and AP symbols. As a result, it is
challenging, if not impossible, for the implementation of the
coherent detection proposed in [6], [7]. Thus, a more practical
resource allocation design for non-coherent detection in SR
systems is desired.

In this paper, we consider an IRS-assisted multiuser multi-
input single-output (MISO) downlink multiuser SR system,
where the IRS can transmit its information to the SU while
assisting the primary transmission between the AP and PUs. In
particular, the IRS can modulate its information by applying
an on/off multi-level amplitude modulation to the index of
the IRS elements. In contrast to existing methods, e.g. [3],
[6]–[8], we investigate a practical SR system which is able to
acquire modulated IRS symbols at the SU without decoding
AP symbols. In particular, non-coherent detection is adopted
at the SU for decoding the IRS symbols. To quantify the
decoding performance of the SU, we first derive an upper
bound of the average symbol error rate (SER). Furthermore, by
jointly designing the precoding vector at the AP and the phase
shift matrix at the IRS, the average sum-rate of the primary
system is maximized subject to an SER-based constraint for
the SU. Due to the coupling among the optimization variables
and the explicit expression of the derived SER upper bound,
the formulated problem is non-convex such that obtaining an
optimal solution in polynomial time is generally intractable.
As a compromise, we exploit the Schur complement and adopt
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Fig. 1: An IRS-assisted SR system model.

successive convex approximation (SCA) to obtain a subopti-
mal solution of the beamforming design problem. Simulation
results show that the proposed scheme not only guarantees
the decoding performance of the secondary system, but also
significantly improves the average sum-rate of the primary
system compared with various benchmarks.

Notations: Scalars, vectors, and matrices are represented by
lowercase letter x, boldface lowercase letter x, and boldface
uppercase letter X, respectively. BN×M and CN×M denote the
spaces of N ×M matrices with binary and complex entries,
respectively. X(n,m) denotes the element at the n-th row
and the m-column of the matrix. The Euclidean norm and
Frobenius norm of a vector/matrix are denoted by ‖ · ‖ and
‖ · ‖F, respectively. The absolute value of a complex-valued
scalar is denoted by | · |. The occurrence probability of an
event is denoted by Pr{·}. The conditional probability density
function of x on event H is denoted by p(x|H). The transpose,
conjugate transpose, conjugate, expectation, and trace of a
matrix/vector are denoted by (·)T, (·)H, (·)∗, E[·], and Tr(·),
respectively. X � 0 and X � 0 mean that matrix X is positive
semi-definite and negative semi-definite, respectively. diag(x)
denotes a diagonal matrix with its diagonal elements given
by vector x. j denotes the imaginary unit. The distribution
of a circularly symmetric complex Gaussian (CSCG) random
variable with mean µ and variance σ2 is denoted by CN (µ, σ2)
and ∼ stands for “distributed as”. The distribution of Erlang
distribution is denoted by Erlang(α, n) with scale parameter α
and shape parameter n. IN denotes an N×N identity matrix.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an IRS-assisted SR system,
which includes an AP equipped with Nt > 1 antennas, an
IRS with M > 1 elements, K > 1 single-antenna PUs,
and a single-antenna SU1. In particular, the AP transmits
K independent data streams to K PUs simultaneously with
the assistance from the IRS. The precoding vector for the
k-th PU (PUk) adopted at the AP is defined as wk ∈
CNt×1,∀k ∈ K = {1, . . . ,K}. Meanwhile, the IRS pas-
sively transmits the sensed environmental information of the
connected sensor to the SU by altering the IRS reflection
patterns via index modulation, which will be detailed in
Sections II-B and II-C. The IRS reflection matrix is de-
fined as Φ = diag(ejθ1 , . . . , ejθm , . . . , ejθM )∈ CM×M with
θm ∈ [0, 2π),∀m ∈ M = {1, . . . ,M}, denoting the phase
shift at the m-th IRS element. For the ease of practical

1The extension to the case of multiple SUs will be considered in our future
work.
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Fig. 2: A transmission frame structure of the considered IRS-assisted
SR network. The AP and the IRS operate concurrently such that L
AP symbols duration is equivalent to that of 1 IRS symbol.

implementation of the IRS, the amplitude coefficients of all
the elements are fixed to be unity in this paper. Besides, as
depicted in Fig. 1, the direct links of AP-to-PUs and AP-to-
SU are blocked due to heavy shadowing. The aforementioned
assumptions are commonly adopted in the literature [2], [4],
[5]. On the other hand, this paper considers a quasi-static
flat fading channel model. We assume that handshaking has
been performed between the AP, PUs, and the SU at the
beginning of transmission. As such, the channel coefficients of
the AP-to-IRS link, the IRS-to-PUk link, and the IRS-to-SU
link can be acquired by exploiting some existing advanced
channel estimation methods, e.g. [9], which are denoted by
G∈CM×Nt , hP,k∈CM×1, and hS∈CM×1, respectively.

A. Transmission Framework
Fig. 2 shows the transmission frame structure of the consid-

ered IRS-assisted SR network, where the AP and the IRS si-
multaneously transmit their information symbols. In particular,
sq ∈ BM×1 denotes the IRS symbol to be transmited in each
IRS transmission frame, which spans over a pilot sequence
and L AP symbols, ck(l) ∼ CN (0, 1),∀k, l∈L={1, ..., L}.

Although sq is unknown at the PUs, at the beginning of
each IRS transmission frame, the AP emits some pilot symbols
that allows the PUs to obtain the effective CSI at the receiver
(CSIR) of the cascaded AP-to-IRS-to-PUk link with existing
techniques, e.g. [9]. As such, the PUs are able to apply
coherent detection to decode their information symbols. On
the other hand, in contrast to the existing works, e.g. [3], [6]–
[8], the SU is assumed to be a practical receiver which does not
equip with powerful computational capability to perform joint
decoding of ck(l) and sq . Without knowing AP symbols ck(l),
the phase of the instantaneous CSI of the cascaded AP-to-IRS-
to-SU link cannot be obtained for performing conventional
coherent detection. In this case, a non-coherent detection [10]
is adopted at the SU for decoding sq .

B. Signal Model
1) Transmitted Signal at the AP: For each AP transmission

frame, the transmitted signal at the AP is given by

c(l) =
∑
k∈K

wkck(l),∀l ∈ L. (1)

2) Reflected Signal at the IRS: As only non-coherent de-
tection can be performed at the SU, we introduce a multi-level
amplitude modulation. In particular, the IRS consists of Q > 1
information-carrying elements (ICEs) and M −Q REs. With
the similar idea as in [11], switching on/off among the ICEs
can modulate the information into the signal swing of reflected



Table I:A truth table of the proposed multilevel amplitude modulation
scheme at the IRS with Q=3 ICEs and M −Q REs.

ICE 1 ICE 2 ICE 3 All REs
Level 1 0 0 0 X
Level 2 0 0 1 X
Level 3 0 1 1 X
Level 4 1 1 1 X
X = Don’t care

signals from the IRS, by creating the required multiple power
level signals. The remaining REs is in the “on” state at each
IRS symbol duration to reflect the impinging signals. Note
that ICEs in the “on” state reflect impinging signals as well
but with its index modulated. Based on this, the transmitted
IRS symbol is denoted by sq = [s1,q, ..., sm,q, ..., sM,q]

T,∀q ∈
Q = {1, . . . , Q+ 1}. sm,q ∈ {0, 1} denotes the on/off state of
the m-th IRS element when IRS transmitting symbol sq , i.e.,
sm,q = 0 and sm,q = 1 denote that the m-th IRS elements is
turned “off” and “on”, respectively. The truth table in Table I
shows an example of the proposed modulation scheme. In this
case, there are Q+ 1 possible on/off patterns. Without loss of
generality, we assume that (Q + 1) is a power of 2. Hence,
each IRS symbol contains log2(Q+ 1) IRS information bits.
Since all IRS reflection patterns are assumed to be transmitted
equiprobably. We have Pr{Hq} = 1

Q+1 , where Hq is the
hypothesis of the IRS sending symbol sq .

3) Received Signal at PUs: For each AP transmission
frame, the received signal at PUk is given by

yP,k(l)=hH
P,kSqΦG

∑
k∈K

wkck(l) + nk(l),∀k, l, (2)

where Sq = diag(sq) and nk(l) ∼ CN (0, σ2
k) denotes the

background noise at PUk with power σ2
k. Since sq remains

unchanged during the L AP symbol durations, the achievable
rate for PUk to decode ck(l) is given by

RPU
q,k=log2

(
1+

|hH
P,kSqΦGwk|2∑K

j 6=k |hH
P,kSqΦGwj |2+σ2

k

)
,∀k, q, (3)

where HP,k = diag(hH
P,k). Although the CSIR of the cas-

caded AP-IRS-PUk link, i.e., hH
P,kSqΦG, is known at the

PUk, the AP has no prior knowledge of sq while optimiz-
ing wk and Φ. Hence, to facilitate the precoding and IRS
reflection coefficients design, the average achievable rate of
PUk is adopted. To this end, the expectation of RPU

q,k is taken
over sq as

R
PU

k = Esq

[
RPU
q,k

]
,∀k. (4)

4) Received Signal at SU: Since each IRS transmission
frame spans L AP symbol durations, the received signal at
the SU for each IRS transmission frame is given by

yS=[yS(1), . . . , yS(l), . . . , yS(L)]T, with (5)

yS(l)=hH
S SqΦGc(l)+nS(l) = sT

q ΦHSGc(l) + nS(l),∀l,
being the received signal of the SU at the l-th observation,
where HS = diag(hH

S ) and nS(l) ∼ CN (0, σ2
S) denotes the

noise at the SU with power σ2
S.

As the SU does not have the prior knowledge of ck(l), the
effective CSIR of the cascaded AP-IRS-SU link, ΦHSGc(l),
is not available at the SU. Fortunately, the distribution of the
AP symbols is ck(l) ∼ CN (0, 1) such that the distribution of
yS(l) is available at the SU, i.e., yS(l) ∼ CN (0, Psq + σ2

s ),

where Psq =
∑K
k=1 Tr

(
sT
q ΦHSGwkw

H
k GHHH

S ΦHsq

)
. As a

result, the distribution of the received signal power at the SU is∑L
l=1 y

2
S(l) ∼ Erlang( 1

λq
, L) with λq = (Psq + σ2

s )−1,∀q ∈
Q. Therefore, we adopt the non-coherent detection method
[10] to detect the modulated IRS symbols at the SU via
[i] = arg max

q∈Q
p
(∑
l∈L

y2
S(l)|Hq

)
Pr{Hq}, where (6)

p
(∑
l∈L

y2
S(l)|Hq

)
=
λLq
(∑

l∈L y
2
S(l)

)L−1
e−λq

∑
l∈L y

2
S(l)

(L− 1)!
. (7)

It can be observed from (6) that the non-coherent detection
performance can be improved by exploiting λq and yS in (7),
which can be achieved by optimizing the precoder at the AP
and IRS phase shifts.

To characterize the detection performance of the SU, we first
derive an SER upper bound PUpper

e , by adopting the well-
known union bounding technique, whose tightness has been
verified in [12], that yields

PUpper
e =

Q+1∑
q=1

Q+1∑
i=1,i6=q

Pr
{

sq → si|Hq
}

Pr{Hq}, (8)

where Pr
{
sq → si|Hq

}
is the pairwise error probability in

deciding sq to si,∀i 6=q, under the hypothesis Hq . According
(6), the total error probability of the hypothesis Hq is

Q+1∑
i=1,i6=q

Pr
{

sq → si|Hq
}

(9)

=


1

(L−1)!Γ(L,Lλqdq), q = 1,
1

(L−1)!

(
γ(L,Lλqdq−1) + Γ(L,Lλqdq)

)
, 1 < q ≤ Q,

1
(L−1)!γ(L,Lλqdq−1), q = Q+ 1.

Here, γ(s, x) =
∫ x

0
ts−1e−tdt and Γ(s, x) =

∫∞
x
ts−1e−tdt

are the lower incomplete Gamma function and the upper in-
complete Gamma function, respectively. dq = 1

2 (Psq+1 −Psq )
is the detection threshold between Hq and Hq+1. Therefore,
we have

PUpper
e =

∑Q+1
q̂=2 γ(L,Lλq̂dq̂−1) +

∑Q
q̃=1 Γ(L,Lλq̃dq̃)

(Q+ 1)(L− 1)!
. (10)

Since L is an integer, we have γ(L,Lλq̂dq̂−1) = (L −
1)!
(

1 − e−Lλq̂dq̂−1
∑L−1
l=0

(Lλq̂dq̂−1)l

l!

)
and Γ(L,Lλq̃dq̃) =

(L − 1)!e−Lλq̃dq̃
∑L−1
l=0

(Lλq̃dq̃)l

l! ,∀q̂ = {2, . . . , Q + 1}, q̃ =
{1, . . . , Q}, respectively [13, Th. 3, Th. 4].

III. PROBLEM FORMULATION

We aim to maximize the average achievable sum-rate of the
primary system while guaranteeing the power budget at the AP
and the QoS requirements of the SU by jointly designing the
precoding vectors wk,∀k, and the phase shifts θm,∀m. The
joint design can be formulated as the following:
maximize

wk, θm

∑
k∈K

R
PU

k (11)

s.t. C1:
∑
k∈K

‖wk‖2 ≤ Pmax,∀k ∈ K,

C2: PUpper
e ≤ Pmax

e ,C3: 0 < θm ≤ 2π,∀m ∈M.
Constraint C1 ensures that the transmit power consumption of
the precoder at the AP is less than the maximum available
power budget Pmax. Constraint C2 is imposed to restrict
the upper bound of the SER for decoding the modulated



IRS symbols at the SU to be less than a constant Pmax
e

defined by the target application. Constraint C3 specifies that
θm can only vary from 0 to 2π. The formulated problem
is non-convex due to the non-convexities in both the upper
and lower incomplete Gamma functions in constraint C2 and
the couplings among optimization variables wk and θm in
both the objective function and constraint C2. In general, the
application of a brute-force search is required for obtaining
the globally optimal solution of (11), which is computationally
prohibited even for a moderate system size. As an alternative,
a computationally efficient suboptimal algorithm is proposed
in the next section.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

To address the proposed optimization problem in (11), we
first transform the objective function and constraint C2 into
their equivalent forms, such that they are convex with respect
to (w.r.t.) ΦHP,kGwj ,∀k, j, and ΦHSGwk,∀k, respectively.
Then, we decouple the coupling between optimization vari-
ables wk and θm by utilizing the Schur complement. Finally,
SCA is applied to address the non-convex constraints in the
transformed optimization problem.

As shown in (8) and (11), constraint C2 in (11) is non-
convex due to the highly coupled variables. We first in-
troducing auxiliary optimization variables γq̂ , Γq̃, ξ

γ
q̂ , ε

γ1
q̂ , ε

γ2
q̂

ξΓ
q̃ , ε

Γ1
q̃ , and εΓ2

q̃ ,∀q̂, q̃, for decoupling. Then, by exploiting the
properties of logarithm and quadratic equation, constraint C2
can be equivalently transformed as:

C2a:

Q+1∑
q̂=2

γq̂ +

Q∑
q̃=1

Γq̃ ≤ (Q+ 1)Pmax
e , (12)

C2b1:−Lεγ1
q̂ +ln ξγq̂ ≥ ln(1−γq̂),C2b2: ξγq̂ ≤

L−1∑
l=0

(Lεγ2
q̂ )l

l!
,∀q̂,

C2b3:Psq̂−Psq̂−1
+
(
εγ1
q̂ −Psq̂−σ2

s

)2

−(εγ1
q̂ )2−(Psq̂+σ

2
s)

2≤0,∀q̂,

C2b4:Psq̂−Psq̂−1
−
(
εγ2
q̂ +Psq̂+σ

2
s

)2

+(εγ2
q̂ )2+(Psq̂+σ

2
s )2≥0,∀q̂,

C2c1:−LεΓ1
q̃ +ln ξΓ

q̃ ≤ ln Γq̃,C2c2:

L−1∑
l=0

(LεΓ2
q̃ )l

l!
≤ ξΓ

q̃ ,∀q̃,

C2c3:Psq̃+1
−Psq̃−

(
εΓ1
q̃ +Psq̃ +σ2

s

)2

+(εΓ1
q̃ )2+(Psq̃+σ

2
s )2≥0,∀q̃

C2c4:Psq̃+1
−Psq̃+

(
εΓ2
q̃ −Psq̃−σ2

s

)2

−(εΓ2
q̃ )2−(Psq̃+σ

2
s )2≤0,∀q̃.

In particular, γq̂ , Γq̃, ξ
γ
q̂ , and ξΓ

q̃ replace γ(L,Lλq̂dq̂−1),

Γ(L,Lλq̃dq̃),
∑L−1
l=0

(Lλq̂dq̂−1)l

l! , and
∑L−1
l=0

(Lλq̃dq̃)l

l! in con-
straint C2, respectively. Besides, εγ1

q̂ and εΓ1
q̃ replace λq̂dq̂−1

and λq̃dq̃ in e−Lλq̂dq̂−1 and e−Lλq̃dq̃ of constraint C2, re-
spectively. Also, εγ2

q̂ and εΓ2
q̃ replace λq̂dq̂−1 and λq̃dq̃ in∑L−1

l=0
(Lλq̂dq̂−1)l

l! and
∑L−1
l=0

(Lλq̃dq̃)l

l! of constraint C2, re-
spectively. It can be verified that constraints C2b3, C2b4,
C2c3, and C2c4 are convex w.r.t. ΦHSGwk that paves the
way for further simplification in the sequel.

On the other hand, since sq has a finite number of choices,
i.e., Q + 1, the average achievable capacity in (4) can be
directly expressed as R

PU

k =
∑Q+1
q=1 R

PU
q,kPr{Hq}. Thus, the

objective function in (11) can be equivalently transformed to
a new objective function as

fo=
1

Q+1

Q+1∑
q=1

K∑
k=1

(
log2

( K∑
j=1

PPU
q,k,j+σ

2
k

)
−log2

( K∑
j 6=1

PPU
q,k,j+σ

2
k

))
,(13)

where PPU
q,k,j = Tr(sT

q ΦHP,kGwjw
H
j GHHH

P,kΦ
Hsq),∀k, j, q.

Next, we decouple the coupled variables {wk,Φ} in the
objective function in (13) via utilizing the Schur complement.
We first introduce auxiliary optimization variables fPU

k,j ∈
CM×1, UPU

k,j ∈ CM×M, cPU
k,j ,∀k, j, and A ∈ CM×M . Then, by

substituting ΦHP,kGwjw
H
j GHHH

P,kΦ
H = UPU

k,j into (13),
the objective function in (13) and constraint C3 in (11) can be
equivalently transformed as
fo = fo

∣∣∣
ΦHP,kGwjwH

j GHHH
P,kΦH=UPU

k,j

, (14)

C4a:

[
UPU
k,j fPU

k,j

(fPU
k,j )H 1

]
� 0,∀k, j,

C4b: Tr(UPU
k,j )− Tr

(
fPU
k,j (fPU

k,j )H
)
≤ 0,∀k, j,

C4c:

[
DPU
k,j EPU

k,j

(EPU
k,j )H IM

]
� 0,∀k, j,

C4d: Tr(DPU
k,j )− Tr

(
EPU
k,j (EPU

k,j )H
)
≤ 0,∀k, j,

C3a: |Φ(m,m)| ≤ 1,∀m, and C3b: A(m,m) ≥ 1,∀m,

respectively, where DPU
k,j =

[
A fPU

k,j

(fPU
k,j )H cPU

k,j

]
and EPU

k,j =[
Φ

(HP,kGwk)H

]
.

According to the Schur complement [14, Th. 1.12], con-
straints C4a and C4b ensure that Uk,j = fPU

k,j (fPU
k,j )H holds.

Similarly, by combining constraints C3b, C4c, and C4d, we
have fk,j = ΦHP,kGwj and A = ΦΦH, such that UPU

k,j is
equivalent to ΦHP,kGwjw

H
j GHHH

P,kΦ
H in (13).

Likewise, by introducing auxiliary optimization variables
fSU
k ∈ CM×1, USU

k ∈ CM×M , and cSU
k , constraints C2b3,

C2b4, C2c3, and C2c4 can be equivalently transformed as
(15) via substituting Psp = P̃sp into (12):

C2b3:C2b3
∣∣∣Psq̂

=P̃sq̂
,Psq̂−1=P̃sq̂−1

,C2b4:C2b4
∣∣∣Psq̂

=P̃sq̂
,Psq̂−1=P̃sq̂−1

,

C2c3:C2b3
∣∣∣Psq̃

=P̃sq̃
,Psq̃+1

=P̃sq̃+1
,C2c4:C2b4

∣∣∣Psq̃
=P̃sq̃

,Psq̃+1
=P̃sq̃+1

,

C2d1:

[
USU
k fSU

k

(fSU
k )H 1

]
�0,C2d2:Tr(USU

k )−Tr
(
fSU
k (fSU

k )H
)
≤0,∀k,

C2d3:

[
DSU
k ESU

k

(ESU
k )H IM

]
� 0,∀k, and

C2d4:Tr(DSU
k )− Tr

(
ESU
k (ESU

k )H
)
≤ 0,∀k, (15)

where DSU
k =

[
A fSU

k

(fSU
k )H cSU

k

]
, ESU

k =

[
Φ

(HSGwk)H

]
, and

P̃sp =
∑K
k=1 Tr

(
sT
pUSU

k sp

)
, p = {q̂, q̃}.

For ease of presentation, we define a set A ={
fSU
k ,USU

k , cSU
k , fPU

k,j ,U
PU
k,j , c

PU
k,j ,A, γq̂,Γq̃, ξ

γ
q̂ , ξ

Γ
q̃ , ε

γ1
q̂ , ε

Γ1
q̃ , ε

γ2
q̂ ,

εΓ2
q̃

}
, which includes all introduced auxiliary optimization

variables. Now, the optimization problem in (11) can be
equivalently transformed to the following
maximize
wk,θm,A

fo

s.t. C1,C2a,C2b1,C2b2,C2b3,C2b4,C2c1,C2c2,C2c3,

C2c4,C2d1− C2d4,C3a,C3b,C4a− C4d. (16)



maximize
wk, θm ,A

1

Q+1

Q+1∑
q=1

K∑
k=1

(
log2

( K∑
j=1

PPU
q,k,j+σ

2
k

)
− log2

( K∑
j 6=1

P
PU(τ)
q,k,j + σ2

k

)
−

K∑
j 6=k

(PPU
q,k,j − P

PU(τ)
q,k,j )/

(
ln(2)(

K∑
i 6=j

P
PU(τ)
q,j,i + σ2

k)
))

s.t. C1,C2a,C2b1,C2c2,C2d1,C2d3,C3a,C3b,C4a,C4c, (19)

C2b2: ξγq̂ ≤
L−1∑
l=0

(Lε
γ2(τ)
q̂ )l

l!
+

L−1∑
l=0

l(Lε
γ2(τ)
q̂ )(l−1)L

l!

(
εγ2
q̂ − ε

γ2(τ)
q̂

)
, ∀q̂,

C2b3: P̃sq̂−P̃sq̂−1 +
(
εγ1
q̂ −P̃sq̂−σ

2
s

)2

−(ε
γ1(τ)
q̂ )2 + 2ε

γ1(τ)
q̂ (εγ1

q̂ − ε
γ1(τ)
q̂ )− (P̃ (τ)

sq̂ + σ2
s )2 − 2(P̃ (τ)

sq̂ + σ2
s )(P̃sq̂ − P̃

(τ)
sq̂ )≤0, ∀q̂,

C2b4: P̃sq̂−P̃sq̂−1−
(
εγ2
q̂ +P̃sq̂ +σ2

s

)2

+(ε
γ2(τ)
q̂ )2 + 2ε

γ2(τ)
q̂ (εγ2

q̂ − ε
γ2(τ)
q̂ )+(P̃ (τ)

sq̂ + σ2
s )2 + 2(P̃ (τ)

sq̂ + σ2
s )(P̃sq̂ − P̃

(τ)
sq̂ )≥0,∀q̂,

C2c1: −LεΓ1
q̃ +ln(ξ

Γ(τ)
q̃ ) + (ξΓ

q̃ − ξ
Γ(τ)
q̃ )/ξ

Γ(τ)
q̃ −ln Γq̃≤0, ∀q̃,

C2c3: P̃sq̃+1−P̃sq̃−
(
εΓ1
q̃ +P̃sq̃ +σ2

s

)2

+ (ε
Γ1(τ)
q̃ )2 + 2ε

Γ1(τ)
q̃ (εΓ1

q̃ − ε
Γ1(τ)
q̃ ) + (P̃ (τ)

sq̃ + σ2
s )2 + 2(P̃ (τ)

sq̃ + σ2
s )(P̃sq̃ − P̃

(τ)
sq̃ )≥0, ∀q̃,

C2c4: P̃sq̃+1−P̃sq̃ +
(
εΓ2
q̃ −P̃sq̃−σ

2
s

)2

−(ε
Γ2(τ)
q̃ )2 − 2ε

Γ2(τ)
q̃ (εΓ2

q̃ − ε
Γ2(τ)
q̃ )−(P̃ (τ)

sq̃ + σ2
s )2 − 2(P̃ (τ)

sq̃ + σ2
s )(P̃sq̃ − P̃

(τ)
sq̃ )≤0, ∀q̃,

C2d2: Tr(USU
k )≤−‖fSU(τ)

k ‖2 + 2Tr
(

(f
SU(τ)
k )HfPU

k

)
,C2d4: Tr(DSU

k )≤−‖ESU(τ)
k ‖2F+2Tr

(
(E

SU(τ)
k )HEPU

k

)
, ∀k,

C4b: Tr(UPU
k,j)≤−‖f

PU(τ)
k,j ‖2 + 2Tr

(
(f

PU(τ)
k,j )HfPU

k,j

)
,C4d:Tr(DPU

k,j )≤−‖E
PU(τ)
k,j ‖2F + 2Tr

(
(E

PU(τ)
k,j )HEPU

k,j

)
,∀k, j.

Algorithm 1 Proposed Suboptimal Resource Allocation Scheme

1: Initialize the maximum number of iteration (τ)max, the
initial iteration index τ = 0, and optimization vari-
ables in D(τ)=

{
P

PU(τ)
q,k,j ,εγ2(τ)

q̂ , P̃ (τ)
sp , εi(τ)

p , γ(τ)
q̂ , ξΓ(τ)

q̃ ,

f
PU(τ)
k,j ,E

PU(τ)
k,j , f

SU(τ)
k ,E

SU(τ)
k ,∀q, p, k, j, i, q̂, q̃

}
.

2: repeat {Main Loop: SCA}
3: Solve problem (19) with given optimization variables

in D(τ), to obtain the variables for D(τ+1);
4: Set τ = τ + 1 and update the optimization variables;
5: until convergence or τ = τmax.

Since constraints C2b1, C2b2, C2b3, C2b4, C2c1, C2c3,
C2c4, C2d2, C2d4, C4b, C4d and the objective function in
problem (16) are in the difference of convex (D.C.) functions
form and differentiable, we apply an iterative method based on
SCA to obtain a suboptimal solution. Taking constraint C2b1
as an example, for any feasible point γ(τ)

q̂ , an upper bound of
ln(1 − γq̂) can be construct by deriving its first-order Taylor
expansions:
ln(1− γq̂) ≤Υ1

q̂=ln(1− γ(τ)
q̂ )+(γq̂−γ(τ)

q̂ )/(γ
(τ)
q̂ −1), (17)

where (τ) denotes the iteration index for the proposed algo-
rithm summarized in Algorithm 1 (to be discussed in detail
later). By applying SCA, a subset of constraint C2b1 can be
obtained, which is given by

C2b1: −Lεγ1
q̂ +ln ξγq̂ −Υ1

q̂≥0,∀q̂. (18)

As C2b1 implies C2b1, replacing C2b1 with C2b1 can ensure
that the former is satisfied when the proposed algorithm
converges. Similarly, by applying SCA to the rest of D.C.
functions in problem (16), a lower bound of (16) can be
obtained via solving the optimization problem in (19) at the
top of this page. To tighten the obtained performance lower
bound, we iteratively update the feasible solution by solving
the optimization problem in (19) in the (τ)-th iteration. The
proposed SCA-based algorithm is shown in Algorithm 1 and
the proof of its convergence to a suboptimal solution can be
found in [15] which is omitted here for brevity. Note that the
proposed algorithm has a polynomial time complexity.

V. NUMERICAL RESULTS

This section evaluates the system performance of the pro-
posed scheme via simulation. We set K = 2, Q = 3, Nt = 4,

M = 30, and L = 30. The location of AP, IRS, SU, and PUs
are set in a Cartesian coordinate system, i.e., (0, 0), (15, 10),
(20, 2), and {(65, 2), (65,−2)} in meters (m), respectively.
The distance-dependent path loss model in [2] is adopted with
a reference distance of 1 m. Other important parameters are
summarized as follows unless specified otherwise. The centre
carrier frequency is set as 2.4 GHz. The path loss exponents of
AP-IRS, IRS-SU, and IRS-PUk links are identical for simplic-
ity, i.e., αAI = αIS = αIP,k = 2.2. Rician factors of AP-IRS,
IRS-SU, and IRS-PUk links are βAI = βIS = βIP,k = 3. The
maximum power budget at the AP is Pmax = 30 dBm. Noise
power at the SU and PUs are σ2

k = σ2
s = −100 dBm.

For comparison, we also evaluate the system performance
of three other schemes: 1) Baseline scheme 1 is identical to the
proposed scheme except that the QoS of the SU constraints
is not considered; 2) Baseline scheme 2 is the same as the
proposed scheme except that the phase shifts of the reflect
elements are randomly set; 3) A performance upper bound
is achieved by an conventional IRS-assisted system with all
elements being “on” state, while the SU does not exist. Note
that except the upper bound scheme, for all the schemes, if
the joint designed precoder and IRS phase shifts are unable to
meet QoS requirements of constraint C2 in (11), we set the
system sum-rate for that channel realization as zero to account
the penalty for the corresponding failure.

Fig. 3 depicts the average system sum-rate of primary
system versus the maximum tolerable SER, Pmax

e , for the SU
to decode the modulated IRS symbols. It can be observed
that when Pmax

e is small, except the upper bound scheme,
the average system sum-rates of all the considered schemes
are zeros. In fact, with limited transmit power, a stringent
QoS requirement Pmax

e in constraint C2 is more difficult to
satisfy leading to an infeasibility of the optimization problem
in (11). With the increase of Pmax

e , the proposed scheme
is the first one that admits feasible solutions showing its
superiority over other baseline schemes. In particular, due to
the joint optimization of the precoder and IRS phase shifts, the
proposed scheme can exploit the spatial degrees of freedom
more efficiently than that of baseline scheme 2 to fulfill the
SER constraint C2. Furthermore, since baseline scheme 1
does not consider constraint C2, the SER of decoding IRS
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Fig. 3: Average system achievable sum-rate of the primary system
versus the upper bound of the SER at the SU side, Pmax

e .

information approaches 0.5 which is not suitable for most
practical applications. Additionally, by comparing the average
sum-rate of the proposed scheme and the upper bound, it
can be observed that there is a performance gap between the
proposed scheme and the upper bound when Pmax

e is small.
This is mainly because the IRS phase shifts are forced to align
to the channels of the SU for satisfying the more stringent SER
constraint. This leads to a weakened signal received at the PU.
However, unlike the proposed scheme, the upper bound cannot
serve the primary and secondary system concurrently to realize
a mutualistic SR system. Once constraint C2 becomes less
stringent, the performance degradation of the proposed scheme
is negligible compared with the upper bound, even though
the proposed scheme turns off some of the IRS elements to
convey IRS modulated information. On the other hand, as
Pmax

e further increases, the performance of all the schemes ap-
proaches a constant. This is because the limited transmit power
budget Pmax becomes the bottleneck of system performance,
instead of Pmax

e . In Fig. 4, by further increasing the maximum
transmit power budget at the AP, the system sum-rate increases
monotonically. Indeed, by applying the proposed scheme, the
AP and the IRS can effectively exploit the additional transmit
power to create more powerful beamforming for improving the
system sum-rate of the primary system. Moreover, the average
sum-rates for both the proposed scheme and baseline scheme 2
grow as the number of the antennas at the AP increases due to
an increasing beamforming gain. However, diminishing return
appears when Nt is large as the result of channel hardening.

VI. CONCLUSION

In this paper, we proposed a MISO downlink SR com-
munication system assisted by an IRS, which facilitates the
primary transmission and mutualistic information transmission
to the SU simultaneously. Different from existing works, we
considered a more practical secondary system adopted a non-
coherent detection at the SU. We derived an SER upper bound
to characterize the non-coherent decoding performance. The
joint design of the beamformer at the AP and the phase
shifts at the IRS was formulated as a non-convex optimization
problem to maximize the average system sum-rate taking into
account the QoS requirement of decoding IRS symbols at
the SU. Simulation results showed that the proposed scheme
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Fig. 4: Average system achievable sum-rate of the primary system
versus power budget, Pmax, with Pmax

e = 0.01.

greatly enhances the performance of both the primary system
and the secondary system significantly compared with some
existing schemes.
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