
Ensuring Reliable and Predictable Behavior of
IEEE 802.1CB Frame Replication and Elimination

Lisa Maile, Dominik Voitlein, Kai-Steffen Hielscher, Reinhard German
Computer Networks and Communication Systems

Friedrich-Alexander University Erlangen-Nürnberg, Germany
{lisa.maile, dominik.voitlein, kai-steffen.hielscher, reinhard.german}@fau.de

Abstract—Ultra-reliable and low-latency communication has
received significant research attention. A key part of this evolu-
tion are the Time-Sensitive Networking (TSN) standards, which
extend Ethernet with real-time mechanisms. To guarantee high
reliability, the standard IEEE 802.1CB-2017 Frame Replication
and Elimination for Reliability enables redundant communication
over disjoint paths. While this mechanism is essential for time-
critical applications, the standard contains some fundamental
limitations that can compromise safety. Although some of these
limitations have been addressed, none of the previous works
provide solutions to these problems. This paper presents solutions
to four main limitations of the IEEE 802.1CB-2017 standard.
These are 1) choosing match versus vector recovery algorithm,
2) defining the length of the sequence history, 3) setting a timer
to reset the sequence history, and 4) dimensioning the burst size
in case of link failures. We show how these challenges can be
solved by using best- and worst-case path delays of the network.
We have performed simulations to illustrate the impact of the
limitations and prove the correctness of our solutions. Thereby,
we demonstrate how our solutions can improve reliability in TSN
networks and propose these methods as guidance for users of the
IEEE 802.1CB standard.

Index Terms—real-time systems, time-sensitive networking,
TSN, network reliability, redundancy

I. INTRODUCTION

With real-time communication being a key part of the fourth
industrial revolution, the need for reliable industrial networks
is gaining increasing importance. Time-Sensitive Networking
(TSN) has been introduced to face this need. Highly time- and
safety-critical applications cannot tolerate re-transmissions of
lost packets. Therefore, IEEE 802.1CB-2017 [1] ensures ultra-
reliable communication by using redundant paths to forward
duplicated packets over TSN networks. It is the only TSN
standard ensuring transmission even in the case of network
failures. However, this behavior can only be achieved with
a safe configuration of the network. The current standard

Copyright © 2022 IEEE
Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, includ-
ing reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in
other works.
Citation: L. Maile, D. Voitlein, K. -S. Hielscher and R. German,
”Ensuring Reliable and Predictable Behavior of IEEE 802.1CB Frame
Replication and Elimination,”ICC 2022 - IEEE International Conference
on Communications, Seoul, Korea, Republic of, 2022, pp. 2706-2712, doi:
10.1109/ICC45855.2022.9838905
Published version: https://doi.org/10.1109/ICC45855.2022.9838905

Compound
Stream

SRF SRF
IRF
IRF

Sender
and Replication

Elimination
and Receiver

Path A

Path B

Fig. 1: Example FRER network with two redundant paths.

does not offer guidance for this configuration, neither are
the dangers of misconfiguration and unexpected behavior
highlighted. Hofmann et al. [2] identified several challenges
of the IEEE 802.1CB-2017 standard. However, none of these
challenges have been solved yet. Thus, we propose solutions
to the following two limitations identified in [2]:

• Configuring the length of the sequence history
• Studying the length of bursts in case of link failure

Besides, we reveal two additional challenges of the IEEE
802.1CB-2017 standard and propose solutions for them:

• Choosing match or vector recovery algorithm
• Setting timer values to reset the sequence history

While some simulations have been done on the IEEE 802.1CB
standard [3], [4], to the best of our knowledge, we are the
first to analyze and solve the addressed limitations. We show
the correctness of our solutions both theoretically and in
simulations. The proposed solutions could extend the existing
standard to serve as guidance for users in future.

The IEEE 802.1CB-2017 standard is introduced in Sec-
tion II. We describe the limitations of the standard in Sec-
tion III. For these limitations, we analyze the underlying
effects and present our solutions in Section IV. Section V
presents the simulation results and Section VI concludes the
paper.

II. IEEE 802.1CB-2017

The full name of the TSN standard under investigation
is IEEE 802.1CB-2017 Frame Replication and Elimination
for Reliability, or FRER for short. As the name implies,
FRER replicates packets over redundant paths and identifies
and eliminates duplicate packets later in the network. FRER
features replication and elimination in both end-devices and

ar
X

iv
:2

30
6.

13
46

9v
1

 [
cs

.N
I]

 2
3

Ju
n

20
23

https://doi.org/10.1109/ICC45855.2022.9838905

bridges, which is known as flexible positioning [1, Page 34].
Elimination of duplicate packets ensures that applications do
not need to be aware of the redundant network operations.

Each replicated flow on a disjoint path is called a member
stream. All member streams containing the same information
are grouped under the term of one compound stream. Du-
plicate packets within each member stream are identified by
an Individual Recovery Function (IRF). Duplicates arriving
from the different member streams are identified using the
Sequence Recovery Function (SRF). SRF is used to assign
sequence IDs to packets before duplicating them into different
member streams. Later, SRF also implements the elimination
of duplicate packets. This paper focuses on SRF only. The
basic components of FRER are illustrated in Fig. 1. In TSN,
sending and receiving devices are respectively called talker
and listener.

In TSN networks, critical streams must be registered by
defining three traffic characteristics [5]: Class Measurement
Interval (CMI), Max Interval Frames (MIF), and Max Frame
Size (MFS). They can be interpreted as follows: A stream
sends at most MIF packets during an interval of length CMI .
Each packet is smaller or equal to MFS .

The IEEE 802.1CB-2017 standard does not guarantee an in-
order transmission of packets. However, since the application
should not be aware of the redundancy, duplicates must be
eliminated safely. Yet, it should be noted that packets arrive
in FIFO order within single member streams since they are
configured with static paths [2].

III. LIMITATIONS OF IEEE 802.1CB-2017

IEEE 802.1CB-2017 was designed to eliminate duplicate
packets and to forward all new packets, but this can only
be guaranteed if the configuration is correct. Incorrectly
configured networks can lead to failure of safety-relevant
tasks. However, these configurations are not addressed in the
standard or in other literature, leaving the decisions to the user
without further information. In this section, we present four
main aspects that must be considered when designing safety-
critical networks using IEEE 802.1CB-2017 and for which we
present the solutions in Section IV.

A. Match versus Vector Recovery Algorithm

To eliminate duplicate packets, the SRF can be configured to
compare sequence numbers in one of two ways. The simplest
algorithm is called Match Recovery Algorithm (MRA). It
stores the highest sequence number received. Only duplicates
with this sequence number are eliminated; all other packets
are accepted and forwarded. By definition, MRA is only ap-
plicable to so-called intermittent streams. Intermittent streams
satisfy the following requirement: when merging member
streams, the difference between arrived sequence numbers
cannot exceed one [1, Page 33]. If this requirement is not
fulfilled, MRA is susceptible to pass duplicates and the Vector
Recovery Algorithm (VRA) should be used instead.

In contrast to MRA, VRA defines an interval of sequence
numbers. Within this interval, new packets are accepted and

n+...

n+5

n+4

n+3

n+2

n+1

n

n-1

n-2

n-3

n-4

n-5

n-...

1

1

0

0

1

Outside of the Acceptance
Interval

Within the Acceptance
Interval

Next Packet in Sequence

Same Packet Again

In History and Received

In Sequence History and
not Received

In History and Received

Outside of the Acceptance
Interval

Next Sequence
Number History Explanation DiscardedPassed Rogue Out of OrderDuplicate

Fig. 2: Example sequence history, illustrated in the second
column. The other columns explain how a newly arriving
packet would be handled, depending on its sequence number.

duplicates are eliminated. All packets outside this interval are
discarded, even if they actually arrive for the first time.

While MRA requires less memory and processing resources,
it can only be used for the limited scenario of intermittent
streams. In contrast, VRA offers more flexibility for the
transmission behavior of talkers by covering a wider range
of sequence numbers.

The standard does not provide guidance on how to ensure
that the requirements for intermittent streams are met and,
thus, MRA can be used. As far as we know, this challenge
has not yet been addressed before.

B. History Length Configuration

If a stream requires VRA, the user must configure the
sequence number interval for this function. This interval is
defined in the standard as [1, Page 40]:

RecovSeqNum ± (frerSeqRcvyHistoryLength − 1) (1)

Thereby, RecovSeqNum is initialized with the first sequence
number received. Packets within the sequence number in-
terval and higher than RecovSeqNum lead to an update
of RecovSeqNum to the newly received sequence number.
Packets that do not fall within the sequence number interval are
marked as rogue and are discarded, which may cause safety-
critical information to be discarded entirely. The sequence
history denotes all packets within the sequence number interval
and lower than RecovSeqNum . We illustrate the handling of
newly arriving packets in VRA in Fig. 2.

The default value for frerSeqRcvyHistoryLength in the
standard is 2. However, this value must be network dependent,
as also emphasized in [2].

C. Reset Timer Configuration

IEEE 802.1CB-2017 does not offer protection against the
failure of a talker or its connection to the replicating device.
Instead, timers are used to respond to changes in the network.

If connections are interrupted, newly arriving sequence num-
bers may be outside the current sequence number interval.
However, packets outside the sequence number interval are
discarded by VRA. Therefore, FRER triggers a reset after a pe-
riod of time in which no packets have been accepted. This reset
is done by the so-called SequenceRecoveryReset function. As
a result, RecovSeqNum is reinitialized with the first arriving
sequence number. The timer for the SequenceRecoveryReset
function is set in the frerSeqRcvyResetMSec variable. Each
time a new packet is passed, this timer restarts. If the timer
is configured too short, duplicates will be passed because
the sequence number interval has been reset. If the timer is
too long, valid packets from interrupted connections will be
discarded. We are the first to identify this problem and propose
a solution.

D. Burst Size Prediction

FRER is designed to always forward the first arriving packet
of each sequence number to ensure low latency. However, this
feature can cause packets to be delivered out of sequence and,
most importantly, result in an increase of burstiness. Consider
the following scenario: The delays of the redundant paths are
different, and transmission errors occur on the fastest path, i.e.,
transmission is interrupted. This results in the following three
phases: 1) Initially, only packets from the slower paths are
received. However, these have already been received before via
the faster path, so no new packet is forwarded. 2) Then, new
packets arrive from the slower paths, which are forwarded.
3) The critical phase starts when the faster path resumes
its transmission. The slower paths continue to transmit new
packets. Meanwhile, packets from the faster path will arrive
with sequence numbers that are higher than currently received
on the slower paths. Thus, for a while, new packets are
accepted from both the faster and slower paths at the same
time. This results in a burst of packets as the acceptance rate
doubles.

Compared to traditional burst prediction methods [6] which
predict future traffic characteristics in large networks, our
derived solution provides an upper bound for burst lengths
that are introduced solely by the usage of FRER.

Hofmann et al. state that these effects must be thoroughly
investigated because ”bursts of high-priority messages can
have a significant impact on the timing behavior of all other
frames in its path” [2]. Moreover, if an application buffers
traffic to sort the packets, this buffer must be increased.
Therefore, we add a discussion of the effects and investigate
the burst dimensions in the following sections.

IV. ANALYSIS AND SOLUTIONS

In this section, we present safe solutions to the above
limitations. By this, we mean that no duplicate frame is
passed, and no new frame is discarded. Therefore, network
characteristics must be considered, in particular

• best-case, i.e., lowest delay dBC of the fastest path and
• worst-case, i.e., highest delay dWC of the slowest path.

We refer to the derivation of these delays in Appendix A. In the
following, we refer to the difference ∆d = dWC − dBC for
each sequence number as reception window. For simplicity,
in each section, we will first consider a periodic sending
behavior with MIF = 1 and afterwards present the solutions
for aperiodic behavior and MIF > 1. Sending devices might
not send periodically, e.g., because their sending is non-
deterministic and thus jitters or because the sending behavior
requires aperiodicity. We refer to jitter as a talker’s maximum
deviation from its periodic sending time and denote it as J .
Please note that in TSN-conformant networks J < CMI .

A. Match versus Vector Recovery Algorithm

For the first limitation, we need to define whether a given
compound stream is intermittent. Therefore, all copies of a
packet must arrive before the next sequence number can arrive
at the eliminating device [1, Page 33]. According to this
definition, we can use MRA if and only if the CMI for the
compound stream satisfies the following equation:

CMI > ∆d = dWC − dBC (2)

Proof. To construct the worst case, we only need to consider
the slowest and fastest paths and analyze the maximum possi-
ble difference in arriving sequence numbers. If the definition
is satisfied for these paths, it is also guaranteed on all other
paths. ∆d defines the total range in which all packets with one
sequence number can arrive. Assuming that CMI ≤ ∆d, we
can construct the following scenario, also shown in Fig. 3. The
last duplicate of packet 101 can arrive at the end of its ∆d on
the slowest path. When sending periodically each CMI , the
first packet 102 may arrive earlier, violating the requirement
that all duplicates must arrive before the next sequence number
is received. In contrast, CMI > ∆d guarantees that the fastest
transmission of a new packet cannot overtake the slowest
transmission of a slow packet still in flight, so the requirement
is met.

1) Aperiodic Traffic: For aperiodic traffic, the worst case
is that packet 101 is delayed by j1 time units while packet
102 is sent j2 time units earlier than in the periodic scenario,
where j1 + j2 = J ≤ CMI . Note that if j1 + j2 > CMI , this
would mean that packet 102 is sent before packet 101, which
cannot be the case. This changes the requirement to guarantee
intermittent streams to:

CMI > ∆d+ J (3)

2) Multiple Frames: For MIF > 1, the worst case is that
devices send all packets right after another, i.e., just adding
interpacket gaps. This means that ∆d can be at most the
duration for the reception of the shortest packet, which cannot
be guaranteed in practice. Therefore, MRA can only be used
for MIF = 1 .

B. History Length Configuration

To define a safe history length L (short for
frerSeqRcvyHistoryLength), we need to ensure that

102
103

104

101 102 103 104 105 106 107
^Outgoing Traffic

Received Traffic

#Sequence
Numbers

0
1
2
3

101

Fig. 3: Delays and reception windows for the arrivals of
packets with the same sequence number. The number of
overlapping reception windows is illustrated at the bottom.

a sequence number is only allowed to drop out of the history
if it cannot arrive anymore. Therefore, the history constantly
needs an entry for each sequence number that may be received
at the current time. Similar to Section IV-A, we thus need
to analyze how many packets can arrive at the same time in
the worst case. In contrast to MRA, VRA allows overlapping
reception windows. Consequently, the number of overlapping
reception windows is the maximum number of packets that
need to be tracked at any given time. As a result, the length
of the sequence history must be:

L >
∆d

CMI
+ 1 (4)

Proof. For each interval of ∆d, we need to determine how
many other sequence numbers can overlap in the worst case.
This is illustrated in Fig. 3. Packets are sent in multiples of
their interval k · CMI . This means that any packet that is
sent within a multiple of k ≤ ∆d

CMI represents an overlapping
window. Including the sequence number for which we con-
sider the overlapping windows, the worst integer number of
overlapping sequence numbers is thus N =

⌊
∆d
CMI

⌋
+ 1. This

results in:
L >

∆d

CMI
≥

⌊
∆d

CMI

⌋
+ 1 (5)

This equation holds if the sequence history always covers the
range of sequence numbers that could arrive at the current
time. However, only the reception of new packets triggers a
shift of the sequence history. The highest sequence number
that could follow directly after the current RecovSeqNum (e.g.,
101 in Fig. 3) is N higher (e.g., 104 in Fig. 3) since it has to
overlap with RecovSeqNum+1. Otherwise, RecovSeqNum+1
(102) is guaranteed to show up earlier. This, together with the
definition of the sequence number interval, leads to (4). Note
that higher values for the length are also safe to use, but do not
provide any additional benefits. Instead, they lead to increased
usage of memory resources.

1) Aperiodic Traffic: Following the argumentation of Sec-
tion IV-A1, we add the jitter to ∆d which results in:

L >
∆d+ J

CMI
+ 1 (6)

with J < CMI , this can be simplified to:

L >
∆d

CMI
+ 2 (7)

2) Multiple Frames: In the worst case, a stream sends one
of its frames at the beginning of its interval and the remaining
(MIF −1) packets at the end, e.g., assume multiple packets at
the end of the interval for packet 101 in Fig. 3. For overlapping
of the following windows, not one but MIF packets need to
be considered. This maximizes the overlapping frames. Based
on (5) which again needs to be increased by one, this results
in:

L ≥ MIF ·
⌊

∆d

CMI
+1

⌋
+1+(MIF−1) = MIF ·

⌊
∆d

CMI
+2

⌋
(8)

C. Reset Timer Configuration

As described in Section III-C, FRER uses a timeout after
R ms (short for frerSeqRcvyResetMSec) to react to inter-
rupted connections and, thus, new sequence numbers. As
explained in Section III-C, we need to avoid both too high
and two low values for this timeout. The optimal value to
trigger the reset of the sequence history is:

R = ∆d+ CMI (9)

Proof. We want to trigger the reset when the sequence num-
bers change, e.g., because a talker loses its connection. It
is safe to trigger the reset timeout when no more duplicate
packets can arrive. In the worst case, exactly one packet
(e.g., sequence number 101) arrives via the fastest path at the
beginning of its ∆d. If we reset too early, a second packet
numbered 101 might show up and the sequence history will be
reinitialized with that value, thereby passing a duplicate. If we
reset after no packet of 101 can arrive, the sequence history
will be safely reset to the newly arriving sequence number.
Assuming this worst case, we see that we can safely reset the
timer after ∆d time units of no packets arriving, resulting in:

R > ∆d (10)

This value can be applied, regardless of periodic or aperiodic
traffic. However, if ∆d is small and the windows do not over-
lap, this configuration may result in many unnecessary resets.
In this case, the reset is triggered between each sequence
number, which is safe, but not required. This can be improved
by waiting not only until no more duplicates can arrive, but
until we are sure that all packets of a sequence number are
lost. With periodic traffic, packets arrive after CMI time units,
resulting in (9).

1) Aperiodic Traffic: In the case of aperiodicity or jitter,
the packet may arrive after CMI + J , leading to:

R = ∆d+ J + CMI or R = ∆d+ 2 · CMI (11)

2) Multiple Frames: Since the timeout does not track the
sequence numbers but simply the time of arrival, the same
reset timer can also be used with MIF > 1.

D. Burst Size Prediction
Let us denote the maximum number of packets arriving in

a burst after link failure as nmax. The maximum burst size
can be calculated with:

nmax = max
(
2 ·

⌈
∆d

CMI

⌉
− 1, 0

)
(12)

Proof. The maximum burst occurs when all but the slowest
path fail and the fastest path is restored first. For all other
path combinations, the burst size is less. If faster paths than
the failed path are still operating, no burst occurs at all. The
burst starts as soon as the fastest failed link recovers and the
first packet arrives on that link (phase 3 in Section III-D). We
denote the first sequence number of the link after its recovery
with N . The burst then lasts until N arrives over the slower
link that has not failed. Consequently, the duration of the burst
is ∆d. The maximum number of packets that can arrive during
∆d is

⌈
∆d
CMI

⌉
[7]. Since both the recovered and the slower

link deliver new packets, the number of packets in the burst
is twice this value. The last packet is not part of the burst
because its successor is received from the same link. This
results in (12).

1) Aperiodic Traffic: As before, jitter increases the delay
difference between links, resulting in a burst size of:

nmax = max
(
2 ·

⌈
∆d+ J

CMI

⌉
− 1, 0

)
(13)

2) Multiple Frames: The worst case can be easily con-
structed if all MIF packets arrive within ∆d. Then, the burst
is increased by the number of frames:

nmax = max
(
2 ·MIF ·

⌈
∆d

CMI

⌉
− 1, 0

)
(14)

V. EVALUATION

We used OMNeT++ [8] and the NeSTiNg library [9] to
verify the results of the equations above. The network is
illustrated in Fig. 1 with different path delays. For our first
evaluations, the delay of each path is constant because no other
traffic is present. We use the processing delays of the switches
to define ∆d. Unless stated otherwise, CMI is equal to 125µs
and the talker sends 100 packets. For the history length and
burst length evaluation, we introduce a 75ms interruption on
the faster path to get the worst-case behavior. For the reset
timeout simulation, the connection between the talker and the
duplicating device loses one packet.

A. Match versus Vector Recovery Algorithm
Fig. 4a shows the results for simulations with different CMI

and ∆d values using the MRA algorithm. We determined that
a stream is intermittent when CMI > ∆d, which corresponds
to the area above the blue line in Fig. 4a. Every configuration
of CMI and ∆d that fulfilled our requirement for intermittent
streams did not pass duplicates in the simulation. Also, all
configurations below the line accepted at least one duplicate
packet, illustrating that our boundary is not too cautious.

B. History Length Configuration

All sequence numbers arriving at the VRA must be in the
sequence number interval. Every packet whose sequence num-
ber is not within that range increments the counter for rogue
packets in eliminating devices. Fig. 4b shows the number of
rogue packets for a varying range of history lengths and dif-
ferent ∆d’s. The blue line illustrates the resulting lower bound
proposed by our solution. All optimized configurations worked
in the simulations, meaning no packet was marked as rogue,
i.e., arrived outside the sequence number interval. Again, the
boundary given by our solution matches the boundary derived
in our simulations, meaning that we do not overestimate the
required history length.

C. Reset Timer Configuration

Duplicates must not pass, even when a timeout resets the
recovery function. Our simulations observe the number of
passed duplicates using VRA for different reset timeout values
and ∆d. As minimum requirement, we derived that the timeout
has to be longer than ∆d. In Fig. 4c these are the reset times
above the blue line. All simulated configurations above this
value successfully prevent the passing of duplicates.

As discussed in Section III-C, a small ∆d can result in
too many resets. Fig. 4d demonstrates this effect by setting
∆d = 75µs. The timeout value for frerSeqRcvyResetMSec
is illustrated in the first line of Fig. 4d. We lose one packet
before its duplication to trigger the reset function. The green
cells highlight optimal values for each measurement. These
are: zero passed duplicates, 99 new packets - one packet is
lost before the duplicating function -, and two resets - one for
the lost packet and one when the talker stops sending.

Using a timeout frerSeqRcvyResetMSec ≤ ∆d
predicatively leads to passed duplicates. By setting
frerSeqRcvyResetMSec > ∆d, we eliminated all duplicates.
However, for frerSeqRcvyResetMSec ≤ ∆d + CMI , the
number of resets can be higher than necessary. In contrast,
our solution in (9) leads to a safe configuration. As explained,
values significantly higher than derived in (9) introduce the
risk of discarding new packets. This can be seen, e.g., for
timeouts values above 400µs.

D. Burst Prediction

To determine the burst length, we count the number of
packets with less than CMI spacing to their predecessor. The
bars in Fig. 4e show the measured burst length for different
∆d’s. The blue line is the calculated burst length in case of
link failures. After the 75ms interruption of the fastest link,
the observed bursts in all simulations match the calculated
lengths.

E. Realistic Network

To show the effect of our configuration in a realistic
scenario, we added realistic traffic parameters and additional
lower priority traffic. We use the same network structure as
before, but now the switches have a constant processing delay
of 50µs [10]. The number of switches on path A can be

0 200 400
∆d in µs

100

200

300

400

500

C
M

I
in
µ

s

#Duplicates = 0

#Duplicates > 0

(a) Number of duplicates using MRA.

0 500 1000 1500
∆d in µs

2

4

6

8

10

12

14

16

fr
er

S
eq

R
cv

yH
is

to
ry

L
en

gt
h #Rogue = 0

#Rogue > 0

(b) Number of rogue packets using VRA.

0 500 1000
∆d in µs

0

500

1000

1500

fr
er

S
eq

R
cv

yR
es

et
M

S
ec

0

1

2

5

10

100

(c) Number of duplicates using VRA.

Timeout in μs 50 75 100 150 200 300 400 500 600

#Duplicates 99 99 0 0 0 0 0 0 0

#Passed 99 99 99 99 99 99 98 97 96

#Resets 198 101 99 2 2 2 2 2 2

(d) Number of duplicates, correctly passed packets,
and resets for ∆d = 75µs.

#P
ac

ke
ts

 in
 B

ur
st

0

4

8

12

16

Δd in μs

0 150 300 450 600 750 900

Calculated Actual

(e) Calculated versus actual burst length.

Nodes on Path A 2 4 8 12 16

Network Calculus ∆𝑑𝑑 69.4 209.0 494.4 787.9 1089

Optimized Solution

History Length 2 3 5 8 10

#Passed 100 100 100 100 100

#Rogue 0 0 0 0 0

Default Values (Standard)

History Length 2 2 2 2 2

#Passed 100 100 72 72 72

#Rogue 0 0 90 90 90

(f) TSN network with interfering traffic.

Fig. 4: OMNeT++ simulation results for varying configurations.

configured dynamically to get different ∆d’s. Path B uses two
switches. The definition of traffic is adapted from [11], [12]
by using two additional traffic sources (one for each path).
These sources send 1064 Bytes every 100µs, which results in
8.6% utilization. The switches use credit-based shaping with
an idle slope of 0.5 for the real-time traffic and strict priority
for the additional traffic. To derive the worst-case path delays,
we applied Network Calculus (NC) [13].

Fig. 4f shows the behavior using our solutions compared to
the default values in the standard. Thereby, we calculated the
∆d’s and history lengths for the VRA. Each column illustrates
the difference in the path delays ∆d calculated by NC in
µs. We listed the results with our optimized history length
in comparison to the default history length of 2. The optimal
result for passed and rogue packets is 100 and 0 respectively.
As we can see in Fig. 4f, our optimized configuration safely
handled all packets, whereas using the default history length
results in rogue packets and packet loss with increasing path
length differences.

VI. CONCLUSION

We have highlighted and presented four critical limitations
of the IEEE 802.1CB-2017 TSN standard. For these, we have
derived safe configuration solutions for the key parameters of
the sequence recovery function. We have also analyzed the
maximum burst size in case of link failure. Our simulations
show that the proposed solutions accurately predict whether a
configuration is valid, proving the safety of our results.

In future work, we plan to show how a combined configura-
tion approach can be implemented. This needs to include the
derivation of path delays and the configuration of the network.
In general, further research on worst-case and best-case delays
in TSN networks is needed.

In summary, we have shown that it is possible to compute
valid and safe configurations for networks using FRER. The
configurations we have proposed are critical to ensure the
reliability that the IEEE 802.1CB-2017 standard seeks to add.
Therefore, we hope that these considerations will be helpful
in future standardization processes.

VII. ACKNOWLEDGMENT

The authors would like to thank Daniela Schmidt for
implementing IEEE 802.1CB-2017 in the NeSTiNg library,
which we could extend with our improvements.

REFERENCES

[1] “IEEE standard for local and metropolitan area networks–frame repli-
cation and elimination for reliability,” IEEE Std 802.1CB-2017, 2017.

[2] R. Hofmann, B. Nikolić, and R. Ernst, “Challenges and limitations of
IEEE 802.1CB-2017,” IEEE Embedded Systems Letters, vol. 12, no. 4,
pp. 105–108, 2020.

[3] D. Ergenç and M. Fischer, “Implementation and orchestration of IEEE
802.1CB FRER in OMNeT++,” in 2021 IEEE International Conference
on Communications Workshops (ICC Workshops), 2021, pp. 1–6.

[4] M. Pahlevan and R. Obermaisser, “Redundancy management for safety-
critical applications with time sensitive networking,” in 2018 28th
International Telecommunication Networks and Applications Conference
(ITNAC), 2018, pp. 1–7.

[5] “IEEE standard for local and metropolitan area networks–virtual bridged
local area networks amendment 14: Stream reservation protocol (SRP),”
IEEE Std 802.1Qat-2010 (Revision of 802.1Q-2005), Sep. 2010.

[6] A. Chen, J. Law, and M. Aibin, “A Survey on Traffic Prediction
Techniques Using Artificial Intelligence for Communication Networks,”
Telecom, vol. 2, no. 4, pp. 518–535, Dec. 2021.

[7] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System archi-
tecture evaluation using modular performance analysis: A case study,”
International Journal on Software Tools for Technology Transfer, vol. 8,
pp. 649–667, 01 2006.

[8] A. Varga, “The omnet++ discrete event simulation system,” Proceedings
of the European Simulation Multiconference (ESM’2001), June 2001.

[9] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, “NeSTiNg: Simulating IEEE time-sensitive networking
(TSN) in OMNeT++,” in Proceedings of the 2019 International Confer-
ence on Networked Systems (NetSys), Garching b. München, Germany,
Mar. 2019.

[10] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K.
Ousterhout, “It’s time for low latency,” in In Proceedings of the 13th
Workshop on Hot Topics in Operating Systems (HotOS XIII), 2011.

[11] K. Matheus and T. Königseder, Automotive Ethernet, 3rd ed. Cam-
bridge, United Kingdom: Cambridge University Press, 2021.

[12] J. Koftinoff, “AVB Bw Calc,” https://abc.statusbar.com/, [Online; ac-
cessed 20-May-2021].

[13] L. Maile, K.-S. Hielscher, and R. German, “Network calculus results for
TSN: An introduction,” in 2020 Information Communication Technolo-
gies Conference (ICTC), 2020, pp. 131–140.

[14] J. W. Guck, A. Van Bemten, and W. Kellerer, “Detserv: Network models
for real-time qos provisioning in sdn-based industrial environments,”
IEEE Transactions on Network and Service Management, vol. 14, no. 4,
pp. 1003–1017, Dec. 2017.

APPENDIX A
DELAY ANALYSIS IN TSN NETWORKS

Safe configurations of the IEEE 802.1CB-2017 standard
require the knowledge of best- and worst-case path delays.
While estimations are widely used, we need safe lower and
upper limits for delays to ensure safety guarantees.

A. Best-Case Delay

Considering zero delay is always a safe lower bound for the
best-case scenario. Yet, this lower bound can be improved by
considering hardware delays, namely propagation, transmis-
sion, and switching delays. Estimations for these delays can
be found, e.g., in [10].

B. Worst-Case Delay

Determining upper bounds on worst-case delays in TSN
networks is a highly discussed research topic. In addition to
hardware delays, we need to consider queuing delays due
to interference of cross-traffic. Guarantees for these delays
can be derived with formal analysis methods like Network
Calculus [13]. Estimations have been derived, e.g., by simu-
lations [3], [4]. When used in combination with an admission
control scheme, upper bounds on arriving traffic and, thus,
reservation independent worst-case delay values can be de-
rived. This offers the possibility to minimize the necessity
of reconfiguration for FRER streams. A decentral admission
control scheme of TSN is introduced in [5], while Guck et
al. [14] propose a general solution for constant worst-case
delays in centrally configured network.

https://abc.statusbar.com/

	Introduction
	IEEE 802.1CB-2017
	Limitations of IEEE 802.1CB-2017
	Match versus Vector Recovery Algorithm
	History Length Configuration
	Reset Timer Configuration
	Burst Size Prediction

	Analysis and Solutions
	Match versus Vector Recovery Algorithm
	Aperiodic Traffic
	Multiple Frames

	History Length Configuration
	Aperiodic Traffic
	Multiple Frames

	Reset Timer Configuration
	Aperiodic Traffic
	Multiple Frames

	Burst Size Prediction
	Aperiodic Traffic
	Multiple Frames

	Evaluation
	Match versus Vector Recovery Algorithm
	History Length Configuration
	Reset Timer Configuration
	Burst Prediction
	Realistic Network

	Conclusion
	Acknowledgment
	References
	Appendix A: Delay Analysis in TSN Networks
	Best-Case Delay
	Worst-Case Delay

