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Joint Localization-based Node Authentication and
Secret Key Generation

Muralikrishnan Srinivasan1, Sotiris Skaperas2, Mahdi Shakiba Herfeh2, and Arsenia Chorti2

Abstract—In this paper, we devise preprocessing schemes to
disentangle channel state information (CSI) into predictable
and unpredictable components to simultaneously provide two
cornerstone security operations. The predictable components are
used for node authentication and the unpredictable components
for secret key generation (SKG). For the case of SKG, to
prevent Eve from exploiting potential spatial, frequency or time
correlations with the legitimate users, which would reduce the
effective key space through a decrease in the brute force attack
size, in this work, we emphasise the need for reducing the spatial
correlation (SC) at different transmitter locations. We also study
the trade-off between SC and reconciliation in the uplink and
the downlink. Furthermore, we discuss the importance of a more
robust criterion - independence - over decorrelation between the
legitimate users and eavesdroppers. Finally, we propose a metric
for quantifying uniqueness in the predictable components for
node authentication, using the total variation distance (TVD).

I. INTRODUCTION

Sixth-generation (6G) systems such as massive Internet of
Things (IoT) networks will have an extensive range of delay
and latency constraints, as well as computational, power and
energy limitations. Securing future networks under such a
broad spectrum of non-functional requirements can be chal-
lenging [1]. In addition, further developments that will increase
the attack surface of 6G systems are the extensive introduction
of artificial intelligence (AI) and machine learning (ML) and
the rapid advances in quantum computing [2], [3].

On the other hand, the wireless channel between two
legitimate users is intrinsic to the users’ environment and
is affected by users’ movements or scatterers. Since the
characteristics of the wireless medium between two users are
both location-based and random, the channel impulse response
can be exploited to generate keys for authentication while any
particular channel realization can be used as an entropy source
for confidentiality (e.g., by generating keys that are used with
symmetric block cyphers) [4]–[6].

Building on this premise, in this work, we view the wire-
less fading coefficients as consisting of two parts, namely a
predictable part (large scale fading including path loss and
shadowing) and an unpredictable part (small scale fading) [7].
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The path loss is deterministic (i.e., location-based) and, there-
fore, useful for authentication purposes, e.g., using localization
information in multi-factor authentication protocols [8], while
shadowing exhibits high correlation in time/frequency/space.
On the contrary, the small-scale fading is a valuable entropy
source for secret key generation (SKG).

A. Secret key generation

SKG builds on three principles: (i) channel reciprocity
between Alice and Bob during the channel coherence time,
(ii) spatial independence (typically measured through decorre-
lation), in theory at distances of the same order of magnitude
as the wavelength, and (iii) temporal variation, mainly due to
node mobility [4]. Spatial decorrelation is particularly impor-
tant since an eavesdropper (Eve) close to the legitimate users
can distil highly correlated sequences and thus substantially
decrease the effective size of the key space. Based on Jakes’
model, the channel will be uncorrelated when a third party is
located half-wavelength away [7]. However, experimental re-
sults show that a half-wavelength distance spatial decorrelation
is valid only in very rich scattering environments [9]–[12].

Note that in most works, SKG is performed without sys-
tematically removing the predictable and spatially or tem-
porally correlated components of the wireless channel co-
efficients [13]–[15]. To truly achieve spatial decorrelation,
the predictable components of the channel state information
(CSI) must be disentangled and removed from the remaining
components. Furthermore, channel realizations may exhibit
non-linear dependencies or the underlying distributions might
not be Gaussian; in these cases, correlation is a poor measure
of independence. Therefore, there is also a need to extend
our investigation to spatial independence as opposed to just
spatial decorrelation. To the best of our knowledge, this is
the first paper in the literature discussing the importance of
spatial independence between legitimate users and potential
eavesdroppers at multiple possible locations in the space
considered.

B. Localization based node authentication

Authentication requires a predictable and verifiable source
of uniqueness, dependent, for example, on the node locations.
In other words, the channel components used for authentica-
tion must be different for each location though not necessarily
decorrelated. Also, it is beneficial if the components do not
vary with time [16]. In [17]–[19] physical layer authentication
approaches are proposed by exploiting different types of
channel parameters. In an earlier contribution, we have shown

978-1-5386-8347-7/22/$31.00 ©2022 IEEE



that the first two or three principal components of a principal
component analysis (PCA) suffice to largely capture most of
the predictable part of the CSI [20].

C. Contributions

Despite the immense bibliography in RF fingerprinting and
SKG, a systematic treatment of the CSI as jointly a source
of uniqueness and entropy is missing. To the best of our
knowledge, only a few papers such as [21], [22] aim to achieve
both device authentication and SKG simultaneously in the
context of body area networks. At the same time, the proposed
method is not practical in a general scenario.

Therefore, this paper aims to fill this gap and build pre-
processing approaches for joint SKG and authentication with
a fresh perspective by focusing on removing the correlations
and dependencies across user locations. In brief,

1) We disentangle the predictable components from the
unpredictable components using PCA and two different
unsupervised learning methods based on Autoencoders
(AE).

2) We discuss in detail the trade-off between SC at trans-
mitter locations and non-reciprocity between the uplink
and downlink components used for SKG.

3) We propose to evaluate spatial independence using the d-
variable Hilbert-Schmidt independence criterion (dHSIC)
[23].

4) We use the total variation distance (TVD) to study
spatial uniqueness (in the form of density distance) in
the components used for node-authentication.

By employing these preprocessing schemes, the channel com-
ponents that are the building blocks for the following two cor-
nerstone security operations can be provided simultaneously:
(i) spatially decorrelated and independent, but reciprocal com-
ponents for SKG1 and (ii) spatially separable but temporally
invariant components for node authentication.

II. SYSTEM MODEL

Consider single-antenna legitimate nodes, referred to as
Alices and a base station referred to as Bob, over a fading
channel. Alices’ spatial locations are denoted by {xn}Nn=1

n = 1, . . . , N , where {xn}Nn=1 ∈ RL and L denotes the spatial
dimensions considered (typically L = 2). Let the channel
function mapping the spatial locations to the M×1 CSI vectors
{hn}Nn=1 denoted by H : RL → CM , where M is the number
of snapshots in the time domain. Alice and Bob exchange pilot
signals so that their respective observations can be modelled
as

ynu = hns+ nnu, n = 1, . . . , N , u ∈ {a, b}, (1)

where the index a denotes an Alice, b denotes Bob; nna and
nnb are complex circularly symmetric Gaussian noise vari-
ables and the pilot symbols s are chosen from binary phase-
shift keying (BPSK) constellation [24]. The channel estimates
at Alice and Bob, respectively, are denoted by hna = yna

1Note that tackling the third principle - temporal variation - is beyond the
scope of this work

and hnb = ynb for n = 1, . . . , N . Note that we require
high-dimensional CSI from as many distinct transmit locations
(Alices) as possible to perform accurate preprocessing at fast
rates, which is available in all modern wireless systems [25].

III. PROPOSED PREPROCESSING

We learn the functional mapping that captures the pre-
dictable spatially correlated components and the unpredictable
spatially decorrelated components of the CSI vectors sepa-
rately, applying: (i) PCA; and (ii) AE. PCA is a linear approach
but straightforward and computationally more efficient than
AE. On the other hand, AE can capture non-linear dependen-
cies but is also prone to overfitting due to many parameters.

A. PCA

Let Hu = [h1u, · · · ,hNu] denote the observed channel.
U is the M × M matrix whose rows are the eigenvectors
of the matrix Cov(Hu), sorted in decreasing order. In many
scenarios, e.g., Rician and generally line of sight settings, the
first few PCs correspond to the dominant large-scale fading
components and the rest of the PCs correspond to the other
residual components and noise. Using the eigenvectors D̂×M
matrix U1:D̂ corresponding to the first D̂ PCs, we compute the
dominant predictable part of the observed channel, as follows,

Ĥu = UH
1:D̂

Wu, (2)

where the D̂ ×M matrix Wu is

Wu = U1:D̂Hu, (3)

and Ĥu =
[
ĥ1u, · · · , ĥNu

]
for u ∈ {a, b} is a M×N matrix.

Once the dominant (predictable) components are removed,
we construct the unpredictable part of the observed channel,
denoted as H̃u, using the eigenvectors corresponding to the
D̂+ 1-th PC to D̂+ D̃-th PC, where H̃u =

[
h̃1u, · · · , h̃Nu

]
for u ∈ {a, b}.

Note that the components beyond D̂+ D̃ are dominated by
and neglected while calculating the residuals. To efficiently
disentangle into predictable and unpredictable parts, the pair
{D̂, D̃} has to be chosen such that the residuals are inde-
pendent with minimal effect on the quality of reconciliation
between Alices’ and Bob’s residuals (i.e., the reciprocity
between Alices’s and Bob’s should not be too compromised).
We discuss the trade-off between SC (as a measure of inde-
pendence) and reconciliation for the proposed method in detail
in Section V. We will also elucidate how the D̂ dominant
components can be used for authentication.

B. Auto-encoders

AE is a neural network that learns two functions, an encoder
that maps the M dimensional input matrix hnu into D̂
dimensional encoded values wnu ∀ n = 1, . . . , N and for
u ∈ {a, b} and a decoder that maps the encoded values back
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to an M dimensional output ĥnu, ∀ n = 1, . . . , N and for
u ∈ {a, b}, such that the loss-function

E1 =
1

N

N∑
n=1

‖hnu − ĥnu‖22, for u ∈ {a, b}, (4)

which is the mean square error (MSE) is minimal. AE is
assumed to implement a denoised D̃-dimensional encoded
representation wnu, ∀ n = 1, . . . , N that can completely
encode the dominant components. We treat the output of the
decoder ĥnu,∀n = 1, . . . , N, for u ∈ {a, b} as the dominant
predictable components under the conjecture that most of the
received signal strength is due to large scale fading effects.
Here again, we assume that the residuals{

h̃nu(D̂)
}N

n=1
= {hnu − ĥnu}Nn=1, for u ∈ {a, b} (5)

are the unpredictable components of the channel vectors. Also,
the value of D̃ is a hyperparameter that must be tuned to
balance the desired SC with the reciprocity of the residuals
in the uplink and the downlink. Since we want to lower
correlation, the loss function can also explicitly specify a
correlation term instead of the MSE. In such a case, the
following loss function is proposed:

E2 =
1

N

N∑
n1=1

n2∈U(n1)

h̃H
n1uh̃n2u, for u ∈ {a, b}, (6)

as the inner product of the residual at each location and that
from the neighbouring locations. Here, U(n1) is the nearest
neighbours of the n1-th Alice-Bob pair.

IV. EVALUATION OF PREPROCESSING

In this section, we describe the metrics used to evaluate
the residuals obtained from the proposed preprocessing and
analyze their trade-off for different values of the pair {D̂, D̃}.

A. Spatial decorrelation and independence

The straightforward metric to measure the degree of SC
of the residuals between locations is the Pearson correla-
tion coefficient (CC). Given a pair of residuals h̃n1u and
h̃n2u at two locations n1 and n2 respectively, the CC is,
E
(
h̃n1u−E(h̃n1u)

)
E
(
h̃n2u−E(h̃n2u)

)
σh̃n1u

σh̃n2u

, where σh̃n1u
and σh̃n2u

are the respective standard deviations.
We also explore a kernel-based statistical test of indepen-

dence abbreviated as dHSIC to determine if the multivariate
random variables (RV) are mutually independent [23]. The
test applies a positive-definite kernel on the M -dimensional
RV and maps its distribution into the reproducing kernel
Hilbert space. More precisely, let H̃ =

(
h̃1, · · · , h̃N

)
be an

M×N matrix based on the observations of the M -dimensional
residuals h̃i = [h̃1i , · · · , h̃Mi ]T for i ∈ {1, · · · , N}. The
null hypothesis indicates that the h̃j for j ∈ {1, · · · ,M}
are mutually independent, H0 : Fh̃1,··· ,h̃M = Fh̃1 · · ·Fh̃M ,
whereas the alternative, HA : H̄0 (not H0), denotes that
H̃ consists of at least two dependent vectors. An estimator

dHSICM of the statistical functional is as follows [23, Def
2.6],

dHSICN (H̃) =
1

N2

N∑
i,j=1

M∏
l=1

(
1N×N◦Kl

ij

)
+

1

N2M

M∏
l=1

N∑
i,j=1

Kl
ij

− 2

NM+1

N∑
i,j=1

M∏
l=1

(
1N×1 ◦Kl

ij

)
,

(7)
where the operator ◦ denotes the Hadamard product and
1N×N is an N × N matrix of ones. Also, Kl =

(
Kl
ij

)
=(

kl(xi, xj)
)
∈ RN×N is the Gram matrix of the positive semi-

definite Gaussian kernel kl, defined ∀xi, xj ∈ R by, kl =

exp

(
−‖xi−xj‖

2

σ2

)
, with bandwidth σ =

√
med
(
‖xi−xj‖2

)
2 ,

where med(.) is the median heuristic.
According to [23, Theorem 3.1], with respect to the hypoth-

esis test at hand, the critical value (for a specific significance
level α) can be obtained as below,

CVα =
[
DHSIC

]
d(B+1)(1−α)e+∑B

i=1 1{dHSIC(H̃)=dHSIC(H̃i)}

,

where vector DHSIC contains the B Monte-Carlo realisa-
tions of dHSIC(H̃) in an increasing order; the re-sampling
function dHSIC

(
H̃
)

, H̃ =
(
r1(h̃1), · · · , rN (h̃N )

)
is con-

structed by r1, · · · , rN random re-samplings without replace-
ment. The operators d.e and [.]j denote the ceiling function
and the j-th element of a vector respectively, and 1{.} is the
indicator function.

Based on the dHSIC procedure, we propose here a
normalized-metric,

dHSIC =
dHSIC(H̃)− CVα

dHSIC(H̃)
1{dHSIC(H̃)>CVα}. (8)

The dHSIC is zero at independence and near zero in case of
a low dependence between the variables.

B. Reciprocity and mismatch probability

We use a one-bit quantizer about the median point along
the time dimension to check the reciprocity of the residuals
in the uplink (Alice to bob) and the downlink (Bob to Alice).
The mismatch probability (MP) between Alice and Bob is
given by the ratio of the number of bits in error between them
to the total number of bits. The quality of reciprocity in both
directions is again governed by the parameters (D̂, D̃) for PCA
and the hyperparameter D̂ for AE. Note that the mismatching
can be corrected during the information reconciliation stage;
however, the higher the MP, the lower the rate of the recon-
ciliation decoder.

C. Total variation distance for authentication

Recall that the output ĥnu,∀n = 1...N, for u ∈ {a, b} of
the inverse-PCA or the decoder of AE are termed the dominant
predictable components of the channel. They depend on the
number of dominant PCs D̂ that were discarded after the PCA
or the number of neurons in the encoding layer D̂ in the AE.
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Note that for an efficient node-authentication, the predictable
components between adjacent neighbours must be distinguish-
able from one another. To measure the separability of the
predictable components between neighbouring locations, we
use the popular total variation distance (TVD), which measures
the distance between the probability density function (PDF) of
the sequences. For two probability measures P and Q on a
set X , the TVD d(P,Q) is defined as follows

d(P,Q) =
1

2

∑
x∈X

∣∣P (x)−Q(x)
∣∣ . (9)

As the TVD between two sequences of predictable compo-
nents increases, the components are more distinguishable and
vice-versa. In the next section, we discuss the evolution of
TVD for various values of D̂.

V. NUMERICAL RESULTS

To perform simulations, we obtain the channel frequency
response (CFR) between transmitters (Alices) at N = 400
equi-distant (1 m) spatial locations within a square area on
the ground, between x = 100 and x = 290 and y = −100
and y = 90 and a receiver (Bob) at the location (x, y, z) =
(0, 0, 10). The number of snapshots are M = 128, obtained at
a carrier frequency of 2.68 GHz, using the popular Quadriga
channel models [26]. To create a temporal variations in the
channel, the Alices are assumed to move at a speed of 0.5 m/s
and we capture 100 snapshots per second.

A. PCA

First, we study the effect of preprocessing using PCA on
the residuals, for SNR = 20 dB, in Fig. 1. Figures 1 (a), (b),
and (c) illustrate the variation of the three metrics i) average
CC between the locations and their nearest neighbours ii) the
dHSIC iii) the average MP between the Alices and Bob,
respectively, with respect to the variation in the pair {D̂, D̃}
in steps of 2. The grid corresponding to D̂ = 0 and D̃ = 0
indicates no preprocessing. With no preprocessing, the average
CC is approximately 0.49, and the MP nearly 0. However, with
a sufficient number of dimensions D̃ retained, say D̃ > 2, an
increase in the number of dimensions omitted D̂ results in a
decrease in the CC. Specifically, for D̂ = 2 and D̃ = 20,
we observe a drop in the CC to 0.35, with no significant
increase in MP. This is the regime in which the predominant
large scale predictable components are removed, and the small
scale components are retained. Also, the reciprocity is nearly
intact, reflected by the very low MP. This regime is indicated
as ”Dominance of uncorrelated components” in Fig. 1(a).
The corresponding region is referred to as ”Low Mismatch
Probability” in Fig. 1(c).

Note that, the drop in CC is more pronounced beyond
D̂ = 14, beyond which most of the predictable components
are removed, and the noise becomes dominant. In this regime,
the MP also increases due to the impact of noise. This regime
is referred to as ”Dominance of Noise” in Fig. 1(a). The cor-
responding region is marked as ”High Mismatch Probability”
in Fig. 1(c). Note that for D̂ > 0 and D̃ = 2, the CC of the

TABLE I: The layers and activation function for AE1. For
AE2 the only change is that the dimensions of the input and

the output layers are 400.
Layer Dimensions Activation
Input 200 Linear

1 100 tanh
2 50 softplus
3 20 tanh

Intermediate D̂ linear
4 20 relu
5 50 softplus
6 100 tanh

Output 200 Linear

residuals is large (≈ 1) compared to the original signal. In
this regime, the residuals are only two components, which are
largely predictable and hence have high CC.

A trend similar to CC, is observed in the average dHSIC
values in Fig 1(b), especially for higher values of the pair
{D̂, D̃} (in the regime ”Statistical Independence”) indicating
likely independence. On the other hand, dHSIC does not
follow the CC drop for D̂ = 2 and D̃ > 10, indicating the
limitations of CC metric compared to dHSIC, e.g., to capture
non linear dependence. In Fig. 2, the trade-offs between CC
and MP are shown for SNR= 5 dB. As expected, with a
decrease in SNR, the effect of noise is more pronounced.
Therefore, the regime of noise dominance and high MP is
seen even at D̂ = 10.

In Fig. 3, the average TVD between the predictable com-
ponents of Alice and those of her neighbours is plotted for
varying D̂. We observe that picking only the first PCA com-
ponent provides Alice’s best separation from her neighbours.
The result for D̂ = 0 is for the original measurements. With an
increase in the SNR, there is a small increase in the TVD. This
is because, with an increase in noise, the variance of the pre-
dictable components increases and hence TVD decreases. To
explain the utility of disentangling the predictable components
visually, in Fig. 4, we show the variation of the magnitude of
the original channel and the predictable components vs time
for six neighbours from the 400 locations. We can observe
that when compared to the original signal in Fig. 4(a), the
predictable components in Fig. 4(b) are distinguishable and
temporally constant.

B. AE

The layers and the activation function in the AE are given
in Table I and follow the AE in [25]. For brevity, the AE with
MSE loss function is referred to as AE1, and that with dot-
product loss function is referred to as AE2. The input to the
AE2 is formed by grouping the 200× 1 CSI vector (100 real
and 100 imaginary) of each spatial location with 200×1 long
CSI vector from each of the 8 nearest neighbours surrounding
the location. In other words, the dimension at the input and
the output is 400× 1. This ensures that the loss function can
minimize the correlation between the users while minimizing
the reconstruction error between the input and the output. Two
types of training are possible. In localized training, Bob and
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Fig. 1: Trade-off for the Original and Residual components for SNR = 20 dB. Darker colours indicate lower values.
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Fig. 2: Trade-off for the Original and Residual components
for SNR = 5 dB
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the set of Alices train separate AEs with their local data sets.
In centralized training, Bob trains an AE with its set of the
received signal and distributes the values to the Alices.

From Table II, note that, as in the case of PCA, the lower the
SNR, the lower the CC and the higher the MP. Moreover, with
an increase in the encoding dimensions D̂, the AE has more
freedom to represent the predictable components. Therefore,
with an increase in D̂, we observe a drop in the CC. AE2
achieves a CC of 0.32 for D̂ = 8 and SNR= 20 dB for the
residual components, without a significant increase in MP for
Centralized training. This CC is lower than what PCA achieves
for D̂ = 2 and D̃ = 20. However, the dHSIC of the residuals
does not show a significant decrease from that of the original
components, especially for SNR= 20 dB. This indicates that
an independence criterion has to be incorporated in the AE
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Fig. 4: Separability of 6 neighbours for the original signal
and the predictable component with D̂ = 1 for SNR= 20 dB

TABLE II: AE: Key results
D̂ 1 8

SNR (dB) 5 20 5 20

AE type AE1 AE2 AE1 AE2 AE1 AE2 AE1 AE2

Original-CC 0.36 0.36 0.48 0.48 0.36 0.36 0.48 0.48

Residual-CC 0.34 0.28 0.44 0.35 0.30 0.20 0.42 0.32

Original-dHSIC 0.64 0.64 0.82 0.82 0.64 0.64 0.82 0.82

Residual-dHSIC 0.6 0.58 0.78 0.72 0.43 0.28 0.75 0.75

MP for Localized 0.37 0.39 0.19 0.27 0.39 0.45 0.17 0.36

MP for Centralized 0.35 0.35 0.08 0.08 0.34 0.40 0.10 0.11

TVD Original 0.17 0.17 0.25 0.25 0.17 0.17 0.25 0.25

TVD Predictable 0.19 0.38 0.20 0.42 0.15 0.35 0.18 0.36

loss function directly, which at present is left for future work.
We note in passing that alternatively, dependencies between
the residuals can be removed at the final privacy amplification
stage of the SKG.

Observe that, in AE2, since the loss function is the dot
product between residuals instead of the MSE, we can observe
a significant drop in both CC and dHSIC of the residuals for
AE2 compared to AE1. However, this is accompanied by an
increase in the MP, especially in the case of localized training.
Also, as expected, centralized training results in a much lower
mismatch probability when compared to localized training.

For the case of node-authentication using the predictable
components, note that AE1 minimizes the MSE between the
original and the predictable components. The AE only attempts
to fit the output similar to the original input components in
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such a case. Therefore, the TVD remains constant or some-
times even reduces for the predictable components compared
to the original components. On the contrary, in AE2, since
the loss function is not MSE but the inner product between
the residuals, there is no obligation to match the output of
the decoder with the input. Hence, the TVD increases in the
predictable components.2 However, an overall observation is
that for node authentication, retaining the first PC could be
the prefered approach.

As a final point in this discussion, despite the significant MP
in some cases, Alice and Bob can reconcile their sequences
by using more powerful reconciliation codes. For instance, in
one-shot communication between Alice and Bob, Alice sends
helper data to Bob through the public channel. Bob corrects the
bits in mismatch, utilizing his own generated sequence and the
helper message. For example, for SNR = 20dB, D̂ = 2 and
D̃ = 20, we can utilize CRC-aided polar codes with list size of
32, to correct all the bits in errors with a coding rate R = 0.2
[27]. Finally, we also note that it is possible to explore the
working of a dual architecture; PCA can extract the dominant
component for authentication, and AE can extract the residuals
for SKG.

VI. CONCLUSIONS

In this paper, we built and evaluated PCA and AE based
preprocessing approaches for disentangling the predictable
components from the unpredictable components of wireless
fading channel realizations. We discussed in detail the trade-
off between SC at transmitter locations and reciprocity or the
lack of mismatch between the uplink and downlink for the
unpredictable components used for SKG. We also addressed
the necessity for a much more decisive spatial independence
criterion using dHSIC. We showed, by simulations, the su-
periority of AE in reducing the SC by incorporating the CC
explicitly as a loss function. Finally, we studied the spatial
uniqueness in the predictable components used for node-
authentication using TVD.
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