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Abstract—Automatic modulation classification is of crucial
importance in wireless communication networks. Deep learning
based automatic modulation classification schemes have attracted
extensive attention due to the superior accuracy. However, the
data-driven method relies on a large amount of training samples
and the classification accuracy is poor in the low signal-to-noise
radio (SNR). In order to tackle these problems, a novel data-
and-knowledge dual-driven automatic modulation classification
scheme based on radio frequency machine learning is proposed
by exploiting the attribute features of different modulations.
The visual model is utilized to extract visual features. The
attribute learning model is used to learn the attribute semantic
representations. The transformation model is proposed to convert
the attribute representation into the visual space. Extensive
simulation results demonstrate that our proposed automatic
modulation classification scheme can achieve better performance
than the benchmark schemes in terms of the classification
accuracy, especially in the low SNR. Moreover, the confusion
among high-order modulations is reduced by using our proposed
scheme compared with other traditional schemes.

Index Terms—Automatic modulation classification, data-and-
knowledge dual-driven, low signal-to-noise radio.

I. INTRODUCTION

ARtificial intelligence and intelligent communication are
indispensable parts in wireless communication systems.

As an indispensable intelligent communication technology in
wireless communication systems, automatic modulation clas-
sification (AMC) has been widely used in various applications.
In military applications, AMC helps to recover the transmitted
information and generate interference signals with matching
modulation [1]. In civilian applications, AMC is able to
determine the appropriate demodulation method to realize the
correct recovery of transmitted information [2].

The existing automatic modulation classification (AMC)
schemes can be mainly classified into two categories, namely,
model-driven AMC and data-driven AMC. The model-driven
schemes mainly include likelihood-based (LB) schemes [3]
and feature-based (FB) schemes [4]. The LB classifier treats
AMC as a hypothesis testing problem. Different test statis-
tics are constructed firstly. Then, the likelihood functions
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are calculated under the modulation hypothesis by using the
constructed test statistics. Lastly, these functions are compared
to make the final decision [3]. The FB schemes aim to
extract unique characteristics of different types of signals and
have robust performance with low implementation complexity
[5]. In contrast, data-driven methods, such as support vector
machine (SVM) [6], and logistic regression [5], etc., perform
modulation classification by learning the difference among
data distributions. Moreover, the data-driven deep learning
utilize the neural networks to extract the visual features
automatically from the original data, such as I/Q samples. The
related works are classified as follows.

Model-driven methods: The authors in [7] used the
maximum-likelihood method to recognize digital amplitude-
phase modulations. It was shown that the maximum-likelihood
classifier is capable of classifying any finite set of distinctive
constellations with the zero error rate when the number of
available symbols goes to infinity. However, the maximum-
likelihood method suffers from high computational complex-
ity. With the FB schemes, the authors in [8] utilized the high-
order statistical features to realize the modulation classifica-
tion. It was shown that the FB method can achieve good
performance with low computational complexity.

Data-driven methods: A long short-term memory (LSTM)
based AMC algorithm was proposed in [9]. LSTM learns the
dependency relationship between the current element and the
elements before-after through the gating structure. However,
its recurrent structure results in high computational complex-
ity. Meanwhile, spatial correlation features are ignored in this
scheme. The authors in [10] utilized the CNN-LSTM to effi-
ciently explore the feature interaction and the spatial-temporal
properties of raw complex temporal signals. However, the
increase of the depth of the network can cause the gradient
vanishing and over-fitting problems. A deep residual network
(ResNet) was proposed in [11] by using residual learning with
skip connection for image classifications, which alleviates the
over-fitting problem when training deep networks. Meanwhile,
it is able to learn discriminative features for achieving a
better performance. However, the complex architecture of
deep network needs a lot of computing resources and takes
a long time to train. This drawback makes it unrealistic in
the practical scenarios since the real-time performance is
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of crucial importance in practical applications. In [12], the
authors designed a lightweight model with smaller model
sizes. High computation efficiency was achieved by using
model compression. The simulation results demonstrated that
the lightweight model reduces the training time significantly
with negligible loss in classification accuracy.

All the data-driven AMC schemes mentioned in [9]-[12] re-
quire a large amount of training samples, which are difficult to
be obtained in practical communication scenarios. Meanwhile,
pure data-driven schemes cannot satisfy the classification
performance requirements under the dynamically changing
communication scenarios. In particular, the classification per-
formance achieved by using those methods is very poor in low
SNRs. Recently, radio frequency machine learning (RFML)
has been proposed [13],[14] and envisioned to be promising to
tackle these problems. It exploits expert knowledge to achieve
superior performance. Motivated by RFML, a novel data and
knowledge dual-driven AMC scheme is proposed in this paper.
Our main contributions are as follows.

• It is the first time that semantic information, e.g., class
attributes, is exploited to decrease the required number
of training samples, which is of crucial importance in the
practical complex and dynamic wireless networks.

• An improved residual network is proposed for attribute
learning.

• A novel data and knowledge dual-driven framework for
AMC is proposed to construct the classifier to learn
the muti-dimensional representations of different modu-
lations from I/Q signals.

• Simulation results demonstrate that our proposed scheme
has a better classification performance compared with
other DL-based AMC schemes, especially in the low
SNR. Moreover, the confusion between 16QAM and
64QAM is reduced significantly.

The remainder of this paper is organized as follows. The
preliminary is presented in Section II. Section III presents our
proposed scheme. Section IV presents the simulation results.
Finally, the paper concludes with Section V.

II. PRELIMINARIES

A. Problem Statement

The modulation classification can be identified as a K-class
hypothesis test, where K denotes the number of modulations.
The received signal under the kth modulation hypothesis Hk

is given as

Hk : xk(n) = sk(n) + ωk(n), n = 1, 2, ..., N, (1)

where sk(n) and xk(n) are the transmitted signal and the re-
ceived signal, respectively. N is the number of signal symbols.
ωk(n) is the additive white Gaussian noise with mean being
zero and variance being σ2.

The in-phase and quadrature (I/Q) parts of the received
signal are both utilized. These two parts usually obey an
identical independent distribution, which can be input into
the neural network without normalization [15]. The I/Q signal

samples can be expressed as a vector by turning the received
signal xk(n) into the vector xk, given as

xk = Ik +Qk (2a)
= <(xk) + j=(xk), (2b)

where Ik and Qk represent the in-phase part and the quadra-
ture part of the received signal, respectively, and j =

√
−1.

<(·) and =(·) represent the operators of the real and imaginary
parts of the signal, respectively. The raw data xk can be
specifically expressed as the form of matrix, given as

xk =

[
< [x(1), x(2), ..., x(N)]
= [x(1), x(2), ..., x(N)]

]
. (3)

B. Traditional AMC Methods

The DL-based schemes such as CNN and RNN are utilized
to extract features from the raw data. Then, a fully connected
(FC) layer is utilized to integrate the information and carry
out the conversion of feature dimension. The feature learning
can be expressed as a process that the raw data xk ∈ RN×2

is mapped into a L-dimensional vector y, given as

f : xk ∈ RN×2 → y ∈ RL, (4)

where mapping function f represents the feature learning
model with the fully connected layer, and y represents the
feature vector output from the FC layer.

Finally, the learned feature vectors are classified by another
FC layer with the softmax classifier. The number of neurons
in the last layer is equal to the number of modulation formats.
Thus, each output neuron corresponds to a modulation format.
Softmax is used to convert the output into the probability that
the input signal belongs to each candidate modulation format.
The cross-entropy loss function is utilized to measure the gap
between the model output and the true label. It can be given
as

loss =
1

N

N∑
j=1

K∑
k=1

qj,k log(pj,k), (5)

where K represents the number of classes, N represents the
number of samples. pj,k is the output of softmax, which
represents the probability when data sample j belongs to class
k. qj,k is a indicative variable, which is given as

qj,k =

{
1, if j belongs to k
0, if j does not belongs to k. (6)

However, the pure data-driven AMC method requires a large
number of samples to complete the training of deep networks.
Moreover, the classification accuracy of traditional methods
is poor in the practical complex and dynamic scenarios,
especially in the low SNRs. Fortunately, the exploitation of
expert knowledge is promising to tackle those problems [16].
However, to our best knowledge, few investigations have
studied it. Therefore, we propose a novel data and knowledge
dual-driven AMC method.
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Fig. 1: The deep visual-semantic embedding model.

III. PROPOSED AMC SCHEME

The architecture of our proposed AMC scheme is shown
in Fig. 1. On one branch, the visual model encodes the raw
I/Q data into visual vectors. The visual feature space is used
as the embedding space where both the visual content and the
attribute vector of the class that the modulation format belongs
to are embedded. On the other branch, the attribute learning
model learns the attribute vectors corresponding to different
modulation formats according to the deterministic attribute
labels that are set artificially. Then, the transformation model
converts the attribute vectors into the visual feature space.
Lastly, a least square embedding loss is utilized to minimize
the discrepancy between the visual feature vectors and the
attribute vectors.

A. Visual Model
Fig. 2 illustrates the framework of the visual model. The

multi-scale convolutional network (MSNet) is employed as
the visual model. The MSNet consists of several multiscale
(MS) modules, global average-pooling (GAP), FC layers and
the softmax classifier. MS modules are used to capture the
multi-level feature information by using a 3 × 1 convolution
layer with stride = 2 to reduce the feature dimension at the
top layer of the module. Then, several parallel convolutions
with different kernel sizes are utilized to capture multi-level
features. Features from different convolutional layers are con-
solidated together by using the concat operation. After the
concat operation, the FC layer of the traditional CNN is
replaced by the GAP for aggregating information from the
MS modules to average each feature output from the four
corresponding channels. Compared with the traditional FC
layer, the over-fitting problem is avoided since there is no
parameter required to be optimized in GAP. Moreover, another
FC layer with rectified linear units (ReLU) is utilized to reduce
the feature dimensionality. ReLU function can be expressed as

f(z) = max(0, z), (7)

where max(·) represents the operator for obtaining the maxi-
mum value.

The values of several neurons are set to be zero, which
results in the sparsity of the network and reduces the inter-
dependence among parameters. Therefore, the occurrence of
over-fitting problems can be alleviated. Moreover, different
from sigmoid and tanh activation function, ReLU function
dose not have the saturation zone. Thus, the gradient vanishing
problem can be avoided. The specific architecture of the visual
model is shown in Table I.

B. Attribute Learning Model

The core goal of AMC is to recognize the category of
different modulations. Each modulation has its unique charac-
teristics. Thus, modulation can be identified based on the high-
level description that is phrased in terms of semantic attributes.
Different classes are usually different in the high dimensional
feature space. In this case, it is promising to combine semantic
attributes and visual features to achieve a higher classification
accuracy.

An adaptation of residual network was exploited to learn the
attribute representation of different modulations. The residual
unit is shown in Fig. 3(a). Two 2D convolution operations
with kernel size 3 × 3 are performed in the residual unit.
Different from ResNet in [15], the batch normalization layer
is used to standardize the data in the intermediate layers to
avoid the gradient disappearance caused by the saturation of
the partial derivative of the intermediate variable. Alongside,
ReLU activation is used after the first convolution and after the
skip connection to introduce non-linear operations as shown
in Fig. 3(a). The residual stack, as shown in Fig. 3(b) consists
of a convolution operation with a kernel size of 1×1 followed
by two residual units. The maxpool layer is used to compress
features. Moreover, the GAP is used to average the outputs
of different channels. Therefore, the parameters are reduced
greatly compared with FC in ResNet proposed in [15]. The
specific architecture of the attribute learning network is shown
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Fig. 2: The architecture of the visual model.
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Fig. 3: (a) ResUnit. (b) Residual stack. (c) The attribute
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in Fig. 3(c). The number of residual stack is decreased from
6 to 3 to reduce the complexity of the model. The kernel size
and output dimensions corresponding to different layers of the
attribute learning model are shown in Table II.

Since the learning of each attribute transcends the specific
classification task, the attribute learning model can be pre-
learned independently [16]. In this way, we can perform
attribute learning through bigger datasets that are not limited
to AMC datasets.

C. The Visual-Attribute Embedding Model

The visual-attribute embedding model has two branches.
One branch is the visual encoding branch adapted from the
MSNet in Fig. 1, and the softmax classification layer is
removed. The visual encoding branch can output the visual
feature vector. It takes the raw data of the signal samples Ii
as the input. Then, the MS module is used to extract multi-
dimensional features. The GAP is used to flatten multi-channel
features. Finally, the FC layer outputs a D-dimensional feature
vector φ1(Ii) ∈ RD×1.

The semantic embedding is achieved by the other branch
which is a attribute learning subnet as illustrated in III-B. The
subnet outputs a L-dimensional feature vector φ2(Ii) ∈ RL×1.
Moreover, a joint embedding space is learned where both
the attribute vectors and the visual feature vectors can be

TABLE I: The Specific Architecture of the Visual Model

Input Layers Kernel Size Output

Input − 2× 128

MS module 3× 1, [7× 1, 5× 1, 3× 1, 1× 1] 128× 64

MS module 3× 1, [7× 1, 5× 1, 3× 1, 1× 1] 128× 32

GAP 1× 1 128× 4

FC/ReLU 512× 128 128

FC/Softmax 128× 4 4

TABLE II: The Specific Architecture of the Attribute Learning
Model

Input Layers Kernel Size Output Dimensions

Input − 2× 128

Conv 1× 1 32× 128

ResUnit 3× 2 32× 128

ResUnit 3× 2 32× 128

Maxpool 2× 1 32× 64

ResUnit 3× 2 32× 64

ResUnit 3× 2 32× 64

Maxpool 2× 1 32× 32

ResUnit 3× 2 32× 32

ResUnit 3× 2 32× 32

Maxpool 2× 1 32× 16

GAP 1× 1 32× 1

FC 32× 6 6

projected. The authors in [16] has proved that the visual feature
space is the most appropriate embedding space, which can
alleviate the hubness problem [16]. Therefore, a transformation
subnet is designed to convert attribute vectors into vectors
in the same dimensional space as the visual feature vectors.
Specifically, it takes the L-dimensional attribute representation
vector φ2(Ii) ∈ RL×1 of the attribute learning subnet as
input, and after going through two FC layers and the ReLU
activation outputs a D-dimensional semantic embedding vector
φ3(φ2(Ii)) ∈ RD×1. In order to show the process of the
transformation subnet in detail, the output can be expressed
as

φ3(φ2(Ii)) = f2(W2f1(W1φ2(Ii))), (8)

where W1 ∈ RL×M and W2 ∈ RM×D are the weights to
be learned in the first FC layer and the second FC layer. The
rectified linear units f(·) is used as the activation function to
introduce non-linearity into the network.

Each of the FC layer has a l2 parameter regularization
loss. The two branches are linked together by a least square
embedding loss which aims to minimise the discrepancy
between the visual feature vector φ1(Ii) ∈ RD×1 and its class
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representation embedding vector in the visual feature space.
The loss function is given as

L(W1,W2) =
1

N

N∑
i=1

‖φ1(Ii)− f2(W2f1(W1φ2(Ii)))‖2

(9)

+ λ(‖W1‖2 + ‖W2‖2).

where N is the number of training samples and λ is the
hyper-parameter weighting the strengths of the two parameter
regularization losses against the embedding loss.

As is shown in Fig. 3, different from the traditional pure
data-driven architecture, our proposed scheme constructs a
embedding space where both visual features and attribute
features can be projected. The integration of attribute features
can improve the performance of the model in low SNRs.
Meanwhile, the existence of two pre-trained models makes
end-to-end training only be required for the transformation
model. Therefore, the training speed of our proposed scheme
can be extremely high. Moreover, due to the introduction of
attribute knowledge, we can reduce the requirements for visual
model data. Lastly, different from abstract visual features, the
attribute features labels are composed of deterministic binary
variables which have clear physical implications.

IV. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
the performance of our proposed AMC scheme and compare
with the benchmark schemes. The simulation settings are
based on the works in [4]. The performance is measured on
a system equipped by a 3.00-GHz CPU, 16GB RAM, and a
single NVIDIA GeForce GTX 1660SUPER GPU.

For the attribute learning model, we train it by using the
stochastic gradient descent (sgd) optimizer with an initial
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learning rate of 0.01, and a momentum of 0.9 for 40 epochs.
Different from the training of visual model, the attribute
learning is not a classification problem. Therefore, the mean
squared error function is utilized to measure the gap between
the model output and the true attribute label.

The classification performance is operated on a publicly
available dataset, which is presented on the website 1. Fig.
4 shows the classification performance comparison of our
proposed scheme with those achieved by several representative
DL-based models for AMC including MSNet [4], ResNet [15],
VGG [15] and LSTM [18]. It is evident that the proposed
scheme is superior to other traditional models, and it can
provide 2% gains over ResNet, 5% gains over MSNet, 17%
gains over LSTM and VGG at 12dB. Moreover, our proposed
scheme has superior classification performance in low SNRs.
It can reach about 60% accuracy when the SNR is -20dB,
and it can achieve over 70% accuracy when the SNR is over

1https://www.deepsig.ai/datasets.
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-14dB, while the performance of ResNet is only about 25%
at -20dB and 32% at -14dB.

The comparison of the confusion matrices between MSNet
[4] and our proposed scheme is shown in Fig. 5. It is seen
that the proposed scheme has less confusion compared to
other traditional models. Specifically, two modulation formats
perform worse in MSNet, which are 16QAM and 64QAM as
shown in Fig. 5(a) and Fig. 5(b), respectively.

Fig. 6 illustrates the training loss of each model for AMC.
The proposed scheme can achieve a lower loss in the training
set compared to the other models and obtains a higher con-
vergence speed than other models. Specifically, our proposed
model can achieve convergence at only about the 9th epoch.
This is reasonable, since the pre-trained subnets can greatly
reduce the end-to-end training time.

To further demonstrate the effectiveness of the proposed
scheme, we visualize the extracted feature and convert them
into a two-dimensional scatter map [19] shown in Fig. 7. It
can be seen that 16QAM and 64QAM are mixed together
in MSNet [4]. In contrast, the features between 16QAM
and 64QAM are much more discriminative in our proposed
scheme. This indicates that our proposed scheme can achieve
better classification performance for high-order modulations.

V. CONCLUSION

A novel data and knowledge dual-driven AMC scheme
based on RFML was proposed by exploiting attribute features
and visual features. The attribute learning model was utilized
to learn different attribute representations. The transformation
model was used to convert attribute features into visual space
to embed with the output of visual model. Simulation results
demonstrated that our proposed scheme is superior to other
benchmark schemes in terms of the classification accuracy
especially in the low SNR. Moreover, the confusion between
high-order modulations is reduced compared with other bench-
mark schemes.

REFERENCES

[1] Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long,
“Cognitive Internet of Things: A new paradigm beyond connection,”
IEEE Internet Things J., vol. 1, no. 2, pp. 129-143, Apr. 2014

[2] G. Ding, J. Wang, Q. Wu, Y.-D. Yao, F. Song, and T. A. Tsiftsis,
“Cellular-base-station-assisted device-to-device communications in TV
white space,” IEEE J. Sel. Areas Commun., vol. 34, no. 1, pp. 107-121,
Jan. 2016.

[3] F. Hameed, O. A. Dobre, and D. C. Popescu, “On the likelihood-based
approach to modulation classification,” IEEE Trans. Wireless Commun.,
vol. 8, no. 12, pp. 5884-5892, Dec. 2009.

[4] H. Zhang, F. Zhou, Q. Wu, W. Wu, and R. Q. Hu, “A novel automatic
modulation classification scheme based on multi-scale networks,” IEEE
Trans. Cognit. Commun. Netw., pp. 1-1, 2021.

[5] S. Huang, Y. Yao, Z. Wei, Z. Feng, and P. Zhang, “Automatic modulation
classification of overlapped sources using multiple cumulants,” IEEE
Trans. Veh. Technol., vol. 66, no. 7, pp. 6089-6101, Jul. 2017.

[6] F. Cai and V. Cherkassky, “Generalized smo algorithm for svm-based
multitask learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no.
6, pp. 997-1003, Jun. 2012.

[7] W. Wei and J. Mendel, “Maximum-likelihood classification for digital
amplitude-phase modulations,” IEEE Trans. Commun., vol. 48, no. 2,
pp. 189-193, Feb. 2000.

[8] Fuhui Zhou, Yuhang Wu, and Qihui Wu, “Resource allocation based
on deep reinforcement learning for wideband cognitive radio networks,”
URSI GASS 2021, to be published.

[9] Y. Chen, W. Shao, J. Liu, L. Yu, and Z. Qian, “Automatic modulation
classification scheme based on lstm with random erasing and attention
mechanism,” IEEE Access., vol. 8, pp. 154290-154300, Aug. 2020.

[10] Z. Zhang, H. Luo, C. Wang, C. Gan, and Y. Xiang, “Automatic
modulation classification using cnn-lstm based dual-stream structure,”
IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13521-13531, Nov. 2020.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016,
pp. 770-778.

[12] Y. Wang, J. Yang, M. Liu, and G. Gui, “Lightamc: Lightweight au-
tomatic modulation classification via deep learning and compressive
sensing,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3491-3495,
Mar. 2020.

[13] L. J. Wong, W. H. Clark IV, B. Flowers, R. M. Buehrer, A. J. Michaels,
and W. C. Headley, “The rfml ecosystem: A look at the unique
challenges of applying deep learning to radio frequency applications,”
arXiv preprint arXiv:2010.00432, 2020.

[14] W. H. Clark, V. Arndorfer, B. Tamir, D. Kim, C. Vives, H. Morris,
L. J. Wong, and W. C. Headley, “Developing RFML intuition: An
automatic modulation classification architecture case study, ” in Proc.
IEEE Military Commun. Conf., Oct. 2019, pp. 292-298.

[15] T. J. OShea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based
radio signal classification,” IEEE J. Sel. Topics Signal Process., vol. 12,
no. 1, pp. 168-179, Feb. 2018.

[16] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding model
for zero-shot learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2017, pp. 2021-2030.

[17] T. J. OShea, J. Corgan, and T. C. Clancy, “Convolutional radio mod-
ulation recognition networks,” in Proc. Int. Conf. Eng. Applications of
Neural Networks. Springer, 2016, pp. 213-226.

http://arxiv.org/abs/2010.00432


[18] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, “Deep
learning models for wireless signal classification with distributed low-
cost spectrum sensors,” IEEE Trans. Cognit. Commun. Netw., vol. 4, no.
3, pp. 433-445, Sep. 2018.

[19] Q. Wu, T. Ruan, F. Zhou, Y. Huang, F. Xu, S. Zhao, Y. Liu, and X.
Huang, “A unified cognitive learning framework for adapting to dynamic
environment and tasks,” IEEE Wireless Commun., to be published, 2021.


	I Introduction
	II Preliminaries
	II-A Problem Statement
	II-B Traditional AMC Methods

	III Proposed AMC Scheme
	III-A Visual Model
	III-B Attribute Learning Model
	III-C The Visual-Attribute Embedding Model

	IV Simulation Results
	V Conclusion
	References

