
Turbo Autoencoder with a Trainable Interleaver
Karl Chahine∗, Yihan Jiang†, Pooja Nuti∗, Hyeji Kim∗, and Joonyoung Cho‡

∗ University of Texas at Austin, † Aira Technology, ‡ Samsung Research America

Abstract—A critical aspect of reliable communication involves
the design of codes that allow transmissions to be robustly and
computationally efficiently decoded under noisy conditions. Ad-
vances in the design of reliable codes have been driven by coding
theory and have been sporadic. Recently, it is shown that channel
codes that are comparable to modern codes can be learned solely
via deep learning. In particular, Turbo Autoencoder (TURBOAE),
introduced by Jiang et al., is shown to achieve the reliability of
Turbo codes for Additive White Gaussian Noise channels.

In this paper, we focus on applying the idea of TURBOAE to
various practical channels, such as fading channels and chirp
noise channels. We introduce TURBOAE-TI, a novel neural ar-
chitecture that combines TURBOAE with a trainable interleaver
design. We develop a carefully-designed training procedure and
a novel interleaver penalty function that are crucial in learning
the interleaver and TURBOAE jointly. We demonstrate that
TURBOAE-TI outperforms TURBOAE and LTE Turbo codes
for several channels of interest. We also provide interpretation
analysis to better understand TURBOAE-TI.

Index Terms—neural channel coding, Turbo autoencoder, deep
learning, CNN, fading channels, chirp signal, bursty noise

I. INTRODUCTION

The discipline of coding theory has made significant
progress in the past seven decades since Shannon’s celebrated
work [1]. Several codes have been invented for reliable com-
munications, featuring convolutional codes, turbo codes, Low-
Density Parity Check (LDPC) codes, and polar codes.

Deep learning is an emerging and powerful tool that has
demonstrated promising success in channel coding [2]–[4] as
well as other aspects of physical layer communications, such
as beamforming [5], modulation [6], channel estimation [7]
and channel feedback [8]. In channel coding, on the one
hand, it is shown that introducing learnable components to
the existing codes and decoders leads to the improvement in
reliability and complexity (e.g., weighted belief propagation
decoder for linear codes [4], [9] and [10], [11]). On the
other hand, it is shown that end-to-end neural network based
codes can perform comparably to the state-of-the-art codes
for Additive White Gaussian Noise (AWGN) channels [12],
[13]. As depicted in Figure 1, a pair of channel encoder and
decoder modeled as neural networks and jointly trained via
backpropagation achieves the reliability of modern codes.

While the training framework in Figure 1 might look
straightforward, training a reliable code is shown to be
highly challenging [12]. The generic neural architectures,
such as Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN), are empirically shown to perform
poorly [12] as they tend to learn codes with a very short

This work is supported by Samsung Research America (SMI Lab).

Fig. 1. Autoencoder framework for channel coding: channel encoder and
decoder are modeled as neural networks and are trained jointly.

memory. To address these challenges, [12] introduces a cus-
tom neural architecture called TURBOAE, which concatenates
parity bits generated from three CNNs; as depicted in Figure 2
(left), one of the CNNs takes an interleaved bit stream. which
creates a long-range memory. This architecture is similar to
Turbo codes, shown in Figure 2 (right). TURBOAE, trained
via a carefully designed training methodology, mimics the
reliability of Turbo codes for AWGN channels [12].

Fig. 2. Encoder of TURBOAE vs. Turbo codes for a rate-1/3 code.

Since [12], TURBOAE architecture has gained huge interest,
and similar approaches for designing channel codes have
been proposed. Neural codes inspired by serially concatenated
Turbo codes and Reed-Muller/Polar codes are introduced
in [14] and in [15], respectively. TURBOAE has been applied
to channels with feedback [16] and joint coding and modula-
tion [17]. Methods to speed up training are presented in [14].

Despite the success, there are two important open problems.
First, how TURBOAE performs on various practical non-
AWGN channels, such as fading channels and channels with
bursty interference, is vastly unknown. Can we leverage the
trainability of TURBOAE for challenging communications?

Second, can we improve TURBOAE even further? In partic-
ular, a pseudo-random interleaver is deployed in the encoder
of TURBOAE in [12], [14]. Is this an optimal choice? Does
interleaver play an important role in the reliability? If so, how
can we choose an interleaver that leads to the high reliability?
These are challenging problems as the space of interleaver
grows faster than exponential in the block length. In this paper,
we make progress on both aforementioned problems. Our main
contributions are as follows.
• Development of Turbo Autoencoder with a Trainable In-

terleaver (TURBOAE-TI): We introduce a penalty func-

ar
X

iv
:2

11
1.

11
41

0v
1

 [
cs

.I
T

]
 2

2
N

ov
 2

02
1

tion to make the interleaver trainable and provide a
well-thought-out optimization methodology to learn the
interleaver together with the rest of TURBOAE.

• Adaptivity and robustness: We demonstrate that
TURBOAE-TI outperforms TURBOAE and LTE Turbo
codes on several channels of practical interest, such as
fading channels and bursty noise channels. We show that
we gain in reliability up to 1dB.

• Performance on AWGN channels: We show that
TurboAE-TI outperforms TurboAE and LTE turbo codes
for the classical AWGN channels. We develop a novel
training methodology, called Rician training, which is
crucial in achieving the high reliability.

• Interpretation: We provide analysis to interpret the be-
havior of learned codes and interleavers. Our analysis
implies that TURBOAE-TI has learned a sophisticated
pattern that is beyond maximizing the codeword distance.

In the rest of this paper, we refer to TURBOAE by
TURBOAE-UI (TurboAE with a Uniform Interleaver), to
be clear about their interleaver design, which is generated
uniformly at random.

II. BACKGROUND: TURBO AUTOENCODER

In this section, we review Turbo Autoencoder (TURBOAE-
UI), one of the state-of-the-art neural network-based channel
codes introduced in [12]. TURBOAE-UI is inspired by Turbo
codes, which concatenates a convolutional code and another
convolutional code generated from the interleaved bit stream.
Encoder. As shown in Figure 2, the neural encoder of
TURBOAE-UI combines the interleaver and convolutional
neural networks (CNNs); it consists of three trainable CNN
encoding blocks followed by a power normalization layer. The
input to the first two CNN encoding blocks is the original
bit sequence b, while the input to the last CNN block is
an interleaved bit sequence π(b). Each of the 3 CNN blocks
consists of 2 layers 1-D CNN followed by a linear layer. We
use 100 filters, a kernel of size 5, and a stride of 2. The output
x of each CNN encoder block is of shape (L,1).
Interleaver. One of the key components of TURBOAE-UI en-
coder is the interleaver π. [12], [14] deploy a pseudo-random
interleaver, generated uniformly at random. In Section IV, we
empirically show that this selection is sub-optimal.

Fig. 3. The decoder architecture in Turbo Autoencoder for a rate-1/3 code.

Decoder. The neural decoder of TURBOAE-UI is depicted in
Figure 3. It consists of several layers of CNNs with interleavers
and de-interleavers in between. As received codewords are
encoded from original message b and interleaved message
π(b), decoding interleaved code requires iterative decoding on
both interleaved and de-interleaved order shown in Figure 3.
Let y1,y2,y3 ∈ RL denote noisy versions of x1,x2,x3 ∈ RL,
respectively. The decoder generates an estimate b̂ ∈ {0, 1}L
based on y1,y2,y3 via multiple iterations of CNNs. Two
types of decoders are alternatively applied for P iterations,
CNNj

i for j ∈ {1, 2} and i ∈ {1, 2, · · · , P}, with an
interleaver and de-interleaver in between. Each CNNj

i block
consists of 5 layers 1-D CNN followed by a linear layer. We
use 100 filters, a kernel of size 5, and a stride of 2. For
i ∈ {1, 2, · · ·, 11}, the output posteriors q1

i and q2
i of each

decoder block CNNj
i are of shape (L,5), and for i = 12,

the output posterior q2
P is of shape (L,1). The last iteration

generates b̂ = sigmoid(π−1(q2
P)).

III. PROBLEM SETUP

We design channel codes and their corresponding decoders
via deep learning. As illustrated in Figure 1, we model the
channel encoder and channel decoder as neural networks and
train them jointly via an autoencoder training. For concrete-
ness, we focus on rate-1/3 codes with L = 40 information bits
(We consider L = 100 in Section VIII). We aim to minimize
the Bit Error Rate (BER), defined as BER = 1

L

∑L
l=1 P (b̂l 6=

bl). We consider various fading channels and bursty noise
channels. In particular, we focus on the following models:

• Rician (K,σ): A general description of a Rician fading
channel is considered in which a channel is comprised of
both a line-of-sight (LOS) and non line-of-sight (NLOS)
component. The amplitude of the LOS and NLOS com-
ponents is dictated by K. The channel is defined as
yl = hlxl + zl, where zl ∼ N (0, σ2) is Gaussian, and

hl =

∣∣∣∣∣
√

K

(K + 1)
(1 + 1i) +

√
1

(K + 1)
hNLOS
l

∣∣∣∣∣ ,
and hNLOS

l is distributed as CN (0, I).
• Rician with bursty noise (σ, σb): In this bursty channel

model, we proceed in two successive steps. In step 1, we
apply fading and add AWGN noise to our coded bits: yl =
hlxl + zl, where hl and zl are defined as above. In step
two, we generate a bursty sequence n ∼ N (0, σ2

b I) ∈
RS , where S < L. More specifically, we uniformly pick
an index j ∈ {0, 1, · · ·, 3L−S− 1} and add bursty noise
to our noisy sequence: y[j : j + S] = y[j : j + S] + n.

• Rician with linear chirp noise (σb, f0, f1, T , φ0): We
also evaluate our model on the linear chirp channel, which
consists of applying a high-power frequency-increasing
sinusoid to our transmitted bits. The jamming signal in
function of time t is given by q(t) = σ2

b [sin(φ0) +
2π(c2 t

2 + f0t)], where φ0 is the initial phase (at time
t = 0) and c = f1−f0

T is the chip rate. f0 is the starting

frequency at time t = 0 and T is the time is takes to
sweep from f0 to f1.
Similarly to the previously described channel, we proceed
in two successive steps. In step 1, we apply fading and
add AWGN noise to our coded bits: yl = hlxl+zl, where
hl and zl are defined as above. In step two, using q(t),
we generate a jamming sequence n ∼ N (0, σ2

b I) ∈ RS ,
where S < L. More specifically, we uniformly pick an
index j ∈ {0, 1, · · ·, 3L−S−1} and add the bursty noise
to our noisy sequence: y[j : j + S] = y[j : j + S] + n.

IV. TURBOAE-TI: TURBOAE WITH A TRAINABLE
INTERLEAVER

We introduce a neural architecture, called TURBOAE-TI,
which combines interleaver training and TURBOAE-UI ar-
chitecture. Learning an interleaver is challenging as the space
of interleaver scales in L!, where L denotes the block length.
To address this challenge, we introduce a carefully-designed
training procedure, as well as an interleaver penalty function,
which will be optimized in conjunction with our model’s loss
function. The details are described in Section IV. A-B. As we
show in Section V, the interleaver training leads to a notice-
able improvement upon TURBOAE-UI. For concreteness, we
focus on rate-1/3 codes with L = 40 information bits.

A. Trainable Interleaver

We propose to learn an interleaver via deep learning, hence
getting rid of its manual design, resulting in a more efficient
matrix shuffle. The interleaver operation can be represented as
multiplying the message sequence b by a permutation matrix
T ∈ [0, 1]L×L, a square binary matrix with exactly one entry
of one in each row and each column and zeros elsewhere.
Since it’s too costly to enumerate all possibilities, we propose
to approach it by adding a matrix generalization of the l1− l2
penalty [18] to our model’s loss function during training. The
proposed interleaver penalty P (T) is given by:

P (T) =

L∑
i=1

[
L∑

j=1

|tij | −

 L∑
j=1

t2ij

1/2]

+

L∑
j=1

[
L∑

i=1

|tij | −

(
L∑

i=1

t2ij

)1/2]

Moreover, to satisfy the permutation matrix’s properties, we
have to abide by the following conditions:

tij ≥ 0,∀(i, j);
L∑

i=1

tij = 1,∀j;
L∑

j=1

tij = 1,∀i (1)

The training details are discussed in the following sub-
section.

B. Training Methodology

Let L(wenc, wdec, T) denote our model’s loss function. The
training thus minimizes:

f = L(wenc, wdec, T) + λ · P (T)

Where wenc, wdec are the encoder’s and decoder’s weights,
respectively, and λ ∈ R is a regularization constant used
to balance the contribution of each component in the loss
function. The details are described in Algorithm 1. The main
differences from conventional training are as follows:

• At every epoch, encoders and decoders are trained sep-
arately. The number of iterations for the encoders and
decoders are Senc and TSec respectively. This prevents
the training from converging to a local optimum.

• Empirically, our results showed that using different train-
ing noise levels for the encoders (σenc) and decoders
(σdec) resulted in better performance.

• The used batch size was very large (500). This is impor-
tant to average out the channel noise effects.

• To satisfy the three constraints in (1), we first clip the
values of T: T ← max(T, 0). Then, we normalize each
column of T by dividing each column element by the
sum of the entries in this particular column. Finally, we
normalize each row of T by dividing each row element
by the sum of the entries in this particular row.

Algorithm 1: Training of TURBOAE-TI
Inputs: Number of Epochs E, Encoder Training Steps
Senc, Decoder Training Steps Sdec, Encoder Training
noise σenc, Decoder Training noise σdec, Learning
Rate α, Regularizer λ

Outputs: Encoder and Decoder Weights wenc, wdec,
Interleaver Matrix T

for e ≤ E do
for k ≤ Senc do

Generate examples b, noise z ∼ N(0, σ2
enc)

Compute f using b, z
Generate the gradients ∇wenc

f , ∇T f
Update wenc: wenc ← wenc − α · ∇wenc

f
Update T : T ← T − α · ∇T f
Non-negativity constraint: T ← max(T, 0)
Normalize each row and column of T

end
for k ≤ Sdec do

Generate examples b, noise z ∼ N(0, σ2
dec)

Compute f using b, z
Generate the gradients ∇wdec

f , ∇T f
Update wdec: wdec ← wdec − α · ∇wdec

f
Update T : T ← T − α · ∇T f
Non-negativity constraint: T ← max(T, 0)
Normalize each row and column of T

end
end

V. RESULTS AND ANALYSIS

We show that TURBOAE-TI outperforms TURBOAE-UI
and LTE Turbo codes for fading channels, bursty noise chan-
nels, and AWGN channels. We consider various SNRs, defined
as SNR = −10 log10(σ2). To measure performance, we plot
BER vs Eb/N0, where Eb is the energy per bit, and N0 is the
noise power. The relation between SNR and Eb/N0 is given
by Eb/N0 = 10 log10(SNR)−10 log10(rate). The rate is fixed
as 1/3. Interpretation analysis is followed in Section VI.

A. Fading channels

We consider Rician channels described in Section III (for
K = 10) in Figure 4 (top), and Rayleigh channels, for which
there is no line of sight component (i.e., Rician channel with
K = 0) in Figure 4 (bottom). TURBOAE-TI, coupled with a
neural interleaver and a personalized training, shows a clearly
better performance when compared to TURBOAE-UI and LTE
Turbo in the low-to-moderate Eb/N0 regime.

Fig. 4. TURBOAE-TI outperforms TURBOAE-UI and LTE Turbo codes for
Rician channels (K = 10) (top) and Rayleigh channels (bottom) on low-to-
moderate Eb/N0 regimes.

B. Adaptivity and Robustness

In this subsection, we analyze the robustness and adaptivity
of TURBOAE-TI and TURBOAE-UI. Robustness refers to the
ability of a network trained for a particular channel model to
work well on a differing channel model without re-training.
Adaptivity refers to the ability of the network to adapt and
retrain for differing channel models with minimal re-training.

To measure these two metrics, we conduct two experiments.
In the first experiment, we consider applying a bursty noise
to the Rician channel. The setup is described in Section III
(Rician with bursty noise). The results are shown in Figure 5.

First, to measure robustness, we consider training TURBOAE-
TI and TURBOAE-UI on Rician channels (K = 10), and
testing those models on Rician with bursty noise. Although
the models show an improved performance to LTE Turbo,
the gap is not significant. Moreover, TURBOAE-UI outper-
forms TURBOAE-TI, which is not a satisfactory result. To
address those issues, we propose fine-tuning our models, by
training them on Rician channels coupled with bursty noise,
for 100 epochs. (TURBOAE-TI finetuned and TURBOAE-UI
finetuned). After fine-tuning for as little as 100 epochs, (a) the
performance of TURBOAE-UI and TURBOAE-TI improves
dramatically compared to LTE Turbo, and (b) TURBOAE-TI
performs better than TURBOAE-UI. Those results highlight
the adaptivity of TURBOAE-TI.

Fig. 5. Fine-tuned TurboAE-TI outperforms TURBOAE-UI and LTE Turbo
for Bursty Rician channels (K = 10) on low-to-moderate Eb/No regimes.

In the second experiment, we aim to measure the robustness
of our models to a different type of bursty noise: chirp jam-
ming signals (described in Section III). We use our previously
described models (TURBOAE-TI finetuned and TURBOAE-
UI finetuned), and test them on the Rician channel with chirp
jamming. The results are shown in Figure 6. We notice that
both TURBOAE-TI and TURBOAE-UI show good robustness
to the modified channel when compared to LTE Turbo, and
TURBOAE-TI finetuned has a slightly better performance in
the high Eb/N0 regime compared to TURBOAE-UI.

Fig. 6. Robustness of TURBOAE-TI and TURBOAE-UI on Rician fading
channels with chirp noise

C. AWGN channels
Given the reliability improvement of TURBOAE-TI upon

TURBOAE-UI on fading and bursty noise channels, a natural

question is whether TURBOAE-TI outperforms TURBOAE-
UI on AWGN channels, where y = x + z, where z ∼
N (0, σ2I) is the IID Gaussian noise.

We train and test both TURBOAE-TI and TURBOAE-UI
on AWGN channels in Figure 7, from which we observe that
TURBOAE-TI (-O-) performs worse than TURBOAE-UI (-*-).
Furthermore, both perform worse than LTE Turbo codes. We
conjecture this is because training an interleaver along with
the rest of TURBOAE-UI is challenging.

To mitigate such challenge in training TURBOAE-TI, we
apply the idea of Rician training inspired by the promising
results on fading channels. Instead of training TURBOAE-TI
on AWGN channels, we train it on Rician fading channels
(with K = 10). As shown in Figure 7, TURBOAE-TI trained
for Rician fading channels perform noticeably better than other
TURBOAE-UI models. On the other hand, Rician training
does not improve the reliability of TURBOAE-UI.

Fig. 7. TurboAE-TI trained on Rician fading channels outperforms TurboAE-
UI and LTE Turbo codes for AWGN channels.

VI. INTERPRETATION

A natural question is ‘what has TURBOAE-TI learned?’.
Although interpreting the behavior of deep learning models is
in general challenging, we run several experiments to better
understand the behavior of our trained network. The results
are described below.
Visualization of the learned interleaver. In Fig. 8, we visual-
ize the 40×40 learned permutation matrix T of TURBOAE-TI
trained on the Rician channel. Yellow (purple) squares denote
the positions of 1’s (0’s). We conclude we learned a legitimate
interleaver, given that T satisfies constraints in (IV-A).

Fig. 8. Learned Interleaver T for Rician Channel Training

Effect of Rician training on TURBOAE-TI. To further
understand the behavior of TURBOAE-TI trained on Rician

fading channels, in Figure 9, we plot the test BER performance
on AWGN channel as a function of training epochs, comparing
both training on Rician and AWGN channels when SNR = 1
dB. Rician training shows stable improvement while AWGN
training tends to get stuck at local sub-optima.

Given the general channel form as y = hx+z, the gradient
of loss L(.) with respect to the encoder weight θ is:

∂L

∂θ
=
∂L

∂y
h
∂x

∂θ
(2)

When training with AWGN channel, the h is constant. For
Rician K = 10, the realization of Rician fading channels
is similar to the realization of AWGN channels, but the
channel coefficient h includes more perturbation. Based on this
result, we conjecture that Rician training helps TURBOAE-
TI to escape the local sub-optima, via injecting gradient
perturbations for training encoders.

Fig. 9. Test BER along training epochs, averaged over 5 runs: Rician training
leads to convergence to a lower BER.

Partial Minimum Distance. Additionally, we compute
the minimum distance between codewords. Since empirically
computing minimum distance is intractable even for moderate
block length, we propose an alternative method to evaluate the
partial minimum distance. The notation is: i-th message ui of
length L = 40, with M = 10, is composed as ui = [a, uMi , b],
where a and b are the fixed random binary message of length
(L−M)/2 across each enumerations. uMi enumerates all pos-
sible message of length M . We enumerate all 2M messages,
and compute their partial minimum Euclidean distance:

Dmin = min
i∈{1,...,2M},j∈{1,...,2M},i6=j

D(f(ui), f(uj))

The distance is also averaged over 100 instances. The results
are shown in Figure 10. For TURBOAE-TI, Rician training
with K = 10 results in the best partial minimum distance,
indicates that Rician training leads to better encoder. On the
other hand, TURBOAE-UI trained on Rician channel lead to
worse performance. We conjecture that Rician training is more
beneficial for TURBOAE-TI, due to its sub-optima problem.
Note that even the best TURBOAE-UI partial minimum dis-
tance is still worse than regular Turbo code. We conjecture
TURBOAE-UIs learned sophisticated codes with patterns that
are not fully captured in the codeword distance. On the other

hand, this result shows that a further improvement might be
feasible by deploying a regularizer on the codeword distance.

Fig. 10. Minimum distance of TURBOAE-TI and TURBOAE-UI trained on
various channels: Rician training of TURBOAE-TI leads to a larger minimum
codeword distance than AWGN training. However, the minimum distance of
TURBOAE-TI is smaller than the one of LTE Turbo codes, which implies that
TURBOAE-TI’s superior performance is not fully captured in the distance.

VII. CONCLUSION

We introduce TURBOAE-TI, where we make the interleaver
of TURBOAE-UI to be trainable by adding a matrix general-
ization of the l1− l2 penalty to our model’s loss function, and
introducing a well-thought-out training methodology. We show
that the trainable interleaver leads to the improved reliability
on various channels, such as fading channels and bursty noise
channels. The amount of gain varies from channel to channel
and reaches up to 1dB.

TURBOAE-TI also outperforms TURBOAE-UI for AWGN
channels, when combined with the novel Rician training
methodology. Our analysis suggests that the perturbation of
channel weights in the Rician training helps the TURBOAE-
TI to escape the local optima. Moreover, Rician training also
results in a better encoder, indicated by the improved partial
minimum distance.

VIII. OPEN PROBLEMS

There are several open problems that arise from this work.
First, the extension of TURBOAE-TI to multi-user scenarios is
an interesting future direction. In recent work [19], it is shown
that designing a code that utilizes interleavers for interference
channels is challenging. With the aid of a trainable interleaver,
we conjecture that one can learn a code with a long range
memory for such multi-user scenarios and hence achieve a
better performance.

Moreover, developing deep learning methodologies driven
by the communication theory is a promising direction. We
conjecture that the Rician training framework can be applied
to potentially enhance the performance of some state of the
art applications (e.g., computer vision).

Finally, extending the TURBOAE-TI framework to longer
blocklengths and higher SNRs is challenging, as the inter-
leaver’s space grows in function of the blocklength, and the
training becomes harder for higher SNRs. We illustrate our
results on L = 100 in Figure 11. Although TURBOAE-
TI works better than TURBOAE-UI, it performs worse than

Turbo LTE. This indicates that the scalability of TURBOAE-TI
to a long blocklength is an interesting future research direction.

Fig. 11. Results on L=100 AWGN (left) and Rician fading channels (right)

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication, part i, part
ii,” Bell Syst. Tech. J., vol. 27, pp. 623–656, 1948.

[2] T. J. O’Shea and J. Hoydis, “An introduction to machine learning
communications systems,” CoRR, vol. abs/1702.00832, 2017.

[3] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep learning-based
communication over the air,” arXiv, 2017.

[4] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep learning-
based channel decoding,” in Information Sciences and Systems (CISS),
2017 51st Annual Conference on. IEEE, 2017, pp. 1–6.

[5] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep
learning coordinated beamforming for highly-mobile millimeter wave
systems,” IEEE Access, vol. 6, pp. 37 328–37 348, 2018.

[6] S. Park, H. Jang, O. Simeone, and J. Kang, “Learning how to demodulate
from few pilots via meta-learning,” in 2019 IEEE SPAWC, 2019, pp. 1–5.

[7] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for
channel estimation and signal detection in ofdm systems,” IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 114–117, 2017.

[8] T. Wang, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based csi
feedback approach for time-varying massive mimo channels,” IEEE
Wireless Communications Letters, vol. 8, no. 2, pp. 416–419, 2019.

[9] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 119–131, 2018.

[10] N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Viterbinet:
Symbol detection using a deep learning based viterbi algorithm,” IEEE
20th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2019.

[11] Y. He, J. Zhang, S. Jin, C.-K. Wen, and G. Y. Li, “Model-driven DNN
decoder for turbo codes: Design, simulation, and experimental results,”
IEEE Transactions on Communications, vol. 68, no. 10, 2020.

[12] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Turbo autoencoder: Deep learning based channel code for point-to-
point communication channels,” in Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[13] H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode:
Feedback codes via deep learning,” in Advances in Neural Information
Processing Systems (NeurIPS), 2018, pp. 9436–9446.

[14] J. Clausius, S. Dörner, S. Cammerer, and S. ten Brink, “Serial vs. parallel
turbo-autoencoders and accelerated training for learned channel codes,”
vol. abs/2104.14234, 2021.

[15] A. V. Makkuva, X. Liu, M. V. Jamali, H. Mahdavifar, S. Oh, and
P. Viswanath, “Ko codes: inventing nonlinear encoding and decoding for
reliable wireless communication via deep-learning,” in Proceedings of
the 38th International Conference on Machine Learning (ICML), 2021.

[16] Y. Jiang, H. Kim, H. Asnani, S. Oh, S. Kannan, and P. Viswanath,
“Feedback Turbo autoencoder,” in 2020 IEEE ICASSP, 2020.

[17] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Joint channel coding and modulation via deep learning,” in 2020 IEEE
SPAWC, 2020, pp. 1–5.

[18] E. Esser, Y. Lou, and J. Xin, “A method for finding structured sparse
solutions to nonnegative least squares problems with applications,” SIAM
Journal on Imaging Sciences, vol. 6, no. 4, pp. 2010–2046, 2013.

[19] H. K. Karl Chahine, Nanyang Ye, “DeepIC: Coding for interference
channels via deep learning,” GlobeCom, 2021.

	I Introduction
	II Background: Turbo Autoencoder
	III Problem Setup
	IV TurboAE-TI: TurboAE with a trainable interleaver
	IV-A Trainable Interleaver
	IV-B Training Methodology

	V Results and analysis
	V-A Fading channels
	V-B Adaptivity and Robustness
	V-C AWGN channels

	VI Interpretation
	VII Conclusion
	VIII Open problems
	References

