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Abstract—This paper presents non-binary polar codes for the
two-user multiple-access channel (MAC). The bit error rate
(BER) performances of the non-binary polar codes with different
kernel factors have been investigated in detail to select a proper
parameter from GF (q) for the generator matrix. Furthermore,
the successive cancellation decoding for the non-binary polar
codes in the two-user MAC is introduced in detail. Simulation
results show that the choice of the kernel factors has a significant
impact on the block error rate (BLER) performance; moreover,
the non-binary polar codes provide a better BLER performance
than their binary counterpart in the two-user MAC.

Index Terms—Non-binary polar codes, two-user multiple-
access channel, kernel selection, successive cancellation (SC)
decoding.

I. INTRODUCTION

Polar codes have attracted widespread attention since they
can achieve the Shannon limit [1], and much research has
been done for polar codes in many aspects. Since 2012, polar
codes have been considered for the multiple-access channel
(MAC) [2]-[5]. Authors in [2] present a joint polarization for
the two-user MAC, which results in five possible transmission
models that achieve the dominant face of the capacity region.
[3] extends the two-user case to the m-user case, m ≥ 2,
and deduces the extremal points of the reachable rate region.
However, the proposed joint polarization can only reach some
of the capacity region instead of all. Paper [4] proposes com-
pound polar codes for the two-user MAC, which can achieve
the whole uniform rate region by changing the decoding order
of the joint successive cancellation decoder. In [5], the authors
utilize the generalized chain rule to construct polar codes for
two-user MACs, achieving all the capacity region.

Moreover, the non-binary (NB) polar codes are also an
appealing research field because of their flexible structure [6]-
[10]. In [6], the authors exploit the randomized construction
to polarize the arbitrary input discrete memoryless channel
with the binary kernel. In [7], the authors present a non-
binary kernel form that can be polarized if the input size
is the power of a prime and the kernel’s parameter is the
primitive element of the Galois Field GF (q). A polarized
mapping scheme is discussed in [8], which is suited to both the
sources and channels. It has been pointed out that multilevel
polarization arises when the input size is the power of two [9].
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Then non-binary kernels are considered in [10] to construct a
system for polarized transmission, resulting in a better BLER
performance than binary polar codes.

Some literature works have been done on non-binary polar
codes for the MAC due to their appealing features. [11]
constructs polar codes using the group structure when the
MAC input is arbitrary, achieving the symmetric sum capacity
except for some points. In [12], the authors present polariza-
tion theorems for arbitrary classical-quantum channels with
Arikan style transformation, which can be used to construct
polar codes for arbitrary classical-quantum MACs with rela-
tively low complexity of encoding and decoding. A channel
upgradation polar construction is generalized to the non-binary
input MAC case to choose the polarization channel for data
transmission [13][14].

The prior works mainly focus on the binary codes and
the achievability of the rate region in theory. Based on the
generalized chain rule proposed by [5], this paper presents a
non-binary polar coded system for the two-user MAC, which
mainly exploits the flexible design of the non-binary kernel and
the successive cancellation (SC) decoding implementation.

The structure of this paper is arranged as follows. Section II
presents the system model of the proposed scheme. A succes-
sive cancellation decoding algorithm of non-binary polar codes
in the two-user MAC is presented in Section III. In Section
IV, the selection of the kernel factors is discussed in detail.
The simulation results of the proposed system are shown in
Section V, followed by concluding remarks in Section VI.

II. SYSTEM MODEL

We define B, N and R as the binary, natural, and real field,
respectively. The Galois field GF (q) is denoted by Fq , where
q = 2r and r ∈ N. Considering the element set in Fq as
{0 = γ−∞, 1 = γ0, γ, γ2, ..., γq−2}, where γ is the primitive
element of Fq . We follow the notations defined in [1], denoting
random variables and the corresponding samples by upper
and lower case letters, respectively. Besides, AN1 stands for a
vector (A1, A2, ..., Ai, ..., AN ), and Aji denotes the subvector
(Ai, ..., Aj) for 1 ≤ i ≤ j ≤ N . Let N

(
µ, σ2

)
represent the

Gaussian distribution with the mean µ and the variance σ2.
The system model is shown in Fig. 1. At the transmitter,

the frozen bits are added to each user’s uncoded information
while maintaining the sum rate R for the whole system.
Then every r bits are converted to a non-binary symbol of
Fq serially. Denote N = 2n, n ∈ N as the code length of
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Fig. 1. A diagram of the non-binary polar transmission system in the two-user MAC.

each block in the non-binary symbol form. The non-binary
symbol blocks of users 1 and 2 are respectively defined by
UN1 and V N1 , where Ui = (Ui,1, Ui,2, ..., Ui,t, ..., Ui,r), Vi =
(Vi,1, Vi,2, ..., Vi,t, ..., Vi,r), and Ui,t, Vi,t ∈ B, 1 ≤ i ≤ N ,
1 ≤ t ≤ r. Define F as the kernel matrix, given by

F =

[
1 0
α 1

]
, α ∈ Fq. (1)

Denote αu and αv as the kernel factor for users 1 and 2,
respectively. The generator matrix of polar codes is defined by
GN = BNF

⊗n, where F⊗n denote the n-th Kronecker power
of F and BN is the reverse-shuffle. Note that the operations
of addition and multiplication are both based on Fq .

Let XN
1 and Y N1 denote the encoded polar codewords of

users 1 and 2, given by

XN
1 = UN1 GN , Y N1 = V N1 GN , (2)

with Xi = (Xi,1, Xi,2, ..., Xi,t, ..., Xi,r), Yi = (Yi,1, Yi,2, ...,
Yi,t, ..., Yi,r), and Xi,t, Yi,t ∈ B. The encoded polar codewords
are then converted to bits. By using BPSK modulation, the
modulated signals are SN1 and TN1 for users 1 and 2, respec-
tively. Two users’ modulated signals are then transmitted to
the multiple-access channel, and the received signals ZN1 is
given by

ZN1 = SN1 + TN1 +KN
1 , (3)

where Zi = (Zi,1, Zi,2, ..., Zi,t, ..., Zi,r), Ki = (Ki,1,Ki,2,
...,Ki,t, ...,Ki,r), and Zi,t,Ki,t ∈ R. The noise component
Ki,t satisfies N (0, N0/2).

At the receiver, the successive cancellation decoding is used
to recover UN1 and V N1 , denoted by ÛN1 and V̂ N1 . After
converting ÛN1 and V̂ N1 to bits and removing the frozen bits,
the information bits of two users are obtained. By now, the
description of the system framework is accomplished. Some
definitions for the channel analysis of this system are given
next.

Let W : X×Y → Z be a two-user multiple-access channel.
Symbol pair (Xi, Yi) can be viewed as the input of W , and
W (zi|xi, yi) denotes the corresponding transition probability.
Set WN as N independent uses of W . Let XN and YN denote
the input of WN from user 1 and user 2, while ZN is the
output of WN , then WN

(
zN1 |xN1 , yN1

)
=
∏N
i=1W (zi|xi, yi).

Like the case in [5], define the combined channel WN by

WN

(
zN1 |uN1 , vN1

)
=WN

(
zN1 |uN1 GN , vN1 GN

)
. (4)

Since there is no mutual information loss during the polar
transform, thus

I
(
ZN1 ;UN1 ,V

N
1

)
=I
(
ZN1 ;XN

1 ,Y
N
1

)
=N ·I (Z;X,Y ) . (5)

To construct a polarization channel, (5) is expanded as

I
(
ZN1 ;UN1 , V

N
1

)
=

2N∑
k=1

I
(
ZN1 ;Ek|Ek−1

1

)
, (6)

where E2N
1 is the permutation of UN1 V

N
1 that preserves the

monotone order of both UN1 and V N1 . Let b2N1 indicate the
relative order of E2N

1 . When Ei ∈ UN1 , bi = 0; otherwise,
bi = 1.

The coordinate channels W (bk,i,j)
N that correspond to (6) are

defined as

W
(bk,i,j)
N

(
zN1 , e

k−1
1 |ek

)
= W

(0,i,j)
N

(
zN1 , u

i−1
1 , vj1|ui

)
, bk = 0

W
(1,i,j)
N

(
zN1 , u

i
1, v

j−1
1 |vj

)
, bk = 1

,
(7)

where i and j stand for the i-th symbol of user 1 and the
j-th symbol of user 2, 0 ≤ i, j ≤ N , 1 ≤ k = i + j ≤ 2N .
The coordinate channel transition probability is used in the
decoding process as described in the next section.

III. A JOINT SC DECODING ALGORITHM
In this section, a joint SC decoding is presented for the NB-

polar codes in the two-user MAC. Since the generator matrix
GN is determined by the row vector in F⊗n, thus FN = F⊗n

is used to describe the decoding process, ignoring operation
BN that has no impact on the performance.

To calculate W
(bk,i,j)
N , we define the split MAC channel

W
(i,j)
N by

W
(i,j)
N

(
zN1 , u

i−1
1 , vj−1

1 |ui, vj
)
=
∑

uN
i+1,v

N
j+1

(
1

qN−1

)2

WN

(
zN1 |uN

1 ,v
N
1

)
. (8)

When considering the decoding order, the single user tran-
sition probability is derived as

W
(0,i,j)
N

(
zN1 , û

i−1
1 , v̂j1|ui

)
=

∑
v1

1
qW

(i,1)
N

(
zN1 , û

i−1
1 |ui, v1

)
if j = 0

1
qW

(i,j)
N

(
zN1 , û

i−1
1 , v̂j−1

1 |ui, v̂j
)

if j > 0
,

(9)

W
(1,i,j)
N

(
zN1 , û

i
1, v̂

j−1
1 |vj

)
=

∑
u1

1
qW

(1,j)
N

(
zN1 , v̂

j−1
1 |u1, vj

)
if i = 0

1
qW

(i,j)
N

(
zN1 , û

i−1
1 , v̂j−1

1 |ûi, vj
)

if i > 0
.

(10)
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Fig. 2. An example of the decoding path with three phases, where N = 8.

The transition probability of the split MAC channel W (i,j)
N

can be calculated recursively due to the recursive structure.
For simplicity, here we use the notations similar to [5]. Let
u̇i

∆
= u2i−1 + αu · u2i and üi

∆
= u2i, and define u̇i1 = u2i

1,o +
αu · u2i

1,e and üi1 = u2i
1,e, where the subscripts o and e denote

the subvector with odd and even indices that are similar to v̇i1
and v̈i1, respectively. Define

D
(i,j)
N

(
z2N

1 , u
2i
1 , v

2j
1

)
∆
= W

(i,j)
N

(
zN1 , u̇

i−1
1 , v̇j−1

1 |u̇i, v̇j
)

· W (i,j)
N

(
z2N
N+1, ü

i−1
1 , v̈j−1

1 |üi, v̈j
)
.

(11)

Then the recursive equations are given by

W
(2i−1,2j−1)
2N

(
z2N

1 , u2i−2
1 , v2j−2

1 |u2i−1, v2j−1

)
=
∑
u2i,v2j

1

q2
D

(i,j)
N

(
z2N

1 , u2i
1 , v

2j
1

)
, (12)

W
(2i,2j−1)
2N

(
z2N

1 , u2i−1
1 , v2j−2

1 |u2i, v2j−1

)
=
∑
v2j

1

q2
D

(i,j)
N

(
z2N

1 , u2i
1 , v

2j
1

)
, (13)

W
(2i−1,2j)
2N

(
z2N

1 , u2i−2
1 , v2j−1

1 |u2i−1, v2j

)
=
∑
u2i

1

q2
D

(i,j)
N

(
z2N

1 , u2i
1 , v

2j
1

)
, (14)

W
(2i,2j)
2N

(
z2N

1 , u2i−1
1 , v2j−1

1 |u2i, v2j

)
=

1

q2
D

(i,j)
N

(
z2N

1 , u2i
1 , v

2j
1

)
. (15)

According to (12)-(15), the recursive transform implies a
decoding path for each split channel. For example, the decod-
ing path of W (2,5)

8

(
z8

1 , û1, v̂
4
1 |u2, v5

)
is shown in Fig. 2, where

red lines, blue lines, and green lines represent the decoding
path for user 1, user 2, and both two users, respectively.
Assuming that the phase index p increases from the input side
to the output side in the polar encoder, 1 ≤ p ≤ n. In each
phase, two users’ decoding paths are combined to calculate
the corresponding probabilities.
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Fig. 3. The basic kernel (or combined) structure of the NB-polar generator.

When we decode symbol Ui ∈ UN1 , 1 ≤ i ≤ N , all the
known decisions V̂ are viewed as auxiliary symbols, similarly
to the symbol Vi ∈ V N1 . Since the decoding process of U and
V are reciprocity, we use the decoding process of U with the
auxiliary information V for the analysis in the following.

The transition probability transform corresponding to the
decoding path of each phase is based on the combined
basic structure, as shown in Fig. 3. The calculation of
probability is divided into two categories: f calculation
and g calculation, which correspond to decode U1 and
U2 of the combined basic structure, respectively. According
to (12)-(15), considering the number of auxiliary symbols,
there are six types of calculations, denoted by f0,v (P1, P2),
f1,v (P1, P2, V1), f2,v (P1, P2, V1, V2) and g0,v (P1, P2, U1),
g1,v (P1, P2, U1, V1), g2,v (P1, P2, U1, V1, V2), respectively, as
shown in Fig. 4. The subscript represents the number of the
available auxiliary symbols of V 2

1 . Based on the combined
basic structure and calculations, the decoding process of each
phase is similar to the single-user case.

A complete binary tree T of depth n + 1 is defined first
to indicate the SC decoding process [15]. Given a node m,
define its location of the decoding tree by the vector (dm, cm),
representing the cm-th node of the dm-th depth, 1 ≤ dm ≤
n+ 1, 1 ≤ cm ≤ 2dm−1. Let the node’s parent node, left and
right child node be pm, ml, and mr, respectively.

There are four kinds of information stored in the (dm, cm)-
th node m: the probability matrices Φm, decision symbol
vector βm, auxiliary symbol vector θm, and child nodes set
Cm. Let Φm [l] be the l-th row in Φm, and βm [l] , θm [l] be the
l-th element in βm, θm, where 1 ≤ l ≤ ρm, ρm = 2(n−dm+1).

For a two-user decoding algorithm, two decoding trees are
defined as Tu and Tv , respectively. As stated in [5], for
simplicity, b2N =

(
0M1N0N−M

)
is defined as our decoding

order, where 1 ≤ M ≤ N . The decoding order can be
naturally divided into three stages: decode UM1 in stage I,
decode V N1 in stage II, and decode UNM+1 in stage III. Next,
we will give a detailed description of the decoding process,
consisting of six steps.

Step 1: Initialize Φm and Cm for stage I.
The transition probability P (z|x, y) is initialized to the root

node’s Φm of Tu, denoted as

Φm [l]=
1(√

2πσ
)r r∏
t=1

exp

(
− (zl,t+2xl,t+2yl,t−2)

2

2σ2

)
, (16)

where 1 ≤ l ≤ N . Cm is initialized with a set for the internal
node, including ml and mr. For the leaf node, Cm is initialized
with an empty set φ.
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Fig. 4. Six different f and g calculations.

Step 2: The decoding process for stage I.
Update Φm, βm,Cm in Tu. The node passing routine and

update operation are relayed on the cardinality of Cm, denoted
as |Cm|, and there are three cases.

If |Cm| = 2, change to its left child node ml and remove
ml from Cm. Let 1 ≤ l ≤ ρm

2 and update Φml
as

Φml
[l] = f0,v

(
Φm [l] ,Φm

[
l +

ρm
2

])
. (17)

If |Cm| = 1, change to its right child node mr and remove
mr from Cm. Update Φmr as

Φmr [l] = g0,v

(
Φm [l] ,Φm

[
l +

ρm
2

]
, βml [l]

)
. (18)

If |Cm| = 0, change to its parent node pm. There are two
situations for this case. On one hand, when m is an internal
node, let ml denote the left child node of pm, update βpm as

βpm [l] =

{
βml

[l] + α · βm [l] 1 ≤ l ≤ ρm
βm [l − ρm] ρm + 1 ≤ l ≤ 2ρm

. (19)

On the other hand, when m is a leaf node, make a decision
on Φm and update βm as

βm = arg max
u∈Fq

∑
v∈Fq

Φm. (20)

This stage is terminated when UM has been decoded.
Step 3: Initialize θm for stage II.

Some of βm in Tu is initialized to θm in Tv . Let J = M .
For the leaf node, initialize θm as

θm (n+ 1, J) = βm (n+ 1, J) . (21)

Then for the non-leaf node, let 0 ≤ k ≤ n−1, θm is updated
from the leaf side to the root side recursively

θm (n− k, J) = βm (n− k, J) , J =

⌈
J

2

⌉
. (22)

Step 4: The decoding process for stage II.
This process is similar to step 2. The difference exists in

update Φm with θm.
If |Cm| = 2, update Φml

as

Φml
[l] = f

(
Φm [l] ,Φm

[
l +

ρm
2

]
, θml

[l] , θmr
[l]
)
. (23)

If |Cm| = 1, update Φmr
as

Φmr
[l] =g

(
Φm[l],Φm

[
l+

ρm
2

]
, βm[l] , θml

[l] , θmr
[l]
)
, (24)

where 1 ≤ l ≤ ρm
2 . We choose different calculation types to

calculate (23) and (24) according to the value of θml and θmr.
This stage is terminated when VN is decoded successfully.

Step 5: Initialize θm for stage III.
Some of βm in Tv is initialized to θm in Tu. Set J = N and

execute the recursive update in step 3, then the initialization
for θm is accomplished.

Step 6: The decoding process for stage III.
This process is similar to step 4, and this stage is terminated

when UN is decoded successfully.
The algorithm is summarized in Algorithm 1, which yields

O (q ·N · logN) operations, a slight increase in contrast with
the O(N · logN) complexity of its binary counterpart.

IV. THEORETICAL ANALYSIS OF THE KERNEL

This section focuses on the effect of the kernel. Since the
reliability is relatively low in stage I, the performance is
mainly determined by the kernels of stages II and III. First,
we consider αu in stage III since αv has no effect when all the
auxiliary symbols V N1 are already known. Then we optimize
αv in stage II, assuming αu is fixed.

A. The Kernel of Stage III

The probability transform of stage III is equivalent to that
of the single-user basic structure, as shown in Fig. 3, where
U1, U2 and X1, X2 are the input and output, respectively.

Set u1 = 0, the transition probability can be written as

Pi (zi|xi) =
1(√

2πσ
)r r∏
t=1

exp

(
− (zi,t + 2xi,t − 1)

2

2σ2

)
, (25)

where 1 ≤ i ≤ 2, σ2 = N0/2. The coordinate channel
transition probability of u2 is

P
(
z21 , u1|u2

)
= P1 (z1|x1)P2 (z2|x2)

=
1(√

2πσ
)2r 2∏

i=1

r∏
t=1

exp

(
− (zi,t + 2xi,t − 1)2

2σ2

)
.

(26)



Algorithm 1 A Successive Cancellation decoding algorithm
of NB-polar in the two-user MAC.

1: Input: Tu, Tv , n, M
2: Initialize for stage I.
3: Initialize Φm, Cm
4: Decoding process for stage I
5: for i = 1 : M do
6: while dm 6= n+ 1 do
7: Update Φm, βm,Cm in Tu.
8: Change to the next node.
9: end while

10: ûi = arg max
u∈Fq

∑
v∈Fq

Φm.

11: Update βm and change to the next node.
12: end for
13: Initialize for stage II
14: Initialize Φm, Cm, θm
15: Decoding process for stage II
16: for i = 1 : N do
17: while dm 6= n+ 1 do
18: Update Φm, βm,Cm in Tu.
19: Change to the next node.
20: end while
21: v̂i = arg max

v∈Fq

Φm.

22: Update βm and change to the next node.
23: end for
24: Initialize for stage III
25: Initialize θm
26: Decoding process for stage III
27: for i = M + 1 : N do
28: while dm 6= n+ 1 do
29: Update Φm, βm,Cm in Tu.
30: Change to the next node.
31: end while
32: ûi = arg max

u∈Fq

Φm.

33: Update βm and change to the next node.
34: end for
35: Output: ûN1 , v̂N1 .

Acccording to the maximum likelihood detection, the de-
coded û2 is

û2 = arg max
u2∈Fq

P
(
z2

1 , u1|u2

)
, (27)

Define Ls = P
(
z2

1 , u1|γs
)
, γs ∈ Fq . Assuming ũ2 = γs is

transmitted, the probability of a correct decision is given by

Pc = P [Ls > La, for all γa ∈ Fq\ {γs} |u2 = γs] . (28)

Assume the detection of γs is independent, (28) becomes

Pc =
∏

γa∈Fq,γa 6=γs

P [Ls > La|u2 = γs] . (29)

Let ū2 denote γa, the term in (29) can be organized as
2∑
i=1

r∑
t=1

(
x̄2
i,t−x̃2

i,t+x̄i,tzi,t−x̃i,tzi,t+x̃i,t−x̄i,t
)
>0, (30)

where x̄1, x̄2 and x̃1, x̃2 correspond to ū2 and ũ2, respectively.
Since zi,t ∼ N

(
−2x̃i,t + 1, σ2

)
, the left side of (30) is also

a Gaussian variable Q ∼ N
(
µq, σ

2
q

)
, where

µq =

2∑
i=1

r∑
t=1

(x̃i,t−x̄i,t)2
, σ2
q =

2∑
i=1

r∑
t=1

(
x̃2
i,t+x̄

2
i,t

)
σ2, (31)

and the probability is calculated by integrating the probability
density function (PDF) of Q. The average BER is calculated
by going through all u2. Then we choose the kernel factor αu
that can provide the best BER performance.

B. The Kernel of Stage II
Assuming that αu is fixed, then we select the optimal αv .

Set u1 = 0 and v1 = 0, the transition probability is

Pi(zi|xi, yi)=
1(√
2πσ

)r r∏
t=1

exp

(
− (zi,t+2xi,t+2yi,t−2)2

2σ2

)
, (32)

Define x̌1, x̌2 by {x̌1, x̌2 ∈ Fq|x̌1 + αu · x̌2 = u1}, the split
channel transition probability of u1, v2 is given by

P
(
z2

1 , v1|u1, v2

)
=∑

x̌1,x̌2

1

(
√

2πσ)
2r

2∏
i=1

r∏
t=1

exp
(
− (zi,t+2x̌i,t+2yi,t−2)2

2σ2

)
.

(33)

Define L′s = P
(
z2

1 , v1|u1, γ
s
)
. Assuming ṽ2=γs is trans-

mitted, the probability of a correct decision is

Pc =
∏

γa∈Fq,γa 6=γs

P [L′s > L′a|v2 = γs] . (34)

It is hard to derive the term in (34) directly. Thus (33) is
simplified by omitting the relatively small items. Assuming ũ2

is transmitted, and x̃1, x̃2 correspond to ũ2. Let v̄2 denote γa.
Define w̃i = x̃i + ỹi and w̄i = x̌i + ȳi, 1 ≤ i ≤ 2, besides

x̄2
1 = arg min

x̌1,x̌2∈Fq

2∑
i=1

‖w̃i − w̄i‖22, (35)

where ȳ1, ȳ2 and ỹ1, ỹ2 correspond to v̄2 and ṽ2, respectively.
Then (33) is approximated by

P
(
z2

1 , v1|u1, v̄2

)
≈

1

(
√

2πσ)
2r

2∏
i=1

r∏
t=1

exp
(
− (zi,t+2x̄i,t+2yi,t−2)2

2σ2

)
.

(36)

The situation degraded to the single-user case, and the
average BER is calculated by going through all u2 and v2.
Then the kernel factor αv that provides the best BER is chosen.

V. SIMULATION RESULTS
In this section, Monte Carlo method is used to simulate

the BLER performances of the proposed system. In this work,
we take the GF (16) as an example to do analysis, and the
theoretical BERs of different kernels are shown in Figs. 5 and
6. According to Fig. 5, αu = 5, 10 is the optimal choice for
the single-user case in GF (16). Thus let αu = 5 be the kernel
factor for user 1. According to Fig. 6, αv = 3 is the optimal
choice in the two-user case when αu = 5. Thus let αv = 3 be
the kernel factor for user 2.

Fig. 7 compares the BLER performances between the pro-
posed non-binary and binary systems in the two-user MAC
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with different code lengths, where the Monte Carlo construc-
tion is used to pick the transmission channels. The decoding
order parameter M is set as N/4, with R = 0.5. First of
all, the BLER performance comparations between two non-
binary cases are considered, where (αu, αv) = (5, 3) and
(αu, αv) = (5, 5), corresponding to the best and the worst
case in GF (16), given by Fig. 6. When BLER = 1 × 10−3,
the required Eb/N0 of N = 64, 128 are respectively 6.3dB
and 5.4dB for (5, 3) kernel case. Obviously, the BLER per-
formance improves with the increase of N . Moreover, it is
found that the BLER of (5, 3) case is better than that of
(5, 5) case, e.g., there is 0.4dB gain when BLER = 1× 10−3

and N = 128, which is in line with the theoretical analysis.
Secondly, it is found that the proposed (5, 3) non-binary polar
system provides a much lower BLER performance than that
of the binary polar system, e.g., when BLER = 1 × 10−3

and N = 64, 128, the Eb/N0 of (5, 3) case has 0.5dB and
0.8dB gain, respectively. In summary, the non-binary polar
system with the optimal kernel achieves relatively superior
performance compared to the classical binary system.

VI. CONCLUSION

This paper proposes a non-binary polar coding scheme
in the two-user MAC and the corresponding SC-decoding
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Fig. 7. BLER performance between non-binary and binary polar system.

algorithm. The choice of the kernel factors is discussed in
detail. Simulation results show that there is a vast improvement
between the worst and the best kernel choice. Moreover, the
non-binary polar codes in the two-user MAC achieve much
better BLER performances than the classical binary codes.
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