Non-Binary Polar Coded System for the Two-User Multiple-Access Channel

Guan-Chen Liu*, Qi-Yue Yu*
*Communications Research Center, Harbin Institute of Technology, Harbin 150001, China
Email: guanchen_liu@hit.edu.cn, yuqiyue@hit.edu.cn

Abstract

This paper presents non-binary polar codes for the two-user multiple-access channel (MAC). The bit error rate (BER) performances of the non-binary polar codes with different kernel factors have been investigated in detail to select a proper parameter from GF (q) for the generator matrix. Furthermore, the successive cancellation decoding for the non-binary polar codes in the two-user MAC is introduced in detail. Simulation results show that the choice of the kernel factors has a significant impact on the block error rate (BLER) performance; moreover, the non-binary polar codes provide a better BLER performance than their binary counterpart in the two-user MAC.

Index Terms-Non-binary polar codes, two-user multipleaccess channel, kernel selection, successive cancellation (SC) decoding.

I. Introduction

Polar codes have attracted widespread attention since they can achieve the Shannon limit [1], and much research has been done for polar codes in many aspects. Since 2012, polar codes have been considered for the multiple-access channel (MAC) [2]-[5]. Authors in [2] present a joint polarization for the two-user MAC, which results in five possible transmission models that achieve the dominant face of the capacity region. [3] extends the two-user case to the m-user case, $m \geq 2$, and deduces the extremal points of the reachable rate region. However, the proposed joint polarization can only reach some of the capacity region instead of all. Paper [4] proposes compound polar codes for the two-user MAC, which can achieve the whole uniform rate region by changing the decoding order of the joint successive cancellation decoder. In [5], the authors utilize the generalized chain rule to construct polar codes for two-user MACs, achieving all the capacity region.

Moreover, the non-binary (NB) polar codes are also an appealing research field because of their flexible structure [6][10]. In [6], the authors exploit the randomized construction to polarize the arbitrary input discrete memoryless channel with the binary kernel. In [7], the authors present a nonbinary kernel form that can be polarized if the input size is the power of a prime and the kernel's parameter is the primitive element of the Galois Field GF (q). A polarized mapping scheme is discussed in [8], which is suited to both the sources and channels. It has been pointed out that multilevel polarization arises when the input size is the power of two [9].

[^0]Then non-binary kernels are considered in [10] to construct a system for polarized transmission, resulting in a better BLER performance than binary polar codes.

Some literature works have been done on non-binary polar codes for the MAC due to their appealing features. [11] constructs polar codes using the group structure when the MAC input is arbitrary, achieving the symmetric sum capacity except for some points. In [12], the authors present polarization theorems for arbitrary classical-quantum channels with Arikan style transformation, which can be used to construct polar codes for arbitrary classical-quantum MACs with relatively low complexity of encoding and decoding. A channel upgradation polar construction is generalized to the non-binary input MAC case to choose the polarization channel for data transmission [13][14].

The prior works mainly focus on the binary codes and the achievability of the rate region in theory. Based on the generalized chain rule proposed by [5], this paper presents a non-binary polar coded system for the two-user MAC, which mainly exploits the flexible design of the non-binary kernel and the successive cancellation (SC) decoding implementation.

The structure of this paper is arranged as follows. Section II presents the system model of the proposed scheme. A successive cancellation decoding algorithm of non-binary polar codes in the two-user MAC is presented in Section III. In Section IV, the selection of the kernel factors is discussed in detail. The simulation results of the proposed system are shown in Section V, followed by concluding remarks in Section VI.

II. SYSTEM MODEL

We define \mathbb{B}, \mathbb{N} and \mathbb{R} as the binary, natural, and real field, respectively. The Galois field GF (q) is denoted by \mathbb{F}_{q}, where $q=2^{r}$ and $r \in \mathbb{N}$. Considering the element set in \mathbb{F}_{q} as $\left\{0=\gamma^{-\infty}, 1=\gamma^{0}, \gamma, \gamma^{2}, \ldots, \gamma^{q-2}\right\}$, where γ is the primitive element of \mathbb{F}_{q}. We follow the notations defined in [1], denoting random variables and the corresponding samples by upper and lower case letters, respectively. Besides, A_{1}^{N} stands for a vector $\left(A_{1}, A_{2}, \ldots, A_{i}, \ldots, A_{N}\right)$, and A_{i}^{j} denotes the subvector $\left(A_{i}, \ldots, A_{j}\right)$ for $1 \leq i \leq j \leq N$. Let $\mathcal{N}\left(\mu, \sigma^{2}\right)$ represent the Gaussian distribution with the mean μ and the variance σ^{2}.

The system model is shown in Fig. 1 At the transmitter, the frozen bits are added to each user's uncoded information while maintaining the sum rate R for the whole system. Then every r bits are converted to a non-binary symbol of \mathbb{F}_{q} serially. Denote $N=2^{n}, n \in \mathbb{N}$ as the code length of

Fig. 1. A diagram of the non-binary polar transmission system in the two-user MAC.
each block in the non-binary symbol form. The non-binary symbol blocks of users 1 and 2 are respectively defined by U_{1}^{N} and V_{1}^{N}, where $U_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, t}, \ldots, U_{i, r}\right), V_{i}=$ $\left(V_{i, 1}, V_{i, 2}, \ldots, V_{i, t}, \ldots, V_{i, r}\right)$, and $U_{i, t}, V_{i, t} \in \mathbb{B}, 1 \leq i \leq N$, $1 \leq t \leq r$. Define F as the kernel matrix, given by

$$
F=\left[\begin{array}{cc}
1 & 0 \tag{1}\\
\alpha & 1
\end{array}\right], \alpha \in \mathbb{F}_{q}
$$

Denote α_{u} and α_{v} as the kernel factor for users 1 and 2 , respectively. The generator matrix of polar codes is defined by $G_{N}=B_{N} F^{\otimes n}$, where $F^{\otimes n}$ denote the n-th Kronecker power of F and B_{N} is the reverse-shuffle. Note that the operations of addition and multiplication are both based on \mathbb{F}_{q}.

Let X_{1}^{N} and Y_{1}^{N} denote the encoded polar codewords of users 1 and 2, given by

$$
\begin{equation*}
X_{1}^{N}=U_{1}^{N} G_{N}, Y_{1}^{N}=V_{1}^{N} G_{N} \tag{2}
\end{equation*}
$$

with $X_{i}=\left(X_{i, 1}, X_{i, 2}, \ldots, X_{i, t}, \ldots, X_{i, r}\right), Y_{i}=\left(Y_{i, 1}, Y_{i, 2}, \ldots\right.$, $\left.Y_{i, t}, \ldots, Y_{i, r}\right)$, and $X_{i, t}, Y_{i, t} \in \mathbb{B}$. The encoded polar codewords are then converted to bits. By using BPSK modulation, the modulated signals are S_{1}^{N} and T_{1}^{N} for users 1 and 2, respectively. Two users' modulated signals are then transmitted to the multiple-access channel, and the received signals Z_{1}^{N} is given by

$$
\begin{equation*}
Z_{1}^{N}=S_{1}^{N}+T_{1}^{N}+K_{1}^{N} \tag{3}
\end{equation*}
$$

where $Z_{i}=\left(Z_{i, 1}, Z_{i, 2}, \ldots, Z_{i, t}, \ldots, Z_{i, r}\right), K_{i}=\left(K_{i, 1}, K_{i, 2}\right.$, $\ldots, K_{i, t}, \ldots, K_{i, r}$), and $Z_{i, t}, K_{i, t} \in \mathbb{R}$. The noise component $K_{i, t}$ satisfies $\mathcal{N}\left(0, N_{0} / 2\right)$.

At the receiver, the successive cancellation decoding is used to recover U_{1}^{N} and V_{1}^{N}, denoted by \hat{U}_{1}^{N} and \hat{V}_{1}^{N}. After converting \hat{U}_{1}^{N} and \hat{V}_{1}^{N} to bits and removing the frozen bits, the information bits of two users are obtained. By now, the description of the system framework is accomplished. Some definitions for the channel analysis of this system are given next.

Let $W: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a two-user multiple-access channel. Symbol pair $\left(X_{i}, Y_{i}\right)$ can be viewed as the input of W, and $W\left(z_{i} \mid x_{i}, y_{i}\right)$ denotes the corresponding transition probability. Set W^{N} as N independent uses of W. Let \mathcal{X}^{N} and \mathcal{Y}^{N} denote the input of W^{N} from user 1 and user 2 , while \mathcal{Z}^{N} is the output of W^{N}, then $W^{N}\left(z_{1}^{N} \mid x_{1}^{N}, y_{1}^{N}\right)=\prod_{i=1}^{N} W\left(z_{i} \mid x_{i}, y_{i}\right)$.

Like the case in [5], define the combined channel W_{N} by

$$
\begin{equation*}
W_{N}\left(z_{1}^{N} \mid u_{1}^{N}, v_{1}^{N}\right)=W^{N}\left(z_{1}^{N} \mid u_{1}^{N} G_{N}, v_{1}^{N} G_{N}\right) \tag{4}
\end{equation*}
$$

Since there is no mutual information loss during the polar transform, thus

$$
\begin{equation*}
I\left(Z_{1}^{N} ; U_{1}^{N}, V_{1}^{N}\right)=I\left(Z_{1}^{N} ; X_{1}^{N}, Y_{1}^{N}\right)=N \cdot I(Z ; X, Y) \tag{5}
\end{equation*}
$$

To construct a polarization channel, (5) is expanded as

$$
\begin{equation*}
I\left(Z_{1}^{N} ; U_{1}^{N}, V_{1}^{N}\right)=\sum_{k=1}^{2 N} I\left(Z_{1}^{N} ; E_{k} \mid E_{1}^{k-1}\right) \tag{6}
\end{equation*}
$$

where $E_{1}^{2 N}$ is the permutation of $U_{1}^{N} V_{1}^{N}$ that preserves the monotone order of both U_{1}^{N} and V_{1}^{N}. Let $b_{1}^{2 N}$ indicate the relative order of $E_{1}^{2 N}$. When $E_{i} \in U_{1}^{N}, b_{i}=0$; otherwise, $b_{i}=1$.

The coordinate channels $W_{N}^{\left(b_{k}, i, j\right)}$ that correspond to are defined as

$$
\begin{align*}
W_{N}^{\left(b_{k}, i, j\right)} & \left(z_{1}^{N}, e_{1}^{k-1} \mid e_{k}\right)= \\
& \begin{cases}W_{N}^{(0, i, j)}\left(z_{1}^{N}, u_{1}^{i-1}, v_{1}^{j} \mid u_{i}\right), & b_{k}=0 \\
W_{N}^{(1, i, j)}\left(z_{1}^{N}, u_{1}^{i}, v_{1}^{j-1} \mid v_{j}\right), & b_{k}=1\end{cases} \tag{7}
\end{align*}
$$

where i and j stand for the i-th symbol of user 1 and the j-th symbol of user $2,0 \leq i, j \leq N, 1 \leq k=i+j \leq 2 N$. The coordinate channel transition probability is used in the decoding process as described in the next section.

III. A JOINT SC DECODING ALGORITHM

In this section, a joint SC decoding is presented for the NBpolar codes in the two-user MAC. Since the generator matrix G_{N} is determined by the row vector in $F^{\otimes n}$, thus $F_{N}=F^{\otimes n}$ is used to describe the decoding process, ignoring operation B_{N} that has no impact on the performance.

To calculate $W_{N}^{\left(b_{k}, i, j\right)}$, we define the split MAC channel $W_{N}^{(i, j)}$ by

$$
\begin{equation*}
W_{N}^{(i, j)}\left(z_{1}^{N}, u_{1}^{i-1}, v_{1}^{j-1} \mid u_{i}, v_{j}\right)=\sum_{u_{i+1}^{N}, v_{j+1}^{N}}\left(\frac{1}{q^{N-1}}\right)^{2} W_{N}\left(z_{1}^{N} \mid u_{1}^{N}, v_{1}^{N}\right) . \tag{8}
\end{equation*}
$$

When considering the decoding order, the single user transition probability is derived as

$$
\begin{align*}
& W_{N}^{(0, i, j)}\left(z_{1}^{N}, \hat{u}_{1}^{i-1}, \hat{v}_{1}^{j} \mid u_{i}\right)= \\
&\left\{\begin{array}{cl}
\sum_{v 1} \frac{1}{q} W_{N}^{(i, 1)}\left(z_{1}^{N}, \hat{u}_{1}^{i-1} \mid u_{i}, v_{1}\right) & \text { if } j=0 \\
\frac{1}{q} W_{N}^{(i, j)}\left(z_{1}^{N}, \hat{u}_{1}^{i-1}, \hat{v}_{1}^{j-1} \mid u_{i}, \hat{v}_{j}\right) & \text { if } j>0
\end{array}\right. \tag{9}\\
& W_{N}^{(1, i, j)}\left(z_{1}^{N}, \hat{u}_{1}^{i}, \hat{v}_{1}^{j-1} \mid v_{j}\right)= \\
& \begin{cases}\sum_{u 1} \frac{1}{q} W_{N}^{(1, j)}\left(z_{1}^{N}, \hat{v}_{1}^{j-1} \mid u_{1}, v_{j}\right) & \text { if } i=0 \\
\frac{1}{q} W_{N}^{(i, j)}\left(z_{1}^{N}, \hat{u}_{1}^{i-1}, \hat{v}_{1}^{j-1} \mid \hat{u}_{i}, v_{j}\right) & \text { if } i>0\end{cases} \tag{10}
\end{align*}
$$

Fig. 2. An example of the decoding path with three phases, where $N=8$.
The transition probability of the split MAC channel $W_{N}^{(i, j)}$ can be calculated recursively due to the recursive structure. For simplicity, here we use the notations similar to [5]. Let $\dot{u}_{i} \triangleq u_{2 i-1}+\alpha_{u} \cdot u_{2 i}$ and $\ddot{u}_{i} \triangleq u_{2 i}$, and define $\dot{u}_{1}^{i}=u_{1, o}^{2 i}+$ $\alpha_{u} \cdot u_{1, e}^{2 i}$ and $\ddot{u}_{1}^{i}=u_{1, e}^{2 i}$, where the subscripts o and e denote the subvector with odd and even indices that are similar to \dot{v}_{1}^{i} and \ddot{v}_{1}^{i}, respectively. Define

$$
\begin{align*}
D_{N}^{(i, j)}\left(z_{1}^{2 N}, u_{1}^{2 i}, v_{1}^{2 j}\right) & \triangleq W_{N}^{(i, j)}\left(z_{1}^{N}, \dot{u}_{1}^{i-1}, \dot{v}_{1}^{j-1} \mid \dot{u}_{i}, \dot{v}_{j}\right) \\
& \cdot W_{N}^{(i, j)}\left(z_{N+1}^{2 N}, \ddot{u}_{1}^{i-1}, \ddot{v}_{1}^{j-1} \mid \ddot{u}_{i}, \ddot{v}_{j}\right) . \tag{11}
\end{align*}
$$

Then the recursive equations are given by

$$
\begin{align*}
& \quad W_{2 N}^{(2 i-1,2 j-1)}\left(z_{1}^{2 N}, u_{1}^{2 i-2}, v_{1}^{2 j-2} \mid u_{2 i-1}, v_{2 j-1}\right) \\
& =\sum_{u_{2 i}, v_{2 j}} \frac{1}{q^{2}} D_{N}^{(i, j)}\left(z_{1}^{2 N}, u_{1}^{2 i}, v_{1}^{2 j}\right), \tag{12}\\
& W_{2 N}^{(2 i, 2 j-1)}\left(z_{1}^{2 N}, u_{1}^{2 i-1}, v_{1}^{2 j-2} \mid u_{2 i}, v_{2 j-1}\right) \\
& =\sum_{v_{2 j}} \frac{1}{q^{2}} D_{N}^{(i, j)}\left(z_{1}^{2 N}, u_{1}^{2 i}, v_{1}^{2 j}\right), \tag{13}\\
& \\
& W_{2 N}^{(2 i-1,2 j)}\left(z_{1}^{2 N}, u_{1}^{2 i-2}, v_{1}^{2 j-1} \mid u_{2 i-1}, v_{2 j}\right) \tag{14}\\
& =\sum_{u_{2 i}} \frac{1}{q^{2}} D_{N}^{(i, j)}\left(z_{1}^{2 N}, u_{1}^{2 i}, v_{1}^{2 j}\right), \\
& \tag{15}\\
& =\frac{W_{2 N}^{(2 i, 2 j)}\left(z_{1}^{2 N}, u_{1}^{2 i-1}, v_{1}^{2 j-1} \mid u_{2 i}, v_{2 j}\right)}{q^{2}} D_{N}^{(i, j)}\left(z_{1}^{2 N}, u_{1}^{2 i}, v_{1}^{2 j}\right) .
\end{align*}
$$

According to (122-(15), the recursive transform implies a decoding path for each split channel. For example, the decoding path of $W_{8}^{(2,5)}\left(z_{1}^{8}, \hat{u}_{1}, \hat{v}_{1}^{4} \mid u_{2}, v_{5}\right)$ is shown in Fig. 2 . where red lines, blue lines, and green lines represent the decoding path for user 1 , user 2 , and both two users, respectively. Assuming that the phase index p increases from the input side to the output side in the polar encoder, $1 \leq p \leq n$. In each phase, two users' decoding paths are combined to calculate the corresponding probabilities.

Fig. 3. The basic kernel (or combined) structure of the NB-polar generator.
When we decode symbol $U_{i} \in U_{1}^{N}, 1 \leq i \leq N$, all the known decisions \hat{V} are viewed as auxiliary symbols, similarly to the symbol $V_{i} \in V_{1}^{N}$. Since the decoding process of U and V are reciprocity, we use the decoding process of U with the auxiliary information V for the analysis in the following.
The transition probability transform corresponding to the decoding path of each phase is based on the combined basic structure, as shown in Fig. 3 The calculation of probability is divided into two categories: f calculation and g calculation, which correspond to decode U_{1} and U_{2} of the combined basic structure, respectively. According to (12)-(15), considering the number of auxiliary symbols, there are six types of calculations, denoted by $f_{0, v}\left(P_{1}, P_{2}\right)$, $f_{1, v}\left(P_{1}, P_{2}, V_{1}\right), f_{2, v}\left(P_{1}, P_{2}, V_{1}, V_{2}\right)$ and $g_{0, v}\left(P_{1}, P_{2}, U_{1}\right)$, $g_{1, v}\left(P_{1}, P_{2}, U_{1}, V_{1}\right), g_{2, v}\left(P_{1}, P_{2}, U_{1}, V_{1}, V_{2}\right)$, respectively, as shown in Fig. 4 The subscript represents the number of the available auxiliary symbols of V_{1}^{2}. Based on the combined basic structure and calculations, the decoding process of each phase is similar to the single-user case.

A complete binary tree \mathbb{T} of depth $n+1$ is defined first to indicate the SC decoding process [15]. Given a node m, define its location of the decoding tree by the vector $\left(d_{m}, c_{m}\right)$, representing the c_{m}-th node of the d_{m}-th depth, $1 \leq d_{m} \leq$ $n+1,1 \leq c_{m} \leq 2^{d_{m}-1}$. Let the node's parent node, left and right child node be p_{m}, m_{l}, and m_{r}, respectively.

There are four kinds of information stored in the $\left(d_{m}, c_{m}\right)$ th node m : the probability matrices Φ_{m}, decision symbol vector β_{m}, auxiliary symbol vector θ_{m}, and child nodes set \mathbb{C}_{m}. Let $\Phi_{m}[l]$ be the l-th row in Φ_{m}, and $\beta_{m}[l], \theta_{m}[l]$ be the l-th element in β_{m}, θ_{m}, where $1 \leq l \leq \rho_{m}, \rho_{m}=2^{\left(n-d_{m}+1\right)}$.

For a two-user decoding algorithm, two decoding trees are defined as \mathbb{T}_{u} and \mathbb{T}_{v}, respectively. As stated in [5], for simplicity, $b_{2 N}=\left(0^{M} 1^{N} 0^{N-M}\right)$ is defined as our decoding order, where $1 \leq M \leq N$. The decoding order can be naturally divided into three stages: decode U_{1}^{M} in stage I, decode V_{1}^{N} in stage II, and decode U_{M+1}^{N} in stage III. Next, we will give a detailed description of the decoding process, consisting of six steps.

Step 1: Initialize Φ_{m} and \mathbb{C}_{m} for stage I.
The transition probability $P(z \mid x, y)$ is initialized to the root node's Φ_{m} of \mathbb{T}_{u}, denoted as

$$
\begin{equation*}
\Phi_{m}[l]=\frac{1}{(\sqrt{2 \pi} \sigma)^{r}} \prod_{t=1}^{r} \exp \left(-\frac{\left(z_{l, t}+2 x_{l, t}+2 y_{l, t}-2\right)^{2}}{2 \sigma^{2}}\right), \tag{16}
\end{equation*}
$$

where $1 \leq l \leq N . \mathbb{C}_{m}$ is initialized with a set for the internal node, including m_{l} and m_{r}. For the leaf node, \mathbb{C}_{m} is initialized with an empty set ϕ.

Fig. 4. Six different f and g calculations.

Step 2: The decoding process for stage I.
Update $\Phi_{m}, \beta_{m}, \mathbb{C}_{m}$ in \mathbb{T}_{u}. The node passing routine and update operation are relayed on the cardinality of \mathbb{C}_{m}, denoted as $\left|\mathbb{C}_{m}\right|$, and there are three cases.

If $\left|\mathbb{C}_{m}\right|=2$, change to its left child node m_{l} and remove m_{l} from \mathbb{C}_{m}. Let $1 \leq l \leq \frac{\rho_{m}}{2}$ and update $\Phi_{m_{l}}$ as

$$
\begin{equation*}
\Phi_{m_{l}}[l]=f_{0, v}\left(\Phi_{m}[l], \Phi_{m}\left[l+\frac{\rho_{m}}{2}\right]\right) \tag{17}
\end{equation*}
$$

If $\left|\mathbb{C}_{m}\right|=1$, change to its right child node m_{r} and remove m_{r} from \mathbb{C}_{m}. Update $\Phi_{m_{r}}$ as

$$
\begin{equation*}
\Phi_{m_{r}}[l]=g_{0, v}\left(\Phi_{m}[l], \Phi_{m}\left[l+\frac{\rho_{m}}{2}\right], \beta_{m l}[l]\right) \tag{18}
\end{equation*}
$$

If $\left|\mathbb{C}_{m}\right|=0$, change to its parent node p_{m}. There are two situations for this case. On one hand, when m is an internal node, let m_{l} denote the left child node of p_{m}, update $\beta_{p_{m}}$ as

$$
\beta_{p_{m}}[l]=\left\{\begin{array}{cc}
\beta_{m_{l}}[l]+\alpha \cdot \beta_{m}[l] & 1 \leq l \leq \rho_{m} \tag{19}\\
\beta_{m}\left[l-\rho_{m}\right] & \rho_{m}+1 \leq l \leq 2 \rho_{m}
\end{array}\right.
$$

On the other hand, when m is a leaf node, make a decision on Φ_{m} and update β_{m} as

$$
\begin{equation*}
\beta_{m}=\underset{u \in \mathbb{F}_{q}}{\arg \max } \sum_{v \in \mathbb{F}_{q}} \Phi_{m} . \tag{20}
\end{equation*}
$$

This stage is terminated when U_{M} has been decoded.
Step 3: Initialize θ_{m} for stage II.

Some of β_{m} in \mathbb{T}_{u} is initialized to θ_{m} in \mathbb{T}_{v}. Let $J=M$. For the leaf node, initialize θ_{m} as

$$
\begin{equation*}
\theta_{m}(n+1, J)=\beta_{m}(n+1, J) \tag{21}
\end{equation*}
$$

Then for the non-leaf node, let $0 \leq k \leq n-1, \theta_{m}$ is updated from the leaf side to the root side recursively

$$
\begin{equation*}
\theta_{m}(n-k, J)=\beta_{m}(n-k, J), J=\left\lceil\frac{J}{2}\right\rceil . \tag{22}
\end{equation*}
$$

Step 4: The decoding process for stage II.
This process is similar to step 2 . The difference exists in update Φ_{m} with θ_{m}.

If $\left|\mathbb{C}_{m}\right|=2$, update $\Phi_{m_{l}}$ as

$$
\begin{align*}
& \Phi_{m_{l}}[l]=f\left(\Phi_{m}[l], \Phi_{m}\left[l+\frac{\rho_{m}}{2}\right], \theta_{m_{l}}[l], \theta_{m_{r}}[l]\right) \tag{23}\\
& \text { If }\left|\mathbb{C}_{m}\right|=1, \text { update } \Phi_{m_{r}} \text { as } \\
& \Phi_{m_{r}}[l]=g\left(\Phi_{m}[l], \Phi_{m}\left[l+\frac{\rho_{m}}{2}\right], \beta_{m}[l], \theta_{m_{l}}[l], \theta_{m_{r}}[l]\right) \tag{24}
\end{align*}
$$

where $1 \leq l \leq \frac{\rho_{m}}{2}$. We choose different calculation types to calculate 23) and 24 according to the value of $\theta_{m l}$ and $\theta_{m r}$. This stage is terminated when V_{N} is decoded successfully.

Step 5: Initialize θ_{m} for stage III.
Some of β_{m} in \mathbb{T}_{v} is initialized to θ_{m} in \mathbb{T}_{u}. Set $J=N$ and execute the recursive update in step 3 , then the initialization for θ_{m} is accomplished.

Step 6: The decoding process for stage III.
This process is similar to step 4 , and this stage is terminated when U_{N} is decoded successfully.

The algorithm is summarized in Algorithm 1, which yields $O(q \cdot N \cdot \log N)$ operations, a slight increase in contrast with the $O(N \cdot \log N)$ complexity of its binary counterpart.

IV. THEORETICAL ANALYSIS OF THE KERNEL

This section focuses on the effect of the kernel. Since the reliability is relatively low in stage I, the performance is mainly determined by the kernels of stages II and III. First, we consider α_{u} in stage III since α_{v} has no effect when all the auxiliary symbols V_{1}^{N} are already known. Then we optimize α_{v} in stage II, assuming α_{u} is fixed.

A. The Kernel of Stage III

The probability transform of stage III is equivalent to that of the single-user basic structure, as shown in Fig. 3, where U_{1}, U_{2} and X_{1}, X_{2} are the input and output, respectively.

Set $u_{1}=0$, the transition probability can be written as

$$
\begin{equation*}
P_{i}\left(z_{i} \mid x_{i}\right)=\frac{1}{(\sqrt{2 \pi} \sigma)^{r}} \prod_{t=1}^{r} \exp \left(-\frac{\left(z_{i, t}+2 x_{i, t}-1\right)^{2}}{2 \sigma^{2}}\right) \tag{25}
\end{equation*}
$$

where $1 \leq i \leq 2, \sigma^{2}=N_{0} / 2$. The coordinate channel transition probability of u_{2} is

$$
\begin{align*}
& P\left(z_{1}^{2}, u_{1} \mid u_{2}\right)=P_{1}\left(z_{1} \mid x_{1}\right) P_{2}\left(z_{2} \mid x_{2}\right) \\
= & \frac{1}{(\sqrt{2 \pi} \sigma)^{2 r}} \prod_{i=1}^{2} \prod_{t=1}^{r} \exp \left(-\frac{\left(z_{i, t}+2 x_{i, t}-1\right)^{2}}{2 \sigma^{2}}\right) . \tag{26}
\end{align*}
$$

```
Algorithm 1 A Successive Cancellation decoding algorithm
of NB-polar in the two-user MAC.
    Input: \(\mathbb{T}_{u}, \mathbb{T}_{v}, n, M\)
    Initialize for stage \(\mathbf{I}\).
    Initialize \(\Phi_{m}, \mathbb{C}_{m}\)
    Decoding process for stage I
    for \(i=1: M\) do
        while \(d_{m} \neq n+1\) do
            Update \(\Phi_{m}, \beta_{m}, \mathbb{C}_{m}\) in \(\mathbb{T}_{u}\).
            Change to the next node.
        end while
        \(\hat{u}_{i}=\underset{u \in \mathbb{F}_{q}}{\arg \max } \sum_{v \in \mathbb{F}_{q}} \Phi_{m}\).
        Update \(\beta_{m}\) and change to the next node.
    end for
    Initialize for stage II
    Initialize \(\Phi_{m}, \mathbb{C}_{m}, \theta_{m}\)
    Decoding process for stage II
    for \(i=1: N\) do
        while \(d_{m} \neq n+1\) do
            Update \(\Phi_{m}, \beta_{m}, \mathbb{C}_{m}\) in \(\mathbb{T}_{u}\).
            Change to the next node.
        end while
        \(\hat{v}_{i}=\arg \max \Phi_{m}\).
        Update \(\beta_{m}\) and change to the next node.
    end for
    Initialize for stage III
    Initialize \(\theta_{m}\)
    Decoding process for stage III
    for \(i=M+1: N\) do
        while \(d_{m} \neq n+1\) do
            Update \(\Phi_{m}, \beta_{m}, \mathbb{C}_{m}\) in \(\mathbb{T}_{u}\).
            Change to the next node.
        end while
        \(\hat{u}_{i}=\arg \max \Phi_{m}\).
            \(u \in \mathbb{F}_{q}\)
        Update \(\beta_{m}\) and change to the next node.
    end for
    Output: \(\hat{u}_{1}^{N}, \hat{v}_{1}^{N}\).
```

Acccording to the maximum likelihood detection, the decoded \hat{u}_{2} is

$$
\begin{equation*}
\hat{u}_{2}=\underset{u_{2} \in \mathbb{F}_{q}}{\arg \max } P\left(z_{1}^{2}, u_{1} \mid u_{2}\right) \tag{27}
\end{equation*}
$$

Define $L_{s}=P\left(z_{1}^{2}, u_{1} \mid \gamma^{s}\right), \gamma^{s} \in \mathbb{F}_{q}$. Assuming $\tilde{u}_{2}=\gamma^{s}$ is transmitted, the probability of a correct decision is given by

$$
\begin{equation*}
P_{c}=P\left[L_{s}>L_{a}, \text { for all } \gamma^{a} \in \mathbb{F}_{q} \backslash\left\{\gamma^{s}\right\} \mid u_{2}=\gamma^{s}\right] . \tag{28}
\end{equation*}
$$

Assume the detection of γ^{s} is independent, (28) becomes

$$
\begin{equation*}
P_{c}=\prod_{\gamma^{a} \in \mathbb{F}_{q}, \gamma^{a} \neq \gamma^{s}} P\left[L_{s}>L_{a} \mid u_{2}=\gamma^{s}\right] . \tag{29}
\end{equation*}
$$

Let \bar{u}_{2} denote γ^{a}, the term in (29) can be organized as
$\sum_{i=1}^{2} \sum_{t=1}^{r}\left(\bar{x}_{i, t}^{2}-\tilde{x}_{i, t}^{2}+\bar{x}_{i, t} z_{i, t}-\tilde{x}_{i, t} z_{i, t}+\tilde{x}_{i, t}-\bar{x}_{i, t}\right)>0$,
where \bar{x}_{1}, \bar{x}_{2} and $\tilde{x}_{1}, \tilde{x}_{2}$ correspond to \bar{u}_{2} and \tilde{u}_{2}, respectively. Since $z_{i, t} \sim \mathcal{N}\left(-2 \tilde{x}_{i, t}+1, \sigma^{2}\right)$, the left side of 30 is also a Gaussian variable $Q \sim \mathcal{N}\left(\mu_{q}, \sigma_{q}^{2}\right)$, where

$$
\begin{equation*}
\mu_{q}=\sum_{i=1}^{2} \sum_{t=1}^{r}\left(\tilde{x}_{i, t}-\bar{x}_{i, t}\right)^{2}, \sigma_{q}^{2}=\sum_{i=1}^{2} \sum_{t=1}^{r}\left(\tilde{x}_{i, t}^{2}+\bar{x}_{i, t}^{2}\right) \sigma^{2}, \tag{31}
\end{equation*}
$$

and the probability is calculated by integrating the probability density function (PDF) of Q. The average BER is calculated by going through all u_{2}. Then we choose the kernel factor α_{u} that can provide the best BER performance.

B. The Kernel of Stage II

Assuming that α_{u} is fixed, then we select the optimal α_{v}. Set $u_{1}=0$ and $v_{1}=0$, the transition probability is
$P_{i}\left(z_{i} \mid x_{i}, y_{i}\right)=\frac{1}{(\sqrt{2 \pi} \sigma)^{r}} \prod_{t=1}^{r} \exp \left(-\frac{\left(z_{i, t}+2 x_{i, t}+2 y_{i, t}-2\right)^{2}}{2 \sigma^{2}}\right)$,
Define \check{x}_{1}, \check{x}_{2} by $\left\{\check{x}_{1}, \check{x}_{2} \in \mathbb{F}_{q} \mid \check{x}_{1}+\alpha_{u} \cdot \check{x}_{2}=u_{1}\right\}$, the split channel transition probability of u_{1}, v_{2} is given by

$$
\begin{align*}
& P\left(z_{1}^{2}, v_{1} \mid u_{1}, v_{2}\right)= \\
& \sum_{\check{x}_{1}, \check{x}_{2}} \frac{1}{(\sqrt{2 \pi} \sigma)^{2 r}} \prod_{i=1}^{2} \prod_{t=1}^{r} \exp \left(-\frac{\left(z_{i, t}+2 \check{x}_{i, t}+2 y_{i, t}-2\right)^{2}}{2 \sigma^{2}}\right) . \tag{33}
\end{align*}
$$

Define $L_{s}^{\prime}=P\left(z_{1}^{2}, v_{1} \mid u_{1}, \gamma^{s}\right)$. Assuming $\tilde{v}_{2}=\gamma^{s}$ is transmitted, the probability of a correct decision is

$$
\begin{equation*}
P_{c}=\prod_{\gamma^{a} \in \mathbb{F}_{q}, \gamma^{a} \neq \gamma^{s}} P\left[L_{s}^{\prime}>L_{a}^{\prime} \mid v_{2}=\gamma^{s}\right] . \tag{34}
\end{equation*}
$$

It is hard to derive the term in (34) directly. Thus (33) is simplified by omitting the relatively small items. Assuming \tilde{u}_{2} is transmitted, and $\tilde{x}_{1}, \tilde{x}_{2}$ correspond to \tilde{u}_{2}. Let \bar{v}_{2} denote γ^{a}. Define $\tilde{w}_{i}=\tilde{x}_{i}+\tilde{y}_{i}$ and $\bar{w}_{i}=\check{x}_{i}+\bar{y}_{i}, 1 \leq i \leq 2$, besides

$$
\begin{equation*}
\bar{x}_{1}^{2}=\underset{{x_{1}}_{1}, \tilde{x}_{2} \in \mathbb{F}_{q}}{\arg \min } \sum_{i=1}^{2}\left\|\tilde{w}_{i}-\bar{w}_{i}\right\|_{2}^{2} \tag{35}
\end{equation*}
$$

where \bar{y}_{1}, \bar{y}_{2} and $\tilde{y}_{1}, \tilde{y}_{2}$ correspond to \bar{v}_{2} and \tilde{v}_{2}, respectively. Then (33) is approximated by

$$
\begin{align*}
& P\left(z_{1}^{2}, v_{1} \mid u_{1}, \bar{v}_{2}\right) \approx \\
& \frac{1}{(\sqrt{2 \pi} \sigma)^{2 r}} \prod_{i=1}^{2} \prod_{t=1}^{r} \exp \left(-\frac{\left(z_{i, t}+2 \bar{x}_{i, t}+2 y_{i, t}-2\right)^{2}}{2 \sigma^{2}}\right) . \tag{36}
\end{align*}
$$

The situation degraded to the single-user case, and the average BER is calculated by going through all u_{2} and v_{2}. Then the kernel factor α_{v} that provides the best BER is chosen.

V. SIMULATION RESULTS

In this section, Monte Carlo method is used to simulate the BLER performances of the proposed system. In this work, we take the GF (16) as an example to do analysis, and the theoretical BERs of different kernels are shown in Figs. 5 and 6 According to Fig. 5, $\alpha_{u}=5,10$ is the optimal choice for the single-user case in GF (16). Thus let $\alpha_{u}=5$ be the kernel factor for user 1. According to Fig. 6, $\alpha_{v}=3$ is the optimal choice in the two-user case when $\alpha_{u}=5$. Thus let $\alpha_{v}=3$ be the kernel factor for user 2.
Fig. 7 compares the BLER performances between the proposed non-binary and binary systems in the two-user MAC

Fig. 5. Different kernels' impact on the single-user basic structure.

Fig. 6. Different kernels' impact on the combined basic structure.
with different code lengths, where the Monte Carlo construction is used to pick the transmission channels. The decoding order parameter M is set as $N / 4$, with $R=0.5$. First of all, the BLER performance comparations between two nonbinary cases are considered, where $\left(\alpha_{u}, \alpha_{v}\right)=(5,3)$ and $\left(\alpha_{u}, \alpha_{v}\right)=(5,5)$, corresponding to the best and the worst case in GF (16), given by Fig. 6. When BLER $=1 \times 10^{-3}$, the required E_{b} / N_{0} of $N=64,128$ are respectively 6.3 dB and 5.4 dB for $(5,3)$ kernel case. Obviously, the BLER performance improves with the increase of N. Moreover, it is found that the BLER of $(5,3)$ case is better than that of $(5,5)$ case, e.g., there is 0.4 dB gain when $\mathrm{BLER}=1 \times 10^{-3}$ and $N=128$, which is in line with the theoretical analysis. Secondly, it is found that the proposed $(5,3)$ non-binary polar system provides a much lower BLER performance than that of the binary polar system, e.g., when $\operatorname{BLER}=1 \times 10^{-3}$ and $N=64,128$, the E_{b} / N_{0} of $(5,3)$ case has 0.5 dB and 0.8 dB gain, respectively. In summary, the non-binary polar system with the optimal kernel achieves relatively superior performance compared to the classical binary system.

VI. Conclusion

This paper proposes a non-binary polar coding scheme in the two-user MAC and the corresponding SC-decoding

Fig. 7. BLER performance between non-binary and binary polar system.
algorithm. The choice of the kernel factors is discussed in detail. Simulation results show that there is a vast improvement between the worst and the best kernel choice. Moreover, the non-binary polar codes in the two-user MAC achieve much better BLER performances than the classical binary codes.

References

[1] E. Arikan, "Channel Polarization: A Method for Constructing CapacityAchieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.
[2] E. Şaşoğlu, E. Telatar and E. M. Yeh, "Polar Codes for the Two-User Multiple-Access Channel," IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6583-6592, Oct. 2013.
[3] E. Abbe and E. Telatar, "Polar Codes for the m-User Multiple Access Channel," IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5437-5448, Aug. 2012.
[4] H. Mahdavifar, M. El-Khamy, J. Lee and I. Kang, "Techniques for polar coding over multiple access channels," in Proc. 2014 48th Annu. Conf. Inf. Sci. and Sys. (CISS), 2014, pp. 1-6.
[5] S. Önay, "Successive cancellation decoding of polar codes for the twouser binary-input MAC," in Proc. 2013 IEEE Int. Symp. Inf. Theory, 2013, pp. 1122-1126.
[6] E. Şaşoğlu, E. Telatar and E. Arikan, "Polarization for arbitrary discrete memoryless channels," in Proc. 2009 IEEE Inf. Theory Workshop, 2009, pp. 144-148.
[7] R. Mori and T. Tanaka, "Channel polarization on q-ary discrete memoryless channels by arbitrary kernels," in Proc. 2010 IEEE Int. Symp. Inf. Theory, 2010, pp. 894-898.
[8] E. Şaşoğlu, "Polar codes for discrete alphabets," in Proc. 2012 IEEE Int. Symp. Inf. Theory Proceedings, 2012, pp. 2137-2141.
[9] W. Park and A. Barg, "Polar Codes for Q-Ary Channels, $q=2^{r}$," IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 955-969, Feb. 2013.
[10] P. Yuan and F. Steiner, "Construction and Decoding Algorithms for Polar Codes based on 2×2 Non-Binary Kernels," in Proc. 2018 IEEE 10th Int. Symp. Turbo Codes \& Iter. Inf. Process. (ISTC), 2018, pp. 1-5.
[11] R. Nasser and E. Telatar, "Polar Codes for Arbitrary DMCs and Arbitrary MACs," IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 29172936, June 2016.
[12] R. Nasser and J. M. Renes, "Polar Codes for Arbitrary ClassicalQuantum Channels and Arbitrary cq-MACs," IEEE Trans. Inf. Theory, vol. 64, no. 11, pp. 7424-7442, Nov. 2018.
[13] I. Tal, A. Sharov and A. Vardy, "Constructing polar codes for nonbinary alphabets and MACs," in Proc. 2012 IEEE Int. Symp. Inf. Theory Proceedings, 2012, pp. 2132-2136.
[14] U. Pereg and I. Tal, "Channel Upgradation for Non-Binary Input Alphabets and MACs," IEEE Trans. Inf. Theory, vol. 63, no. 3, pp. 1410-1424, March 2017.
[15] A. Alamdar-Yazdi and F. R. Kschischang, "A Simplified SuccessiveCancellation Decoder for Polar Codes," IEEE Commun. Lett., vol. 15, no. 12, pp. 1378-1380, December 2011.

[^0]: The work presented in this paper was supported in part by the National Natural Science Foundation of China under Grand No. 62071148, and partly supported by the Natural Science Foundation of Heilongjiang Province of China (No. YQ2019F009).

