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Abstract—Caching multimedia contents at the network edge is
a key solution to decongest the amount of traffic in the backhaul
link. In this paper, we extend and analyze the coded caching
technique [1] in an unexplored scenario, i.e. at the edge of two-
tier heterogeneous networks with an arbitrary number of users.
We characterize the performance of such scheme by deriving a
closed-form expression of the average backhaul load and reveal a
significant gain compared to other benchmark caching schemes
proposed in the literature.

I. INTRODUCTION

Caching has emerged as one of the key technologies for
next-generation wireless systems. Bringing the desired content
to the edge of the network, i.e. memorizing copies of relevant
information close to users, has been shown not only to alleviate
the backhaul traffic, but also to significantly reduce latency and
power consumption [2].

To achieve this goal, a two-step caching strategy is typically
implemented, pre-fetching the content at the edge (e.g. at
base stations, LEO satellites, relays or helpers) during network
off-peak periods (placement phase), so as to serve the users
without consuming backhaul capacity when the network is
congested (delivery phase).

Several works have recently investigated the potential ben-
efits of caching schemes at the edge. Interesting results were
obtained in [3], where authors compared two different place-
ment approaches, i.e. encoded and uncoded content placement
to reduce the download delay. Caching scheme based on
maximum distance separable (MDS) codes have been studied
in wireless networks to minimize the expected download time
[4] or to reduce the amount of data to be sent [5].

Furthermore, Maddah-Ali et al. introduced in their pio-
neering work [1] the concept of coded caching, considering
local caching directly on the user’s device. The idea is to
deliver coded content and leverage the user’s local content to
serve multiple users with a single transmission. This technique
has spurred an extensive body of research providing a solid
understanding of the potential and limitations of caching, e.g.
[6], [7]. However, coded caching has been studied especially
in setups where few cache-aided users are connected to a
common server via a shared link. Instead, its potential and
the trade-offs it may induce in other relevant scenarios re-
main unexplored to date. An example of notable practical
relevance is given by two-tier networks that foresee a satellite
component, which will be an integrating part of 5G and 6G
systems [8]. In these settings, commonly referred to as non-
terrestrial networks, terminals may not be equipped with direct
satellite connectivity, and the intermediate tier is responsible
for forwarding content from one end to the other.

To shed light on these relevant design aspects, the present
work considers the application of coded caching in a two-
tier caching satellite network for an arbitrary number of users.
Unlike previous work, caching is considered at the edge of
the network (e.g. relays, helpers, LEO satellites) and multiple
users are connected to one or more cache-aided relays. To
analyze the system performance, we derive a closed-form
expression of the average backhaul transmission load when
coded caching is in place. We compare our results with the
benchmark given by the MDS caching scheme proposed in
literature and we show a reduction in backhaul transmissions.
In particular, the presented scheme triggers a gain each time
the mutual difference of sets representing the file requested at
each relay is not empty. To quantify such gain, the distribution
of how users request for content is casted onto a combinatorial
balls into bins (BiB) setting. Due to complexity of the problem,
closed form expressions are derived when the distribution
of files requested is uniform, while we show via Monte-
Carlo that the aforementioned gain is also present when files
are not equiprobable. The significant enhancement obtained
encourages to investigate further relevant aspect of the edge
coded caching in satellite networks.

Notation: We use capital letters, e.g. X , for discrete random
variables (rvs) and their lower case counterparts, e.g. x,
for their realizations. The probability mass function (pmf)
of the rv X is denoted as pX(x) and conditional pmfs as
Pr{X = x |Y = y} = pX(x|y). A set is denoted with calli-
graphic letters, e.g. S. The cardinality of set S is indicated as
|S|.

II. SYSTEM MODEL

A two-tier heterogeneous network composed by a master
node, two cache-enabled nodes and a number of end users
are considered. While this setup applies to different network
configurations, we will take as reference throughout our dis-
cussion the satellite topology illustrated in Fig. 1. Here, a
satellite (S) stores a whole library F = {f1, · · · , fN} of equal-
size files. On the ground, two cache-enabled relays (RB and
RW)1 are connected via a backhaul link to S, and each one
provides connectivity to some users. As typical in current
satellite-aided terrestrial networks, we assume that no direct
link between users and S is available2. Depending on their
locations users (terminals) may be connected to one or both
relays. Uh denotes the subset of users that are connected to h

1The subscript B and W have been chosen to facilitate the similarity
between the caching scheme and BiB problem, as will become clear later.

2Note that the setup presented is not limited to this architecture. For
instance, a possible scenario may consist of a GEO satellite which acts as
master node connected via backhaul links to cache-enabled LEO satellites.
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Fig. 1. System model: cache-aided relays are connected to the satellite through
the backhaul link and users can be connected to one or more relays.

relays, where h = {1, 2}, whereas UB (UW) denotes the subset
of users connected only to relay RB (RW). Note that the set
of users connected to exactly one relay is U1 = UB ∪ UW.

Each relay can store up to M ≤ N files locally. With ZB

(ZW) we indicate the files present in the cache of RB (RW).
During the placement phase, which is carried out offline, each
file fj ∈ F is partitioned into nF equally long fragments, i.e.
fj is fragmented as {f (1)j , · · · , f (nF)j }. Each cache stores Fj
fragments related to file fj according to one of the caching
schemes that will be introduced later in this section. During the
delivery phase, the network serves the user’s requests. Each
user picks a file according to the file distribution considered
(e.g. uniform or Zipf distribution). A user connected to h
relays which request for fj receives hFj fragments directly
from the cached content and the max(0, nF − hFj) missing
fragments are forwarded by the R after being retrieved by S via
the backhaul link. The transmission technique in the backhaul
link depends on the caching scheme considered. With D

x
⊆ F

we denote the subset of files requested by the set of users Ux,
where x ∈ {1, 2,B,W}. For example, the cardinality of D1 is
the number of different files requested by users connected to
a single relay (users in U1).

In such configuration, we indicate with u the total number
of terminals that concurrently request content from the library,
each independently choosing a file to download. Specifically,
we have that u = u1+u2 where |U1| = u1, are those connected
to a single relay, while |U2| = u2 are those connected to both
relays. We also have that u1 = uB + uW where uB are the
users requesting content only at RB and uW only at RW. A
relay directly delivers content present in its cache and retrieves
content that is not available locally via the backhaul link. For
simplicity we assume that all transmissions are error-free.

Following this notation, we analyze a coded caching scheme
at the edge based on the strategy proposed in [1], referred to
as the edge coded caching scheme (ECC). To evaluate the
scheme, we derive the average backhaul transmission load L,
i.e. the average number of packets that S should transmit in
the backhaul link to satisfy user requests. We will focus on the
rv Lx which describes the number of transmissions required
from S for a given caching scheme x. We have that Lx = E[Lx]
where the operator E indicates the expected value. The metric
L is used to compare the behavior against the benchmark given
by MDS scheme. Let us discus both schemes in the following.

MDS Caching Scheme

In the MDS scheme [5], the network works by caching and
delivering packets that are encoded. In particular, nF fragments
of file fj are used to create n > nF encoded packets using a
(n, nF) MDS code. The set of encoded packets related to fj
can be written as ej = {e(1)j , · · · , e(n)j } where e

(i)
j and f

(i)
j

are equally long for every i and j. With the MDS coding
technique, a user can reconstruct successfully the requested
file by receiving any subset of nF encoded packets [5].

If we assume a uniform distribution of the file requested
then it is also assumed that files are split into nF = N
fragments. Each relay fills own cache with Fj = M encoded
packets per file such that Z1 ∩ Z2 = ∅, i.e. relays store a
different subset of encoded packets for the same file. The
satellite keeps n− 2M encoded packets for every file. The
delivery phase is split into the following stages. First, users
receive content from the relays’ cache, subsequently the miss-
ing encoded packets are sent by S through the backhaul link
to the R which forwards them to the users. The benefit of this
strategy is based on being able to serve both relays in parallel
with a single transmission via the backhaul link. This occurs
whenever there are requests for the same content at both relays.
To clarify, consider the following numerical example.

Example 1. Let us assume to have two users: user 1 is
connected only to RB and user 2 only to RW. Consider a
memory size of M = 1 and two equiprobable files split into
nF = 2 fragments

f1 = {f (1)1 , f
(2)
1 } and f2 = {f (1)2 , f

(2)
2 }.

Let us consider a (3, 2) MDS code such that we can write the
encoded packets as

e1 = {e(1)1 , e
(2)
1 , e

(3)
1 } and e2 = {e(1)2 , e

(2)
2 , e

(3)
2 }.

We further set ZB = {e(1)1 , e
(1)
2 } and ZW = {e(2)1 , e

(2)
2 }.

To characterize the average backhaul load LMDS , we shall
consider two cases. First, we suppose that users are requesting
for different content, i.e. user 1 (user 2) requests for f1 (f2)
to relay RB (RW). Since each R has one encoded packet of the
requested file in cache, S should send one encoded packet to
each R. Hence, the number of required backhaul transmissions,
i.e. the realization of l of the rv LMDS takes value

l1 = 2.

Each user is able to reconstruct the file by receiving one
encoded packet directly from the cache and the other for-
warded by the relay. If, instead, both users request for the
same content, S can only transmit the encoded packet e(3)i to
both and they will successfully decode the requested content.
In this case, the number of packets to transmit is

l2 = 1.

Combining the two cases, L in MDS evaluates to

LMDS =
∑
i

pL(li) li =
1

2
l1 +

1

2
l2 = 1 +

1

2
=

3

2

where we sum over the i possibilities on how users can
request for the library content. They ask for different files with



probability p(l1) = 1/2 while they ask for the same file with
probability p(l2) = 1/2.

Edge Coded Caching Scheme

In the ECC scheme, caches are filled with non-encoded
fragments, while the encoding takes place in the delivery
phase. S creates coded delivery opportunities so that with a
unique transmission both relays are able to recover the desired
information also when different content is requested.

In the placement phase, each R fills its cache with Fj nF

exclusive fragments of file fj so that relays have different
fragments of the same file. S is aware of which content has
been stored in each R. In the second phase, users make their
requests to the corresponding R. The delivery can be split
into three stages. In the first stage, a user receives fragments
directly from the cached content of the associated R. In the
second stage, S is informed of users requests and provides
missing content over the shared bachkaul link by creating
coded multicast opportunities transmissions when is possible.
In this stage the relays decode the transmission and forward
the desired packets to users. In the third and last stage, S
sends the remaining content in a non-encoded transmission,
and relays forward this to users.

A coded multicast opportunity allows both relays to retrieve
file fragments with a single transmission. In particular, S
creates a coded packet by XORing two fragments (i.e., a
bitwise operation). S picks a fragment of a file requested at RB

and present in cache of RW and vice-versa and combines them
for delivering. In this way, each R receives a coded packet
which is composed by a fragment present in own memory and
a desired fragment. Each R by XORing the received packet
with the corresponding fragment in cache obtains a fragment
of the requested file. ECC generates a gain over the MDS
caching scheme whenever relays have disjoint requests. Let us
clarify the last statement by considering the setting discussed
in Example 1.

Example 2. Let us assume to have one user
per relay and the following cache placement:
ZB = {f (1)1 , f

(1)
2 } and ZW = {f (2)1 , f

(2)
2 }.

Consider first the case where users request for different
content. For example, user 1 (user 2) requests for f1 (f2)
to RB (RW). During the first stage, user i receives f (i)i from
the cache of the related R. At the second stage, S sends the
following coded packet p = f

(1)
2 ⊕ f (2)1 . Thus the number of

packets transmitted over the backhaul, l1, is

l1 = 1.

RB (RW) reconstructs the missing fragment by computing
p⊕ f (1)2 (p⊕ f (2)1 ). Similarly, when users request for the same
file, both are satisfied with a single coded transmission, i.e.

l2 = 1.

In the ECC scheme, L is then

LECC =
∑
i

pL(li) li =
1

2
l1 +

1

2
l2 = 1

1 ... j ... N
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Fig. 2. Caching requests represented as the BiB problem. Bins represent
files while balls represent users’ requests. The occupancy problem lies on
calculating the probability of having exactly j bins not empty after throwing
d balls, i.e. the probability that d users request exactly for j different files.
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Fig. 3. Requests represented as the BiB problem. Black balls represents
requests from users connected only to RB, while balls request only to RW

while gray balls represents request from users connected to both relays.

With the presented examples, we observe that there exists
a gain in the ECC scheme whenever there are requests for
different files at relays. To understand the potential of this
gain, we derive L in both schemes in a more general setting.
To this aim, we start by recalling some useful results of the
BiB problem, which will be later applied to our derivations.

III. BALLS INTO BINS PROBLEM APPLIED TO CACHING

To instantiate such calculations, it is convenient to map our
setting onto a balls into bins setup. The general BiB problem,
see e.g. [9], consists in independently throwing d balls into N
bins. As illustrated in Fig. 2, this can be cast to our caching
problem by having each bin associated to a file of the library,
and by having balls which represent user requests. Following
this parallel, the possibility for more balls to land into the same
bin corresponds to have multiple users asking for a common
library element. A first useful result is given by the probability
of having exactly j bins out of N non empty given that d balls
are thrown uniformly at random, which was derived in [10]
and can be written as

pJ(j|d) =

(
N
j

)
S (d, j) j!

Nd
(1)

where S (d, j) is the Stirling number of second kind, i.e.,

S (d, j) = (j!)−1
d∑
i=0

(−1)i
(
d

i

)
(j − i)d.

In our setup, we further need to differentiate requests made
to RB from those made to RW and, similarly, requests made
by users connected to one relay (set U1), from those made
by users connected to two relays (set U2). To this aim we



TABLE I
LIST OF SOME OF THE RANDOM VARIABLES

rv Definition Alphabet
J |D1| {1, ..., βJ = min(u1,N)}
Y |DB| {1, ..., βY = min(uB,N)}
KB |DB\DW| {αB = max(0, y − uW + kW),

..., βB = min(uB,N)}
KW |DW\DB| {0, ..., βW = min(uW,N− βB)}
K1 |D1\D2| {α1 = max(0, j − u2),

..., β1 = min(u1,N)}
K2 |D2\D1| {0, ..., β2 = min (u2,N− β1)}
Z min{KB,KW} {0, ..., y}

distinguish requests at different relays, as illustrated in Fig.
3, by considering balls of two different colors, e.g. black and
white balls. A bin containing black and white balls indicates
that the same file is required at both relays. Having the i-th
bin with only black (white) balls implies that the i-th file was
requested only at relay RB (RW).

Following this approach, a useful result is offered by the
multivariate occupancy problem assuming that there are N bins
and that uB black balls have been thrown and have occupied
j different bins. The probability that, after throwing uW white
balls, there are exactly kB bins containing only black balls and
kW bins containing only white balls is [9]

Poc(j, kB, kW, uW) =

(
j

kB

)(
N−j
kW

)
∆bW 0uW

NuW

where bW is the number of bins containing the uW white balls,
i.e. bW = j − kB + kW and the quantity

∆m 0n :=

m∑
i=0

(−1)i
(
m

i

)
(m− i)n

is known as difference of zeros [9]. Note that, in our setting,
Poc(j, kB, kW, uW) provides the probability that exactly kB
files are requested only to relay RB and kW files are requested
only to relay RW when in total there are u1 = uB + uW users
connected to exactly one relay.

IV. AVERAGE BACKHAUL TRANSMISSION LOAD

Leaning on the parallel with the BiB problem, we now
derive the mean number of packets/fragments that S needs
to send via the backhaul link to satisfy u requests.

For convenience, we list in Table I the rvs needed for our
derivations together with their definition and alphabet. The
first column indicates the notation of the rv, the second its
definition and the last its alphabet. For instance, the rv J
denotes the number of different files requested by u1 users
connected to only one relay (U1) while KB denotes the number
of different files requested exclusively at RB. Instead, the
notation DB\DW indicates the set difference and that is the
set of file requested at RB but not requested at RW. Let us
clarify all the mentioned quantities with an example.

Example 3. Let us refer to Fig. 3 which ı́llustrates a library
of N = 10 files (bins) and u = 17 users (balls). There are
uB = 6 users connected only to RB (black balls), uW = 4 only

to RW (white balls), while u2 = 7 are connected to both relays
(grey).

We have that uB = 6 users requested in total y = 4 different
files (represented by the four bins with black balls). Users in
U2 asked in total for three files and are represented by bins
3, 4 and 5. The files requested by the u1 users connected to
only one relay are in total j = 5, i.e. the number of bins with
black or with balls. Out of those, the files requested exclusively
at RB are kB = 2, i.e. the number of bins with black balls
and without white balls, while those exclusively requested at
RW are kW = 1, i.e. the number of bins with white balls
and without black balls. Since the minimum number of mono-
colour bins is one, then z = 1, i.e. z = min{kB, kW}.

Users connected to both relays requested in total for 4
further files, represented by bins 1, 2, 6 and 7. Then the files
requested only at one R are bins 3, 4 and 6 so in total k1 = 3,
while files requested only by users connected to both relays
are bins 6 and 7 such that k2 = 2.

In the next derivations we assume that files are equiprobable,
each file is split into nF = N fragments and the number of files
stored at each relay is Fj = M for all j.

A. MDS Average Transmision Load

Let us recall that J different files are requested by u1 users
in U1. By the working principle of the MDS scheme, for each
file requested, S has to send in the backhaul nF −M packets,
whereas the remaining M are already provided to the user
via the relay’s cache. The overall number of packets that S
transmits to satisfy u1 requests is then expressed by the rv

LMDS
1 = (nF −M) J. (3)

To complete the analysis, we derive the number of packets
needed to satisfy users connected to both relays (users in U2).
Note that in this calculation it is needed to take into account
only the K2 aggregated requests, i.e. the new files requested
by U2 users but not requested by U1. In fact, whenever a file
requested by users in U2 coincides with a user request from U1,
both requests are satisfied with the same backhaul transmission
already accounted for by LMDS

1 . Observing that each user in
U2 receives in total 2M different fragments of the respective
file from relays, the number of packets that S has to send for
each aggregated file is (nF−2M)+ where (x)+ := max(0, x).
Note that whenever M ≥ N/2, no transmission in needed.

Combining these remarks, the transmissions that S has to
perform to satisfy the aggregated requests can be expressed as

LMDS
2 = (nF − 2M)+K2. (4)

So that the average backhaul load L in the MDS is

LMDS = E
[
LMDS
1

]
+ E

[
LMDS
2

]
. (5)

Let us now calculate the two addends of equation (5).
The average transmission load for users in U1 can be

computed by simply averaging over J to obtain



L̄MDS =

βJ∑
j=1

(
N
j

)
S(u1, j)j!

Nu1

[
j
(
1 − M

N

)
+
(
1 − 2M

N

)+ j∑
k1=α1

(
j

k1

)
β2∑
k2=0

(
N − j

k2 − 1

)
N−b2∑
i=0

(−1)i
(

N − b2
i

)(N − b2 − i

N

)u2]
. (10)

LMDS
1 = E

[
(nF −M) J

]
= (nF −M)

βJ∑
j=1

pJ(j|u1) · j

= (N−M)

βJ∑
j=1

(
N
j

)
S (u1, j) j!

Nu1
· j

(6)

where the quantity pJ(j|u1) was derived with BiB occupancy
problem, see (1).

The average transmission load given by the aggregated files
requested by U2 can be computed by conditioning to J , i.e.

LMDS
2 = EJ

[
E
[
(nF − 2M)+K2|J

]]
. (7)

Let us first focus on the inner expectation, and derive the
conditional pmf pK2

(k2|j), i.e. the probability that users
connected to both relays request for exactly k2 new files given
that j different files have been requested by users connected
to one relay. To help the reader, we refer to Fig. 3 the sought
probability can be computed in the BiB setup as the probability
of having j+k2 non empty bins after throwing u2 (grey) balls,
conditioned on having already j non empty bins occupied by
u1 balls. As discussed, this results is offered by the multivariate
occupancy problem, and we have

pK2
(k2|j) =

j∑
k1=α1

Poc(j, k1, k2, u2), (8)

where the correspondent number of file requested at both
relays is b2 = j − k1 + k2. In (8) we are summing up all
the possible values that k1 can assume (i.e. files exclusively
requested at RB represented by bins with only black balls).
Accordingly,

LMDS
2 = EJ

[
(nF − 2M)+

β2∑
k2=0

k2 pK2
(k2|J)

]

= (N− 2M)+
βJ∑
j=0

pJ(j|u1)

β2∑
k2=0

k2

j∑
k1=α1

Poc(j, k1, k2, u2).

(9)
By inserting (6) and (9) onto (5) we obtain LMDS and

normalizing by the number of fragments N, we have that the
normalized average transmission load, L̄MDS = LMDS/N, in the
MDS scheme is given in (10) at the top of the page.

B. ECC Average Transmission Load

Let us start by considering users in U1. Since M fragments
of the requested files are obtained from the relay’s cache then
each user needs nF −M additional fragments. Let us calculate
the number of packets that S should transmit to satisfy
these requests by considering the coded caching opportunities.
Denoting by Y the rv counting the number of different files
requested by the uB users connected only to RB and by KW

the rv counting the number of files exclusively requested by
the uW connected only to RW and not requested to RB, in total
users have to receive (nF−M)(Y+KW) fragments in order that
all their requests are satisfied. However, note that transmissions
given by the coded opportunities should not be counted. As for
Example 2, a coded transmission opportunity take places each
time that a file is requested at one relay and not in the other and
vice-versa. S by XORing the corresponding content present at
each cache can make a transmission useful to both relays.
Each coded transmission opportunity allows the S to generate
ω1 XORed packets involving the two files. In particular,

ω1 = min(M,N−M),

where ω1 is the number of fragments per file combined in
a coding opportunity and it depends on the cache size. For
each transmission opportunity, when M ≤ N/2; then in total
M fragments per file are XORed, whereas if M > N/2 then
requests are satisfied by combining N−M fragments per file.

In summary, each coded transmission opportunity allows
S to combine ω1 packets where a packet is formed by
two encoded fragments. Accordingly, the overall number of
transmission needed in the backhaul to serve users in U1 is

LECC
1 = (nF −M) (Y +KW)− ω1 Z

where Z is the rv denoting the number of coded opportunities.
Let us now consider the users connected to both relays,

i.e. the set U2. In this case, we simply observe that no gain
opportunity emerges from the aggregated requests by such
users. In fact, users already receive content from both caches.
Therefore, the value of the backhaul transmissions is the same
as computed for the MDS scheme and we get

LECC
2 = LMDS

2 .

The average bachkaul transmission load of the ECC is

LECC = E
[
LECC
1

]
+ E

[
LECC
2

]
. (11)

where we need to derive only E
[
LECC
1 ]. Conditioning on Y ,

we have

LECC
1 = EY

[
E
[
(nF −M) (Y +KW)− ω1 Z|Y

]]
= EY

[
E
[
(nF −M) (Y +KW)|Y

]]
− EY

[
E
[
ω1 Z|Y

]]
.

(12)
Let us first focus on the conditional distribution of KW. Given
Y = y different files requested from users in UB, the prob-
ability pKW

(kW|y) of having exactly kW files requested only
at RW can be derived from the BiB multivariate occupancy
problem by considering all values that kB can assume as

pKW
(kW|y) =

y∑
kB=αB

Poc(y, kB, kW, uW) (13)

where bW = y − kB + kW.
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Similarly, the probability pZ(z|y) of having Z = z coded
transmission opportunities conditioned on Y = y files, can be
computed considering two disjoint events. The first is that uB

users ask exclusively for exactly z files at RB and uW users
have ask at least z exclusively files at RW. The second is the
probability that uB users ask exclusively for more than z files
at RB and uW users ask exactly z exclusively files at RW.
Thus, we can write

pZ(z|y) =

βW−y+z∑
kW=z

Poc(y, z, kW, u1) +

min(y,βB)∑
kB=z+1

Poc(y, kB, z, u1)

(14)
where bW = y − z + kW and bB = y − kB + z. If we now
plug (13) and (14) into (11) and we remove the condition on
Y , we obtain

LECC
1 =

βB∑
y=1

pY (y|uB)
[
(N−M)

(
y +

βW∑
kW=0

kW pKW
(kW|y)

)
−min(M,N−M)

y∑
z=0

z pZ(z|y)
]
.

(15)
The final result in (16) is obtained by adding the expression

of LECC
2 to (15) which is the average transmission load of the

ECC scheme normalized to the number of fragment nF = N,
L̄ECC = LECC/N .

V. RESULTS

We evaluate the average backhaul load for the benchmark
MDS scheme and compare it with the one of the proposed

ECC scheme. In both cases quantities are normalized to the
library size N, i.e. L̂MDS = LMDS/N and L̂ECC = LECC/N. We
assume the library size N = 100 and 20% of the users to be
connected to both relays while 80% to a single relay. For
simplicity, we consider that of half users in U1 are connected
only to RB and half only to RW.

In Fig. 4, the normalized average backhaul load as a
function of the cache size M for different number of users
u is plotted. As shown, the ECC scheme outperforms the
benchmark MDS caching scheme for every number of users
u considered. As expected, by fixing u requests, L̄ decreases
by increasing M, since more content directly from the cache
can be provided. Given M, the gain between ECC and the
MDS scheme is higher when the number of total users u is
greater because more transmission opportunities take place.
The maximum gain is obtained when M = N/2, in fact,
this cache operating point encodes half of file content (the
maximum portion of a file that can be combined) in a
transmission opportunity.

Motivated by the good performance obtained, we also
show Monte-Carlo results when file request distribution is not
equiprobable. The normalized average backhaul load in this
case is reported in Fig. 5. It is assumed that users request
for content according the Zipf distribution with α = 0.80
and each relay optimizes own cache content according the
algorithm given in [5]. In this set up, we can appreciate the
efficiency of the caching placement due to the not uniform
demands. In fact, given the number of users u, a cache size M
and a scheme then L is lower than in our previous scenario.
A gain on the ECC with respect to MDS is still present. Due
to the lower number of coding opportunities and due to the
placement considered such gain is smaller with respect to our
previous results.

VI. CONCLUSIONS

We applied the Maddah-Ali caching scheme at the edge of a
two-tier heterogeneous satellite network with multiple users. A
closed-form expression of the average backhaul transmission
load for the ECC scheme was derived. The performance of the
scheme was compared with those of the benchmark given by
the MDS one. We quantified the nature of the transmission
gain obtained by casting out problem with known results
obtained in the BiB setting. Results shows a gain in terms
of backhaul transmissions for any number of users considered
in the system.

L̄ECC =

βB∑
y=1

(
N
y

)
S(uB, y) y!

NuB

{
βW∑
kW=0

(
N − y

kW − 1

)[
(y + kW)

(
1 − M

N

)][ y∑
kB=αB

(
y

kB

)
N−b2∑
i=0

(−1)i
(

N − b2
i

)(N − b2 − i

N

)u]
− ω1

N

y∑
z=1

z

[(
y

z

)
βW−y−z∑
kW=z

(
N − y

kW

)
N−bW∑
i=0

(−1)i
(

N − bW
i

)(N − bW − i

N

)uW
+

(
N − y

z

)
min(y,βB)∑
kB=z+1

(
y

kB

)
N−bB∑
i=0

(
N − bB

i

)
(−1)i

(N − bB − i

N

)uW]}
+
(

1 − 2M

N

)+ βJ∑
j=1

(
N
j

)
S(u1, j) j!

Nu1

[
j∑

k1=α1

(
j

k1

)
β2∑
k2=0

(
N − j

k2 − 1

)
N−b2∑
i=0

(−1)i
(

N − b2
i

)(N − b2 − i

N

)u2]
.

(16)
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Fig. 5. L̂ versus M for u = 10, 50, 100 for N = 100 when file requests
follows a Zipf distribution with α = 0.8. 40% of users are connected to R1,
40% to R2 and 20% to both Rs. The dot marked and dashed curves indicate
the results obtained for the ECC and MDS scheme respectively.

The relevant reduction of load backhaul transmission ob-
tained validates the coded caching scheme in satellite networks
and suggest its investigation in more sophisticated scenarios.
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