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Abstract—Although airborne base stations (ABSs) mounted
on drones show a significant potential to enhance network
capacity and coverage due to their flexible deployment, the
system performance is severely limited by the endurance of
the on-board battery. To overcome this key shortcoming, we
are exploring robotic airborne base station (RABS) with energy
neutral grasping end-effectors able to autonomously perch at
tall urban landforms. This paper studies the optimal deployment
(fly to another grasping location or remain in the same one)
and operation (active or sleep at an epoch) of RABS based on
the spatio-temporal characteristics of underlying traffic demand
from end-users. Specifically, an integer linear programming (ILP)
is formulated by exploiting the coupling between these two
decisions, that is, the RABS only needs to visit the locations
where it is active. A Lagrangian heuristic algorithm is then
proposed by exploiting the totally unimodular structure of the
ILP formulation. A wide set of numerical investigations reveal
that thanks to its mobility, a single robotic aerial small cell is
able to outperform five (5) fixed small cells in terms of served
user generated traffic within a 16 to 41 hours period.

Index Terms—6G, small cell, UAVs, wireless communications,
network optimization, robotic manipulators

I. INTRODUCTION

Airborne base stations (ABSs) mounted on aerial platforms
such as drones are expected to play a significant role in next
generation cellular networks, aka 6G, due to their inherent high
flexibility and controllable 3D mobility [1]. However, one of
the key limitations when deploying ABSs is the limited battery
capacity of drones which immensely curtails the time to act as
a small cell. Recently, robotic airborne base stations (RABSs)
with grasping capabilities [2] or landing based small cells [3]
have been proposed as a mean to provide efficient cell network
densification and/or increased network coverage. Advances in
grasping capabilities [4], [5] allow the deployment of robotic
small cells that attach autonomously in lampposts (or other
tall urban landforms) via energy neutral grasping to act as
small cells for multiple hours [2]. Therefore, due to their
prolonged time availability, RABS might have a significant
role to play as 6G mmWave (or sub-THz) small cells. The use
of such high frequency bands will be inevitably required in 6G
networks in order to provide 1Gbps support per user to enable
support for novel applications with multi modalities such as
for example immersive augmented reality and holographic
communications. Furthermore, compared to the nominal fixed
small cells, RABSs have further degrees of freedoms that allow
them not only to perform advanced sleep mode operation
but also to change their location, by grasping for example

Grippers

Fig. 1. Illustrated use case of airborne 6G microcells with grasping end
effectors (RABS).

to different lamppost, by exploring (in real-time) the spatial-
temporal dynamics of the traffic in the network [6]. A typical
envisioned deployment of RABSs is illustrated in Fig. 1 where
RABSs grasp at roadside lamppost in an urban environment.

A number of efforts are made to overcome the ABSs
endurance issue by developing novel serving protocols and
ABS prototypes. A novel serving scheme is developed in [7],
that is, ABS first offloads the files to a subset of users that
cache all the files cooperatively, then each user can receive
any file from its nearest neighbor that has cached the file via
device-to-device communications. In [8], an ABS is powered
by solar when serving the two-way communication between
several pairs of users. In [9], free space optics is applied to
transmit both energy and data streams simultaneously between
a macro BS and an ABS. Our previous work [2] provides
a specific introduction of RABS prototype. Another closely
related case are tethered drones acting as base stations [10].
Tethered drones can operate without charging, but their range
is limited/fixed to their base unit (which can at the ground or
a rooftop). An example of such type of flying base station is
ATT’s Flying Cell on Wings (Flying COW)1 platform which
has been designed to provide 4G based network coverage from
the sky to ground end users during a disaster event or to
increase capacity in case of a major event. Also, F-cell from

1When COWs Fly: ATT Sending LTE Signals from Drones, Febr. 2017,
www.about.att.com/innovationblog/cows fly
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Nokia is a another closely related technology2. F-cell is a small
cell which is carried by a drone and is left in rooftops. The key
difference is that RABS posses robotic end effectors that can
grasp in different urban landforms whereas F-cell is restricted
to only landing based operation.

Sleep mode technique has attracted significant attention in
the area of green cellular networking. In [11], the optimal
decision of sleep mode is identified as a function of the
daily traffic pattern. The work in [12] aims to minimize the
energy consumption of a heterogeneous network (HetNet) by
controlling the sleep mode of BSs adaptively while satisfying
the quality of service (QoS). A cross-layer optimization frame-
work and a deep reinforcement learning based method are
studied in [13] and [14] to solve the energy efficiency problem
in the HetNet, respectively. The trade-off between network
utility and power consumption is achieved by optimizing
the BS association and activation in [15]. A specific survey
reviewing sleep mode techniques in green cellular networks
can be found in [16].

This paper studies the deployment and operation problem
of a battery-limited RABS, aiming to maximize the served
traffic load by optimizing two decisions, i.e. active/sleep mode
and fly or remain in the same grasping point. This problem
is first formulated as an integer linear programming (ILP) by
exploiting the coupling between these two decisions, that is,
the RABS only need to visit the locations where it is active.
Afterwards, by exploiting the totally unimodular structure
of the ILP formulation, a Lagrangian heuristic algorithm is
proposed to solve it effectively. Numerical results show that
the proposed RABS has a significant gain than fixed small
BSs thanks to its mobility, especially when the traffic spatial
distribution is highly heterogeneous.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Hereafter, we assume M candidate locations distributed in
a certain geographical area which can be chosen by RABS
for grasping; the locations are denoted by wm ∈ R2, m =
1, 2, ...,M . In practice, the candidate locations can be selected
as the roadside lamppost units or other tall urban landforms
suitable for grasping [5]. Furthermore, the time horizon is
discretized into N epochs. Each epoch has the same time
duration δ, during which the active/sleep mode of the RABS
remains unchanged.

Similar to [11]–[15], we assume that the mobile traffic
distribution can be predicted accurately. The traffic forecasting
and distribution modeling is detailed in section II-A. An
example scenario when setting N = 3 is depicted in Fig.2.
According to the spatial traffic distribution at each epoch, we
select the optimal location from all candidate locations to place
the RABS, shown as red dots in Fig.2 and denoted by ŵn

for epoch n. Without energy limitation, RABS can visit all
optimal locations at corresponding epochs and hence achieve
the highest traffic load; the flying route to achieve this is shown

2www.nokia.com/about-us/news/releases/2016/10/03/f-cell-technology-
from-nokia-bell-labs-revolutionizes-small-cell-deployment-by-cutting-wires-
costs-and-time/

Fig. 2. Application scenario: Light blue squares are the city buildings and red
dots are the optimal locations for each epoch. Light yellow ellipses represent
the traffic demand and its volume is denoted by the area of ellipses. The dotted
red line is the RABS flying route without the on-board limitation while the
solid red line denotes the flying route of the battery-limited RABS.

as the dotted red line in Fig.2. However, when battery-limited
constraints kicks in the optimal strategy, RABS might be to
remain at a sleep state at some epochs to save energy and
be operational at other epochs where more offered load can
be served. In Fig.2, considering the smaller traffic at epoch
2, denoted by the light yellow ellipses, the relative longer
flying distance when visiting ŵ2 is not economical. Thus, the
RABS would be active at epochs 1 and 3, and switch to sleep
mode at epoch 2. Note that the two operation decisions, i.e.,
active/sleep mode and change or not the grasping location, are
tightly coupled with each other, that is, the RABS only need to
visit the location ŵn when it is active at epoch n. As shown in
Fig.2, since the RABS would be at sleep mode during epochs
2, it would remain grasping at location ŵ1 during the epoch
2 and fly to ŵ3 directly at the beginning of epoch 3. This
coupling in decision makings is formulated as a mathematical
programming in section II-C.

A. Spatial-temporal Traffic Modeling

In urban areas, the mobile traffic distribution shows a high
inhomogeneity in both spatial and temporal domains [6].
However, via machine learning techniques [17], the traffic load
can be predicted accurately. We utilize the spatial-temporal
traffic model proposed in [18]. More specifically, the spatial-
temporal traffic modeling in [18] comprises of two steps.
Firstly, we set the epoch duration δ = 1 hour and calculate
the mean traffic volume in the whole area using the sinusoid
superposition model, that is,

V (n) = 173.29 + 89.83× sin (
π

12
n+ 3.08)

+ 52.6× sin (
π

6
n+ 2.08) + 16.68× sin (

π

4
n+ 1.13)

(1)

where the three main frequency components, π
12 , π

6 and
π
4 , show that the traffic volume has a period of 24 hours.
Secondly, we generate the predicted traffic value if the RABS
is placed at the candidate location m at epoch n using log-
normal distributed samples,

Vm(n) = lognrnd
(
log(V (n))− 1

2
σ, σ

)
, ∀m (2)
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(a) Temporal distribution in 24 hour

(b) Spatial distribution at 12 o’clock
when σ = 3.6

(c) Spatial distribution at 12 o’clock
when σ = 1.3

Fig. 3. Visulaization of spatio-temporal traffic distribution

where σ is the standard deviation obtained from historical
data, lognrnd

(
log(V (n)) − 1

2σ, σ
)

represents the lognormal
distribution with mean log(V (n))− 1

2σ and standard deviation
σ. Fig.3 illustrates the spatial-temporal traffic model. Compar-
ing Fig.3(b) and Fig.3(c), the higher the value of σ the more
inhomogeneous becomes the spatial distribution.

To find the optimal deployment of RABS at each epoch,
we select the location with the largest volume from all
candidate locations. To this end, we define the largest traf-
fic load at epoch n as V̂n , maxm∈{1,2,...M} Vm(n),
the corresponding index of candidate location as m̂ ,
argmaxm∈{1,2,...M} Vm(n) and optimal location at epoch n

as ŵn , wm̂.

B. RABS Energy Model

The energy consumed by the RABS is composed of three
parts: the propulsion energy for flying, the grasping energy
and the communication energy.

1) Propulsion Energy: The propulsion power of a rotary-
wing RABS is a function of flying velocity v and given by
[19],

P fly = P0

(
1 +

3v2

U2
tip

)
+ Pi

(√
1 +

v4

4v40
− v2

2v20

)1/2
+

1

2
d0ρsAv

3

(3)
where P0 and Pi represent blade profile power and induced
power, respectively. Utip is the tip speed of the rotor blade.
v0 denotes the mean rotor induced velocity when hovering.
d0 and s are the fuselage drag ratio and rotor solidity,
respectively. ρ and A denote the air density and rotor disc
area, respectively. Subsequently, the propulsion energy to fly
between two optimal locations, ŵn and ŵn′ , is given by,

Eflynn′ =
P fly‖ŵn′ − ŵn‖2

v
, n′ > n (4)

where ‖·‖ denotes the 2-norm for a vector. Notably, n′ > n
means that the RABS can only fly from the optimal location at
epoch n to the optimal location at epoch n′ but cannot move
in the opposite direction since the time passed.

2) Grasping Energy: The grasping power of RABS depends
on its size and weight, as well as the type of the gripper
[2]. Electromagnetic solenoid based grippers can be deemed
as suitable for attaching to ferromagnetic surfaces such as
lampposts [5]. The grasping energy consumed during an epoch
δ is given by Egrasp = P graspδ, where P grasp is the grasping
power.

3) Communication Energy: Assuming a micro cell [20], the
communication energy for active and sleep mode is given by
Eactive = (ηP tra + P active)δ and Esleep = P sleepδ, respec-
tively, where P tra, P active and P sleep are the transmission
power, active and sleep mode power, respectively. η > 0 is
a coefficient reflecting the power amplifier efficiency, feeder
loss and other loss factors.

C. Problem Formulation and Analysis

According to the illustrated scenario and aforementioned
system model, an ILP problem is formulated in this subsection
to maximize the traffic load by operating the RABS mode
under the on-board battery constraint. Unlike the ground base
station, of which the operator can only decide the active/sleep
mode, the operation problem of RABS has two freedom,
active/sleep and fly/not. Thus, there are two sets of binary
variables are used to formulate these decisions. xn ∈ {0, 1}
denotes the RABS would be active (xn = 1) or sleep (xn = 0)
at epoch n, and ynn′ ∈ {0, 1} indicates whether (ynn′ = 1) or
not (ynn′ = 0) the RABS flies from ŵn to ŵn′ . Similar as (4),
we limit n′ > n for ynn′ to satisfy the order of precedence.

To exploit the coupling between two decisions illustrated in
Fig.2, we first introduce two pseudo-epochs indexed by 0 and
N +1. Then, this coupling relationship can be formulated as,

N+1∑
n′=n+1

ynn′ = xn, n = 0, 1, ..., N

n−1∑
n′=0

yn′n = xn, n = 1, ..., N,N + 1

(5a)

(5b)

where (5a) denotes that the RABS would depart from ŵn (∑N+1
n′=n+1 ynn′ = 1 ) only when it is active at epoch n ( xn = 1

) while (5b) denotes the arriving process. For simplicity of
formulation, the settings of two pseudo-epochs are given as,{

EflynN+1 = 0, n = 0, 1, ..., N

Efly0n = Efly1n , n = 1, 2, ..., N + 1

(6a)

(6b)

(6a) denotes that the propulsion energy consumed by flying
from any ŵn to ŵN+1 is 0, while (6b) represents that the
propulsion energy of any route departing from ŵ0 is equal to



which leaving from ŵ1. Subsequently, the operation problem
of RABS can be formulated as,

(P1) : max
X,Y

N∑
n=1

V̂nxn (7a)

s.t. (5a)− (5b) (7b)
E(X,Y) ≤ Emax (7c)
xn ∈ {0, 1}, ∀n ∈ {0, 1, ..., N,N + 1} (7d)

ynn′ ∈ {0, 1}, ∀nn′ ∈ {nn′
∣∣

n∈ {0, .., N}, n′∈ {1, .., N+1}, n′>n}3 (7e)

where X , {xn} and Y , {ynn′} are the sets of variables.
E(X,Y) calculates the total consumed energy and is a func-
tion of X and Y, that is,

E(X,Y) ,
N∑
n=0

N+1∑
n′=n+1

ynn′E
fly
nn′+

N∑
n=1

xn(E
active + Egrasp)

+

N∑
n=1

(1− xn)(Esleep + Egrasp)

(8)
The objective function (7a) maximizes the served traffic.

Constraints in (7b) exhibit the coupling relationship between
two decisions, that is, the RABS would visit the location ŵn

only when it is active at epoch n. (7c) is the energy constraint
where Emax is the on-board battery capacity. Clearly, (P1) is
an ILP and the constraint (7c) is a binary knapsack constraint.
Thus, (P1) is not easier than the binary knapsack problem,
which is a well-known NP-hard problem. According to (7d)
and (7e), the number of variables in (P1) can be given by∣∣X∣∣ + ∣∣Y∣∣ = (N + 2) + (N + 2)!/2N !, where |·| denotes
the cardinality of a set. It can be seen that the scale of
(P1) grows sharply as N increases. To overcome the curse
of dimensionality, we aim to propose an efficient algorithm to
capture a high-quality solution of (P1). Before designing the
algorithm, we would first do some analysis.

Lemma 1: The parameter matrix of constraints (5a)-(5a) is
totally unimodular.

Proof: See the proposition 2.6 in the section III.1.2 of [21].
Relaxing the energy constraint (7c), zLR(λ) given by the

following problem (LR-P1) is the Lagrangian relaxation of
(P1), where λ is the nonnegative Lagrange multiplier.

(LR-P1): zLR(λ) = max
X,Y

N∑
n=1

V̂nxn − λ
(
E(X,Y)− Emax

)
(9a)

s.t. (5a)− (5b), (7d)− (7e) (9b)

Certainly, zLR(λ) provides an upper bound for (P1), the
least upper bound can be achieved by solving the following
Lagrangian dual problem,

zLD = min
λ≥0

zLR(λ) (10)

3Hereafter, unless otherwise specified, ∀nn′ is used to represent ∀nn′ ∈
{nn′∣∣n∈{0, .., N}, n′∈{1, .., N+1}, n′>n} for simplicity of illustration.

Another normally used relaxation technique of ILP is linear
relaxation, in which the integer constraints are relaxed to
continuous constraints. The linear relaxation of (P1) is given
by,

(LP-P1): zLP = max
X,Y

N∑
n=1

V̂nxn (11a)

s.t. (5a)− (5b), (7c) (11b)
0 ≤ xn ≤ 1, ∀n (11c)
0 ≤ ynn′ ≤ 1, ∀nn′ (11d)

The following proposition shows that the linear relaxation and
Lagrangian dual of (P1) have the equal objective value. This
fact is utilized when we select a suitable step size for the
subgradient method in section III.

Proposition 1: zLD = zLP
Proof: Refer to the corollary 6.6 in section II.3.6 of [21].

III. LAGRANGIAN HEURISTIC ALGORITHM

In this section, based on the preceding analysis, a La-
grangian heuristic algorithm is proposed to overcome the curse
of dimensionality in (P1). Specifically, although proposition 1
shows the equality between the objective values of linear re-
laxation and Lagrangian dual, solving (LP-P1) may not obtain
an integer result so that difficult to refine a feasible solution
for (P1). We propose a Lagrangian heuristic algorithm in this
section, the basic idea of which is to solve the Lagrangian dual
(10) through the subgradient method, and construct a feasible
solution for (P1) through a refinement procedure. Compared
with solving the linear programming (LP-P1) directly, we
would show that the result captured by Lagrangian relaxation
is integer, thus easing the construction of feasible solutions.

1) Subgradient Method for solving Lagrangian dual (10):
In this step, the subgradient method is utilized to solve the
Largrangian dual (10), which is convex and non-smooth. To
obtain a subgradient direction for any given λ, we would
first solve the Lagrangian relaxation (LR-P1), which is still
an ILP and difficult to solve. Fortunately, Lemma 1 notes
that the parameter matrix of (5a)-(5a) is totally unimodular,
and proposition 2.2 in section III.1.2 of [21] illustrates that
the solution of (LR-P1) can be obtained by solving its linear
relaxation (P2),

(P2): max
X,Y

N∑
n=1

V̂nxn − λ
(
E(X,Y)− Emax

)
(12a)

s.t. (5a)− (5a), (12b)
0 ≤ xn ≤ 1, ∀n (12c)
0 ≤ ynn′ ≤ 1, ∀nn′ (12d)

Accordingly, a normally used subgradient direction for λ is
given by [22],

g = E(X,Y)− Emax (13)

To minimize zLR(λ) shown in (10), λ is updated as,

λk+1 = [λk − αkgk ]+ (14)



Algorithm 1 Lagrangian Heuristic Algorithm
1: Obtain zLP by solving the linear programming (LP-P1).
2: Initialize λ0. Obtain zLR(λ0) and g0 by solving (P2).

Initialize the step size through (15a). Set k = 1.
3: repeat
4: Update the λk through (14). Obtain zLR(λk) and gk by

solving linear programming (P2). Update the step size
through (15b).

5: k = k + 1.
6: until The iteration index k achieves a threshold kmax.
7: repeat
8: Choose the active epoch with the least traffic load. Make

the RABS sleep at this epoch and delete the related
route.

9: until Energy constraint (7c) is satisfied.

where [·]+ denotes projection onto the positive orthant, λk, αk
and gk are the Lagrangian multiplier, step size and subgradient
at iteration k, respectively. Notably, αk should be chosen
carefully to guarantee the convergence, we utilize the method
proposed in [23],

α0 =
zLP − zLR(λ0)

‖g0‖2

αk =
(
1− 1

βk1−k−r

)αk−1‖gk−1‖
‖gk‖

(15a)

(15b)

where β ≥ 1 and 0 < r < 1 are predefined parameters. The
procedure of subgradient method is summarized as the step
1-6 in Algorithm 1.

2) Construct a feasible solution: Although the solution of
linear programming (P2) is integer, it generally does not satisfy
the energy constraint (7c). We propose a greedy method to
construct a feasible solution. Based on the result captured
by dual problem (10), choose the active epoch with the least
traffic load, make this epoch sleep and delete the related flying
paths from the RABS route. Repeat this process until the
energy constraint (7c) is satisfied. The greedy method is shown
as the step 7-10 in Algorithm 1.

Remark 1: (Stopping criteria) To solve the Lagrangian dual
(10) accurately, the stopping criteria of subgradient method is
always set as the gap between zLR(λk) and zLD is smaller
than a threshold. However, in the proposed Algorithm 1, when-
ever the subgradient method in step 1-6 stops, the refinement
procedure in step 7-9 can always return a feasible solution for
problem (P1). Therefore, we set the stopping criteria as the
maximum number of iterations to control the running time
conveniently.

Remark 2: (Computation complexity) Section 6.6.1 of [24]
illustrates that the worst case of solving a linear programming
is approximately O

(
(nv+nc)1.5nv2

)
, where nv and nc are the

number of variables and constraints, respectively. Moreover,
the refinement procedure 7-9 would check at most N epochs
in the worst case. Therefore, the complexity of Algorithm 1 is
approximately O

(
kmax · (nv + nc)1.5nv2 +N

)
, where nv =

TABLE I
PARAMETER SETTINGS

Parameter Value Parameter Value
Emax 333792 J v 30 m/s
P fly 356 W [19] η 2.6 [20]
P grasp 10 W [5] P tra 6.3 W [20]
Pactive 56 W [20] P sleep 39 W [20]

(N +2)+ (N +2)!/2N ! and nc = (3N +4)+ (N +2)!/2N !
for linear programming (P2).

IV. NUMERICAL INVESTIGATIONS

In this section, numerical investigations are presented to
evaluate the proposed deployment and operation strategies
for RABS. The parameterization settings used hereafter are
summarized in Table I. Similar as Fig.3(b) and Fig.3(c), we
consider a 2 × 2 km2 area where 121 candidate locations
distributed evenly, that is, M = 121. Besides, note that the
battery capacity is generally measured in milliampere/hour
(mAh) under a certain output voltage. For computing con-
venience, we calculate the capacity of Zappers SG4 battery
by 15.2V × 6100mAh× 3.6 = 333792 J in this section [2].

Fig.4 compares the served traffic by the RABS and different
number of micro BSs when setting N from 1 hour to 48
hours. Assuming that the traffic distribution can be predicted
accurately, the micro BSs are deployed greedily, e.g. we select
the candidate location with the largest traffic volume to deploy
the BS when there is one BS available, choose the first two
best locations when there are two micro BSs available and
so on. We assume that micro BSs are powered by cable
thus can provide service all the time. Relaxing the energy
constraint (12b), Fig.4 shows that an ’ideal’ RABS can achieve
a better traffic offload than six micro BSs when N ≥ 24.
However, when the on-board battery capacity is considered,
the RABS still has a better performance than five micro BSs
when 16 ≤ N ≤ 41. Hence, Fig.4 illustrates the fact that
compared with fixed micro BSs, the flexibility of RABS has
a significant gain even though its on-board battery is limited.

Fig.5 compares the RABS and the micro BS under different
value of σ. Reviewing the traffic distribution (2) and Fig.3, a
larger σ shows higher heterogeneity of traffic spatial distribu-
tion. Comparing the RABS performances under different σ, it
can be seen that the RABS has a better performance in high
heterogeneity scenario. Besides, comparing the micro BS and
the RABS performances, Fig.5 also shows that the RABS has
a larger gain than micro cell in high heterogeneity scenario.
For instance, setting N = 48, the traffic served by the RABS
is 3.8 times more than that by the micro BS when σ = 1.5,
while this gain rate changes to 3.0 when σ = 1.0.

Fig.6 investigates three components of energy consumption
reviewed in section II-B. It can be seen that the flying and
communication procedures consume most energy than grasp-
ing. This also explains why RABS has a longer endurance than
normal ABS that provides service when flying or hovering
in the air thus certainly consumes more energy. Comparing
the percentages of propulsion and communication energy, it
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can be seen that with the increase of serving endurance, the
proportion of communication energy becomes larger while the
proportion of flight energy gradually decreases. For example,
when N = 24, the propulsion and communication energy
accounts for 66% and 30% of the total energy consumption,
respectively, while the proportions change to 26% and 61%
when N = 72.

V. CONCLUSIONS

RABS with dexterous end effectors able to grasp in an
energy neutral manner at different tall urban lanndforms can
provide significant degree of flexibility in deploying 6G small
cells. RABS allows not only to enter to sleep mode but
can also change its perching point based on the spatial-
temporal characteristics of the traffic. To this end, an ILP
problem has been formulated to optimize the deployment and
operation of RABS based on traffic demand, which is solved
by the Lagrangian heuristic algorithm effectively. Numerical
investigations reveal that the RABS significantly outperform
the nominal fixed small cells thanks to its mobility, especially
when the traffic spatial distribution is highly heterogeneous.
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