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Abstract—This paper proposes a deep learning based power al-
location (DL-PA) and hybrid precoding technique for multi-user
massive multiple-input multiple-output (MU-mMIMO) systems.
We first utilize an angular-based hybrid precoding technique
for reducing the number of RF chains and channel estimation
overhead. Then, we develop the DL-PA algorithm via a fully-
connected deep neural network (DNN). DL-PA has two phases:
(i) offline supervised learning with the optimal allocated powers
obtained by particle swarm optimization based PA (PSO-PA)
algorithm, (ii) online power prediction by the trained DNN. In
comparison to the computationally expensive PSO-PA, it is shown
that DL-PA greatly reduces the runtime by 98.6%-99.9%, while
closely achieving the optimal sum-rate capacity. It makes DL-PA
a promising algorithm for the real-time online applications in
MU-mMIMO systems.

Index Terms—Deep learning, massive MIMO, hybrid precod-
ing, power allocation, millimeter wave communications, PSO.

I. INTRODUCTION

M ILLIMETER wave (mmWave) has been considered as
a promising candidate for the fifth-generation (5G)

and beyond for its large available bandwidth [1]. Also, its
shorter wavelengths are appealing for massive multiple-input
multiple-output (mMIMO) technology since it enables the
implementation of large antenna arrays in relatively smaller
physical dimensions [2]. On the other hand, mMIMO tech-
nology alleviates the severe path loss effect in mmWave
communications via high beamforming gain.

For multi-user downlink transmission, the conventional
MIMO systems generally consider the single-stage fully-
digital precoding (FDP) [3]. However, FDP causes two major
challenges for multi-user mMIMO (MU-mMIMO) systems:
(i) the high hardware cost/complexity with the requirement of
one dedicated power-hungry radio frequency (RF) chain per
each antenna, (ii) large channel estimation overhead size [4].
Alternatively, two-stage hybrid precoding (HP) interconnects
the digital baseband(BB)-stage and analog RF-stage with
significantly reduced number of RF chains [5]–[7]. Also,
an angular-based HP (AB-HP) technique is developed in
[8], where analog RF-stage via is designed the slow time-
varying angle-of-departure (AoD) information. Thus, AB-HP
addresses both aforementioned challenges by decreasing the
channel estimation overhead and the number of RF chains.
On the other hand, multi-user power allocation (PA) is a
non-convex optimization problem due to the effect of inter-
user interference [9]. Recently, [10] proposes an iterative
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particle swarm intelligence based PA (PSO-PA) algorithm
for maximizing the overall system capacity in MU-mMIMO
systems. Although it is shown that PSO-PA achieves the
globally optimal system capacity, it requires longer runtime
as the optimization space (i.e., number of users) increases.

As a key driving force for artificial intelligence (AI), deep
learning has been successfully applied in many fields including
computer vision, speech recognition and natural language
processing [11]. Hence, the success of deep learning also
motivates its applications in wireless communication systems
[12]–[14]. For instance, deep learning has been applied for
signal detection [12], resource management [13], channel es-
timation [14]. Our ultimate goal is to investigate deep learning
for a low-complexity PA technique achieving near-optimal
system capacity with acceptable runtime considering real-time
applications in MU-mMIMO systems with HP.

In this paper, we propose a novel low-complexity deep
learning based PA (DL-PA) algorithm in MU-mMIMO sys-
tems utilizing HP architecture. We first employ AB-HP for
the downlink transmission to reduce the number of RF chains
and the channel estimation overhead size. Then, the proposed
DL-PA is built via a fully-connected deep neural network
(DNN). There are two phases in DL-PA: (i) offline supervised
learning via the optimal allocated powers calculated with
PSO-PA, (ii) online power prediction via the trained DNN.
Numerical results present that DL-PA nearly achieves the
optimal sum-rate capacity calculated by PSO-PA (e.g., 96.5%-
99.7% of optimal capacity). Also, the runtime of PSO-PA is
remarkably reduced by 98.6%-99.9% via DL-PA, which is
essential regarding the real-time online applications.

The rest of this paper is organized as follows. Section II
expresses the system model. Section III introduces AB-HP.
Section IV presents the proposed DL-PA. After the illustrative
results in Section V, the paper is concluded in Section VI.

II. SYSTEM MODEL

A single-cell MU-mMIMO system is modeled for the down-
link transmission as illustrated in Fig. 1. Here, the base station
(BS) is equipped with a uniform rectangular array (URA)
having M = Mx ×My antennas1 to serve K single-antenna
user equipments (UEs) clustered in G groups.

1In the URA structure, Mx and My are the number of antennas along
x-axis and y-axis, respectively. Different from the widely considered uniform
linear array (ULA), URA (i) fits a larger number of antennas in a two-
dimensional (2D) grid, (ii) enables three-dimensional (3D) beamforming [8].
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Fig. 1: Massive MIMO system with hybrid precoding.

As presented in Fig. 1, the RF-stage and BB-stage are
interconnected via NRF RF chains to reduce the hardware
cost/complexity (i.e., K ≤ NRF � M ). First, the analog
RF beamformer F ∈ CM×NRF is developed via the low-cost
phase-shifters for the RF-stage. Second, the digital BB pre-
coder B = [b1, · · · ,bK ] ∈ CNRF×K and the multi-user PA
matrix P = diag

(√
p1, · · · ,

√
pK
)
∈ RK×K are constructed

for the BB-stage, where bk ∈ CNRF and pk are the BB pre-
coder vector and the non-negative allocated power for the kth

UE, respectively. Hence, the transmitted downlink vector is
defined as s = FBPd ∈ CM , where d = [d1, · · · , dK ] ∈ CK
is the data signal vector with E

{
ddH

}
= IK . It is important

to mention that s ∈ CM satisfies the total transmit power
constraint of PT (i.e., E

{∥∥s∥∥2
2

}
≤ PT ).

According to the 3D geometry-based mmWave channel
model [1] and the URA structure [8], the channel vector for
the kth UE is defined as follows:

hTk =

Q∑
l=1

τ−ηkl zklφ
T
(
γx,kl , γy,kl

)
= zTkΦk ∈ CM , (1)

where Q is the number of paths, τkl and zkl ∼ CN
(
0, 1/Q

)
are respectively the distance and complex path gain of lth

path, η is the path loss exponent, φ
(
·, ·
)
∈ CM is the

phase response vector, γx,kl = sin (θkl) cos (ψkl) and γy,kl =
sin (θkl) sin (ψkl) are the coefficients reflecting the elevation
AoD (EAoD) and azimuth AoD (AAoD) for the corresponding
path. Here, θkl ∈

[
θk − δθk, θk + δθk

]
is the EAoD with mean

θk and spread δθk, ψkl ∈
[
ψk−δψk , ψk+δψk

]
is the AAoD with

mean ψk and spread δψk . Then, the phase response vector is
modeled as [8]:

φ(γx, γy)=
[
1, e−j2πdγx , · · · , e−j2πd(Mx−1)γx

]T
⊗
[
1, e−j2πdγy , · · · , e−j2πd(My−1)γy

]T ∈ CM ,
(2)

where d is the antenna spacing normalized by wavelength.
The instantaneous channel vector expressed in (1) is a
function of the fast time-varying path gain vector zk =[
τ−ηk1 zk1 , · · · , τ

−η
kQ
zkQ
]T ∈ CQ and slow time-varying phase

response matrix Φk ∈ CQ×M based on AoD information.
Afterwards, the received signal at the kth UE is written as:

rk = hTk s + nk = hTkFBPd + nk

=
√
pkh

T
kFbkdk︸ ︷︷ ︸

Desired Signal

+
∑K

t 6=k

√
pth

T
kFbtdt︸ ︷︷ ︸

Inter UE Interference

+nk, (3)

where nk ∼ CN
(
0, σ2

n

)
is the circularly symmetric complex

Gaussian noise. After some mathematical manipulations, we
derive the instantaneous signal-to-interference-plus-noise-ratio
(SINR) at the kth UE as follows:

SINRk(F,B,P) =
pk
∣∣hTkFbk

∣∣2∑K
t 6=k pt

∣∣hTkFbt
∣∣2 + σ2

n

. (4)

Then, the ergodic sum-rate capacity is calculated as Rsum =
E
{∑K

k=1 log2

[
1 + SINRk(F,B,P)

]}
. For maximizing the

system capacity, we formulate the optimization problem as:

max
F,B,P

K∑
k=1

log2

(
1 +

pk
∣∣hTkFbk

∣∣2∑K
t 6=k pt

∣∣hTkFbt
∣∣2 + σ2

n

)

s.t. C1 : E
{
‖s‖22

}
=

K∑
k=1

pkb
H
k FHFbk ≤ PT ,

C2 : pk ≥ 0,∀k,

C3 :
∣∣ [F]i,j

∣∣ =
1√
M
,∀i, j,

(5)

where C1 and C2 indicate the total and per UE transmit power
constraints, respectively, C3 refers to the constant modulus
(CM) constraint due to the utilization of phase-shifters at the
RF-stage. However, it is a non-convex optimization because of
two reasons: (i) the allocated powers entangled with each other
[9], (ii) the CM constraint at the analog RF beamformer [5].
Thus, we sequentially design the hybrid precoding architecture
illustrated in Fig. 1. First, the analog RF beamformer and the
digital BB precoder are designed based on AB-HP technique
in Section III, then the multi-user PA matrix is developed via
the proposed deep learning based PA (DL-PA) algorithm in
Section IV.

III. ANGULAR-BASED HYBRID PRECODING (AB-HP)

Throughout this section, our ultimate goals are to (i) reduce
the number of RF chains, (ii) decrease the channel estimation
overhead, (iii) mitigate the inter UE interference via AB-HP
technique for MU-mMIMO systems.

A. Analog RF Beamformer

We construct the analog RF beamformer by focusing the
signal energy in the desired direction via the slow-time vary-
ing AoD information. By using (1) and assuming the users
clustered in the same groups experience similar AoDs [14],
the channel matrix for group g is given by:

Hg =
[
hg1 , · · · ,hgKg

]T
= ZgΦg ∈ CKg×M , (6)

where gk = k+
∑g−1
t=1 Kt is the UE index with K=

∑G
g=1Kg ,

Zg =
[
zg1 , · · · , zgKg

]T ∈ CKg×Q is the fast time-varying
path gain matrix, Φg ∈ CQ×M is the slow time-varying
phase response matrix. Afterwards, the concatenated full-size
channel matrix is defined as H =

[
HT

1 , · · · ,HT
G

]T ∈CK×M .
Then, G blocks are designed for the RF beamformer as:

F = [F1, · · · ,FG] ∈ CM×NRF , (7)



where Fg ∈ CM×NRF,g is the RF beamformer for group g

with NRF =
∑G
g=1NRF,g . By using (6) and (7), the effective

channel matrix seen from the BB-stage is obtained as:

H̃ = HF =


H1F1 H1F2 · · · H1FG
H2F1 H2F2 · · · H2FG

...
...

. . .
...

HGF1 HGF2 · · · HGFG

∈ CK×NRF , (8)

where HgFg = ZgΦgFg ∈ CKg×NRF,g is the effective
channel matrix for group g and HtFg=ZtΦtFg ∈ CKt×NRF,g

is the effective interference channel matrix, ∀t 6= g.
Hence, the RF beamformer design targets accomplishing

the following two objectives: (i) maximizing the beamforming
gain in the desired direction (i.e., Span (Fg) ⊂ Span (Φg)), (ii)
successfully suppress the interference among UE groups (i.e.,
Span (Fg) ⊂ ∪t6=gNull (Φt)). As proven in [8], both objec-
tives are accomplished by building the RF beamformer Fg
via the steering vector e (γx, γy) = 1√

M
φ∗(γx, γy)∈CM with

(γx, γy) angle-pairs covering the AoD support of desired UE
group and excluding the AoD supports of the other UE groups
(please see (2) for φ(γx, γy)). For covering the complete 3D
elevation and azimuth angular space with minimum number of
angle-pairs, M orthogonal quantized angle-pairs are defined as
λxu=−1 + 2u−1

Mx
for u = 1, · · · ,Mx and λyc = −1 + 2c−1

My
for

c = 1, · · · ,My . Considering that NRF,g quantized angle-pairs
covers the AoD support of group g [8, eq. (13)], we build the
RF beamformer for UE group g as follows:

Fg=
[
e
(
λxu1

,λyc1
)
,· · ·,e

(
λxuNRF,g

,λycNRF,g

)]
∈CM×NRF,g. (9)

Finally, the complete RF beamformer F satisfying the CM
constraint (i.e., C3 given in (5)) is derived by substituting
(9) into (7). It is worthwhile to mention that the analog RF
beamformer is a unitary matrix (i.e., FHF = INRF

).

B. Digital BB Precoder
We aim to further mitigate the residual inter UE interference

at the digital BB precoder. Thus, the regularized zero-forcing
(RZF) technique is applied via joint group processing [8]. By
utilizing the reduced-size effective channel matrix H̃ defined
in (8), the digital BB precoder is constructed as [3]:

B =

[
H̃HH̃ +K

σ2
n

PT
INRF

]−1
H̃H ∈ CNRF×K . (10)

IV. A LOW-COMPLEXITY DEEP LEARNING BASED
POWER ALLOCATION

After developing the analog RF beamformer F and the
digital BB precoder B, the capacity maximization optimization
problem given in (5) is reformulated as follows:

max
P

K∑
k=1

log2

(
1 +

pk
∣∣hTkFbk

∣∣2∑K
t 6=k pt

∣∣hTkFbt
∣∣2 + σ2

n

)

s.t. C1 : E
{
‖s‖22

}
=

K∑
k=1

pkb
H
k FHFbk ≤ PT ,

C2 : pk ≥ 0,∀k,

(11)

However, it is still a non-convex optimization problem due
to the optimization variables as P = diag

(√
p
1
, · · · ,√p

K

)
interchangeably located in the numerator and denominator
[9]. Thus, the traditional optimization algorithms may not be
utilized to solve the PA problem.

Recently, a particle swarm optimization2 based power allo-
cation (PSO-PA)3 technique for finding the optimal allocated
powers is proposed in [10]. In comparison to the computation-
ally expensive exhaustive search, it is numerically shown that
the global optimal solution is achieved via PSO-PA. However,
as the number of UEs increases (i.e., higher dimensional opti-
mization space), PSO-PA requires more iterations and longer
runtime. Thus, the enhanced computational complexity might
make PSO-PA impractical for the real-time online applications
of MU-mMIMO systems.

For achieving a near-optimal sum-rate performance while
keeping a reasonable runtime, we propose a low-complexity
deep learning based power allocation (DL-PA) algorithm.
Here, we have two phases as demonstrated in Fig. 2: (i)
Phase 1 applies the offline supervised learning via the optimal
allocated power values calculated by PSO-PA, (ii) Phase 2
runs the trained DL-PA algorithm for predicting the allocated
powers in the real-time online applications.

Hence, the reminder of this section introduces the DNN
architecture, loss functions, dataset generation and training
process for the proposed low-complexity DL-PA algorithm.

A. Deep Neural Network Architecture

We model a fully-connected deep neural network (DNN)
architecture with three hidden layers as illustrated in Fig. 3,
which aims to predict the optimal allocated powers for K
downlink UEs. There are Li neurons present at the ith hidden
layer with i = 1, 2, 3. On the other hand, as shown in Fig. 2,
the effective channel matrix H̃ = HF =

[
h̃T1 , · · · , h̃TK

]
∈

CK×NRF given in (8) and the digital BB precoder B =[
b1, · · · ,bK

]
∈ CNRF×K given in (10) are employed as

inputs in the proposed DL-PA algorithm. The input feature
scaling and vectorization operations are applied to H̃ and B.
Then, the input layer feature vector is obtained as:

x0 =



α1xh̃1

...
α1xh̃K

α2xb1

...
α2xbK

α3xBB
α4xBB,inv


∈ RL0 , (12)

where L0 = (4NRF + 2)K is the input feature
size, xh̃k

=
[

Re
(
h̃Tk
)
, Im

(
h̃Tk
)]T ∈ R2NRF ,

2As a nature-inspired AI technique, the particle swarm optimization (PSO)
employs multiple search agents (i.e., particles), which communicate and move
through iterations with the goal of finding the globally optimal solution [15].

3The details of PSO-PA algorithm are available in [10, Algorithm 1].



Fig. 2: Block diagram of offline supervised learning (Phase 1)
and online power prediction (Phase 2) in the DL-PA algorithm.

xbk
=

[
Re
(
bTk
)
, Im

(
bTk
)]T ∈ R2NRF ,

xTBB =
[
bH1 b1, · · · ,bHKbK

]T ∈ RK and xTBB,inv =[
1

bH
1 b1

, · · · , 1
bH

KbK

]T ∈ RK are respectively the non-scaled
input feature vectors for the effective channel, BB precoder,
the gain of each BB precoder vector and its inverse. By
implementing the maximum absolute scaling [16], the
corresponding scaling coefficients are calculated as:

α1 = max
(∣∣xT

h̃1

∣∣, · · · , ∣∣xT
h̃K

∣∣)−1
α2 = max

(∣∣xTb1

∣∣, · · · , ∣∣xTbK

∣∣)−1
α3 = max

(
bH1 b1, · · · ,bHKbK

)−1
α4 = min

(
bH1 b1, · · · ,bHKbK

)
.

(13)

Hence, each element of the input feature vector is scaled
between −1 and 1 (i.e., x0 ∈ [−1, 1]) by the maximum
absolute scaling technique. It prevents the domination of large
valued features on the small valued features [16].

In the offline supervised learning process (i.e., Phase 1), the
optimal allocated powers are calculated as the output labels
via the computationally expensive PSO-PA algorithm. Similar
to the input features, we also apply the maximum absolute
scaling to the optimal allocated powers as follows:

p̄k =
popt
k

max
(
popt
1 , · · · , popt

K

) ∈ [0, 1] . (14)

For the non-linear operations, we utilize the rectified linear
unit (ReLU) as the activation function at the hidden layers
(i.e., fr (x) = max (0, x) [11]). Therefore, by using the input
feature vector x0 given in (12), the output of ith hidden layer
is calculated as xi = fr (Wi−1xi−1 + bi−1) ∈ RLi , where
Wi−1 ∈ RLi×Li−1 and bi−1 ∈ RLi are the weight matrix
and bias vector, respectively. In order to fit the output layer
predictions between 0 and 1 as in the output labels expressed
in (14), we employ the sigmoid function at the output layer
(i.e., fσ (x) = 1

1+e−x [11]). Thus, the predicted power values
for K downlink UEs via the DNN architecture are written as:
[ p̂1, p̂2, · · · , p̂K ]

=fσ(W3x3+b3)

=fσ(W3fr(W2fr(W1fr(W0x0+b0)+b1)+b2)+b3).

(15)

By using (10) and (15), we finally derive the multi-user PA
matrix satisfying the transmit power constraint of PT as:

P =

√
PT∑K

k=1 p̂kb
H
k bk

diag
(√

p̂1,
√
p̂2, · · · ,

√
p̂K

)
. (16)

Fig. 3: Deep neural network architecture for DL-PA algorithm.

B. Loss Functions

We here consider two loss functions by using the predicted
and optimal power values: (i) mean square error (MSE),
(ii) mean absolute error (MAE). When there are S network
realizations in the dataset, the MSE loss function is given by:

LMSE =
1

SK

S∑
i=1

K∑
k=1

(p̄k,i − p̂k,i)2 . (17)

Similarly, the MAE loss function is written as:

LMAE =
1

SK

S∑
i=1

K∑
k=1

|p̄k,i − p̂k,i| . (18)

By back-propagating the gradients of loss function from the
output layer to the input layer, the weight matrices Wi and
bias vectors bi are updated for reducing the loss and closely
predicting the optimal allocated power values. Hence, we
ultimately optimize the sum-rate capacity of MU-mMIMO
systems as expressed in (11).

C. Dataset Generation & Training Process

We generate a dataset with S = 100.000 = 105 network
realizations for the offline supervised learning process (i.e.,
Phase 1) illustrated in Fig. 2. In each realization, the channel
vector expressed in (1) is generated for each UE by randomly
varying the path gains, AoD parameters and UE location with
respect to the BS. The corresponding optimal allocated powers
are calculated via the PSO-PA algorithm [10, Algorithm 1]
and stored in the dataset. For the offline learning process, we
always consider 80%-20% split of the total available dataset
among the training and validation.After completing the offline
learning process (i.e., Phase 1), the online power allocation
(i.e., Phase 2) is tested with a purely new test dataset.
The DNN architecture for the proposed DL-PA algorithm is
implemented using the open-source deep learning libraries in
TensorFlow [17].



TABLE I: Simulation parameters.
Number of antennas [18] M = 16× 16 = 256

BS transmit power [18] PT = 20 dBm
Cell radius [18] 100m
BS height [18]

∣∣ UE height [18] 10m
∣∣ 1.5m-2.5m

UE-BS horizontal distance 10m – 90m
UE groups G = 1 or G = 2

UE per group Kg = K
G

Mean EAoD
∣∣ Mean AAoD θg=60◦

∣∣ψg=21◦+180◦(g−1)

EAoD spread
∣∣ AAoD spread δθg=15◦

∣∣ δψg = 11◦

Path loss exponent [19] η = 3.76

Noise PSD [19] −174 dBm/Hz
Channel bandwidth [19] 10 kHz
# of paths [18] Q = 20

Antenna spacing (in wavelength) d= 0.5

TABLE II: DNN hyper-parameters.
1th hidden layer size L1 = 1024

2th hidden layer size L2 = 512

3th hidden layer size L3 = 256

Dataset size S = 100.000

Test dataset size 1.000

Epoch size
∣∣ Batch size 25

∣∣ 32
Learning rate 0.001

Optimizer ADAM [17]

V. ILLUSTRATIVE RESULTS

This section presents sum-rate and runtime results for
evaluating the proposed AB-HP with deep learning based
power allocation (DL-PA) in the MU-mMIMO systems. The
simulation parameters according to the 3D microcell scenario
are summarized in Table I4. Furthermore, the hyper-parameters
for the DNN architecture are outlined in Table II.

Fig. 4 plots the sum-rate of the proposed DL-PA with MSE
and MAE loss functions defined in (17) and (18), respectively.
Here, we provide the performance evaluation on training,
validation and test dataset for K = 3 and K = 6 UEs in
G = 1 group. As a benchmark, DL-PA is compared with
PSO-PA [10] and equal PA (EQ-PA). Numerical results reveal
that the proposed DL-PA closely approaches PSO-PA in all
training, validation and test. For instance, when there are
K = 3 UEs, DL-PA provides 44.6 bps/Hz sum-rate capacity
on test data and achieves 99.1% of the optimal sum-rate
capacity achieved by PSO-PA as 45 bps/Hz. Additionally, the
capacity is improved by approximately 25% with respect to
EQ-PA (i.e., from 35.7 bps to 44.6 bps/Hz). Moreover, when
there are a larger number of UEs as K = 6, the sum-rate
improvement compared to EQ-PA increases 48.8% on the test
data (i.e., from 47.4 bps to 70.1 bps/Hz). However, as the
number of UEs increases, the optimization space enlarges and
we observe a slight decay in the test data performance. To
illustrate, for K = 6 UEs, DL-PA with MAE accomplishes

4When a square URA having 256 antennas is utilized to serve G = 1 UE
group, AB-HP reduces the number of RF chains from 256 to 12 according
to the given simulation setup. It means 95.3% reduction in the number of RF
chains and channel estimation overhead compared to the conventional FDP.

(a) K = 3

(b) K = 6

Fig. 4: Sum-rate performance evaluation on training, validation
and test dataset (G = 1 group).

Fig. 5: Sum-rate performance versus dataset size (G=1 group).

98.9% of the optimal sum-rate performance on training data,
which marginally drops to 98.1% on the test data.

In Fig. 5, the sum-rate performance is demonstrated versus
the dataset size S, where there are either K = 3 or K = 6
UEs in G = 1 group and dataset size varies between 500 and
100.000. It is seen that as the dataset size increases the gap
between PSO-PA and DL-PA vanishes. As expected, the larger
dataset size makes DL-PA learn better the optimal allocated
powers, especially on the unseen test dataset.



(a) Sum-rate (b) Runtime
Fig. 6: Sum-rate and runtime performance (G = 2 groups).

Fig. 6 displays both sum-rate and runtime results versus
the number of UEs, which are equally clustered in G = 2
groups (i.e., Kg = K

2 ). As seen from Fig. 6(a), DL-PA
with MAE outperforms its MSE counterpart as the number
of UEs increases, although their performance difference is not
distinguishable for a smaller number of UEs. On the other
hand, the relative sum-rate performance of DL-PA with MAE
compared to the optimal PSO-PA algorithm varies between
99.7% and 96.5% as shown in Table III. Moreover, the runtime
comparison between PSO-PA and DL-PA is demonstrated for
1000 network realizations in Fig. 6(b). It is worthwhile to note
that the offline trained DNN architecture for DL-PA algorithm
is run on both MATLAB5 and Xilinx VCK5000 development
card for AI inference [20]. We observe that the proposed DL-
PA strikingly outperforms the computational complex PSO-PA
algorithm by significantly reducing the runtime. To illustrate,
when there are K = 12 UEs, PSO-PA requires 1036.6
sec, whereas only 0.9 sec runtime is enough to run DL-PA
on Xilinx VCK5000. Also, the runtime for DL-PA remains
almost constant across all UE scenarios because the hidden
layers have the same architecture for various UE cases (e.g.,
approximately 3.5 sec on MATLAB and 0.9 sec on Xilinx
VCK5000). Thus, the runtime per realization is below 1 msec
on Xilinx VCK5000. However, when there are more UEs, the
runtime for PSO-PA exponentially increases due to the larger
optimization space, where PSO-PA requires more iterations
with the aim of finding the global optimal sum-rate. As
presented in Table III, the relative runtime of DL-PA with
MAE is reduced by 98.6% for K = 2 (99.9% for K = 12) in
comparison to the computationally expensive PSO-PA.

VI. CONCLUSIONS

In this work, a novel deep learning based power alloca-
tion (DL-PA) and hybrid precoding technique has been pro-
posed for maximizing sum-rate capacity in the MU-mMIMO
systems. First, the angular-based hybrid precoding (AB-HP)
scheme has been expressed for the downlink transmission to

5For the MATLAB runtime results, we implement both PSO-PA and DL-PA
via a PC with Intel Core(TM) i7-4770 CPU @ 3.4 GHz and 32 GB RAM.

TABLE III: Relative performance of DL-PA with MAE(G=2).
K=2 K=4 K=6 K=8 K=10 K=12

Sum-Rate 99.7% 98.7% 98.3% 98.0% 97.1% 96.5%

Runtime 1.39% 0.73% 0.42% 0.26% 0.14% 0.09%

reduce the number of RF chains and lower the channel esti-
mation overhead. Then, we have proposed the low-complexity
DL-PA algorithm for predicting the optimal allocated power
resources among the downlink UEs. The promising numerical
results show that the proposed DL-PA closely approaches the
optimal sum-rate capacity achieved by PSO-PA. On the other
hand, DL-PA greatly reduces the runtime by 98.6%-99.9%. It
makes the implementation of DL-PA feasible for the real-time
online applications in MU-mMIMO systems.

REFERENCES

[1] A. N. Uwaechia et al., “A comprehensive survey on millimeter wave
communications for fifth-generation wireless networks: Feasibility and
challenges,” IEEE Access, vol. 8, pp. 62 367–62 414, 2020.

[2] M. Agiwal et al., “Next generation 5G wireless networks: A compre-
hensive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617–
1655, 3rd Quart. 2016.

[3] N. Fatema et al., “Massive MIMO linear precoding: A survey,” IEEE
Syst. J., vol. 12, no. 4, pp. 3920–3931, Dec. 2017.

[4] A. F. Molisch et al., “Hybrid beamforming for massive MIMO: A
survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sept. 2017.

[5] I. Ahmed et al., “A survey on hybrid beamforming techniques in 5G:
Architecture and system model perspectives,” IEEE Commun. Surveys
Tuts., vol. 20, no. 4, pp. 3060–3097, 4th Quart. 2018.

[6] A. Koc et al., “Full-duplex mmWave massive MIMO systems: A joint
hybrid precoding/combining and self-interference cancellation design,”
IEEE Open J. Commun. Soc., vol. 2, pp. 754–774, 2021.

[7] M. Mahmood et al., “Energy-efficient MU-Massive-MIMO hybrid pre-
coder design: Low-resolution phase shifters and digital-to-analog con-
verters for 2D antenna array structures,” IEEE Open J. Commun. Soc.,
vol. 2, pp. 1842–1861, 2021.

[8] A. Koc et al., “3D angular-based hybrid precoding and user grouping
for uniform rectangular arrays in massive MU-MIMO systems,” IEEE
Access, vol. 8, pp. 84 689–84 712, May 2020.

[9] E. Björnson et al., “Optimal multiuser transmit beamforming: A difficult
problem with a simple solution structure [lecture notes],” IEEE Signal
Process. Mag., vol. 31, no. 4, pp. 142–148, 2014.

[10] A. Koc et al., “Swarm intelligence based power allocation in hybrid
massive MIMO systems,” in 2021 IEEE Wireless Commun. and Netw.
Conf. (WCNC), Mar. 2021, pp. 1–7.

[11] Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, 2015.

[12] H. Huang et al., “Deep learning for physical-layer 5G wireless tech-
niques: Opportunities, challenges and solutions,” IEEE Wireless Com-
mun., vol. 27, no. 1, pp. 214–222, 2020.

[13] Y. Sun et al., “Application of machine learning in wireless networks:
Key techniques and open issues,” IEEE Commun. Surveys Tuts., vol. 21,
no. 4, pp. 3072–3108, 2019.

[14] X. Zhu et al., “A deep learning and geospatial data based channel
estimation technique for hybrid massive MIMO systems,” IEEE Access,
vol. 9, pp. 145 115–145 132, 2021.

[15] X.-S. Yang, Nature-inspired optimization algorithms. Elsevier, 2014.
[16] S. Galli, Python Feature Engineering Cookbook. Packt Publishing Ltd,

2020.
[17] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-

ing,” in 12th USENIX Symp. Operating Syst. Design Implementation
(OSDI 16), 2016, pp. 265–283.

[18] 3GPP TR 38.901, “5G: Study on channel model for frequencies from
0.5 to 100 GHz,” Tech. Rep. Ver. 16.1.0, Nov. 2020.

[19] 3GPP TR 36.931, “LTE; evolved universal terrestrial radio access (E-
UTRA); radio frequency (RF) requirements for LTE pico node B,” Tech.
Rep. Ver. 16.0.0, July 2020.

[20] “VCK5000 Versal Development Card for AI Inference,”
https://www.xilinx.com/products/boards-and-kits/vck5000.html, 2021,
[Online; Accessed on Oct. 23, 2021].


