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Abstract— In this work, hierarchical federated learning (HFL)1

over wireless multi-cell networks is proposed for large-scale2

model training while preserving data privacy. However, the3

imbalanced data distribution has a significant impact on the4

convergence rate and learning accuracy. In addition, a large5

learning latency is incurred due to the traffic load imbalance6

among base stations (BSs) and limited wireless resources. To cope7

with these challenges, we first provide an analysis of the8

model error and learning latency in wireless HFL. Then, joint9

user association and wireless resource allocation algorithms are10

investigated under independent identically distributed (IID) and11

non-IID training data, respectively. For the IID case, a learning12

latency aware strategy is designed to minimize the learning13

latency by optimizing user association and wireless resource14

allocation, where a mobile device selects the BS with the maximal15

uplink channel signal-to-noise ratio (SNR). For the non-IID case,16

the total data distribution distance and learning latency are17

jointly minimized to achieve the optimal user association and18

resource allocation. The results show that both data distribution19

and uplink channel SNR should be taken into consideration for20

user association in the non-IID case. Finally, the effectiveness of21

the proposed algorithms are demonstrated by the simulations.22

Index Terms— User association, hierarchical federated learn-23

ing, non-IID, data distribution, learning latency.24

I. INTRODUCTION25

A. Background26

RECENTLY, artificial intelligence has played an impor-27

tance role in many emerging applications, such as auto-28

matic driving, face and voice recognition, etc. With massive29

amounts of data, neural networks can be trained in a central-30

ized way to support these applications [1]. As the data privacy31

Manuscript received 18 October 2021; revised 29 January 2022; accepted
20 March 2022. Date of publication 4 April 2022; date of current version
11 October 2022. The work of Guanding Yu was supported by research
grant under Grant GDNRC[2021]32. The work of Xianfu Chen was supported
by the Zhejiang Laboratory Open Program under Grant 2021LC0AB06. The
associate editor coordinating the review of this article and approving it for
publication was S. Zhou. (Corresponding author: Guanding Yu.)

Shengli Liu is with the School of Information and Electrical Engineer-
ing, Zhejiang University City College, Hangzhou 310015, China (e-mail:
victoryliu@zju.edu.cn).

Guanding Yu is with the College of Information Science and Elec-
tronic Engineering, Zhejiang University, Hangzhou 310027, China (e-mail:
yuguanding@zju.edu.cn).

Xianfu Chen is with the VTT Technical Research Centre of Finland,
90570 Oulu, Finland (e-mail: xianfu.chen@vtt.fi).

Mehdi Bennis is with the Centre for Wireless Communication, University
of Oulu, 90540 Oulu, Finland (e-mail: mehdi.bennis@oulu.fi).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2022.3162595.

Digital Object Identifier 10.1109/TWC.2022.3162595

and security concerns increase, federated learning (FL) has 32

been proposed for distributed model training [2]. Under FL, 33

clients exchange their model parameters with the edge server 34

rather than uploading raw training data. Wireless FL has also 35

been applied in various applications [3], [4], where mobile 36

devices perform local model updates and transmit the model 37

parameters to the base station (BS). 38

Since learning is based on single BS connectivity, which 39

can be limited, calling for hierarchical federated learning 40

(HFL) to fully exploit the training data of mobile devices 41

connected to multiple BSs. After multiple local model updates 42

at each BS, the cloud server aggregates the edge model 43

from BSs to improve the learning performance. As a result, 44

wireless HFL can achieve higher communication efficiency 45

since mobile devices can obtain the global model without 46

directly exchanging model parameters with the cloud server. 47

However, a large learning latency is still incurred due to the 48

traffic load imbalance and limited wireless resource in wireless 49

HFL. In general, mobile devices are able to communicate 50

with multiple BSs. If more mobile devices are associated with 51

a BS, less wireless resources are allocated to each mobile 52

device, resulting in an increase in communication latency. 53

Then, the global latency will increase owing to the edge 54

model aggregation. In addition, the learning performance, i.e., 55

convergence rate and learning accuracy, is affected by the data 56

distribution imbalance, which may differ from device to device 57

and the overall data distribution of the BS will be highly 58

imbalanced with an improper user association. Therefore, it is 59

critical to develop user association and resource allocation 60

algorithms to improve the learning performance and reduce 61

learning latency as well. 62

B. Related Works 63

There have been extensive efforts to analyze and improve 64

the learning performance for both single-layer FL and HFL. 65

1) Single-Layer Federated Learning: Many existing works 66

have been focused on single-layer FL. Regarding the com- 67

putation and communication bottlenecks in a single-layer FL, 68

various strategies have been designed to reduce the learning 69

latency and improve the learning performance [5]. In [6]–[9], 70

authors have applied network pruning and gradient compres- 71

sion to reduce latency for local model computation and model 72

uploading. By exploiting the characteristics of the wireless 73
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channel, over-the-air computation has been adopted for model74

aggregation in [10], [11] to improve the spectrum efficiency of75

wireless FL. Considering limited wireless resources, authors76

in [12] have proposed a solution based on selecting a part77

of devices for model aggregation during each iteration. Dif-78

ferent scheduling policies have been designed in [13]–[15]79

to improve the convergence rate and reduce the commu-80

nication latency. Moreover, the unreliable wireless channel81

has been taken into consideration [16]. The convergence rate82

with transmission error has been analyzed and the wireless83

resource allocation has been optimized to improve the learning84

performance.85

With respect to the data distribution, many works have been86

devoted to analyzing the learning performance of single-layer87

FL under non-independent identically distributed (non-IID)88

training data. In [17], the effect of non-IID training data on89

the learning performance has been evaluated. By analyzing90

the model error compared with the model trained in a cen-91

tralized way, the learning performance is determined by the92

data distribution distance between the client and the whole93

population. The convergence rate has been analyzed in [18]94

for FL with non-IID data. The authors in [19] have proposed95

a deep Q-learning based strategy to select a subset of devices96

in terms of uploaded weights in non-IID scenarios. By this97

means, the convergence can be speeded up as compared with98

the conventional federated averaging (FedAvg) algorithm.99

2) Hierarchical Federated Learning: To train models on a100

large scale, HFL has been proposed on the basis of a single-101

layer FL. In [20], the authors have shown that the commu-102

nication rounds can be reduced by hierarchical clustering of103

local updates on non-IID training data. The convergence of104

multi-level local stochastic gradient descent (SGD) on convex105

and non-convex objective functions has been analyzed for HFL106

in [21] and [22]. In [23] and [24], the user-edge assignment107

problem has been proposed for HFL with non-IID training data108

to improve the learning performance. By analyzing the effect109

of data distribution on the learning performance, the user-edge110

assignment has been optimized. However, the learning latency111

has not been considered in the above works.112

For wireless HFL, the authors in [25] and [26] have113

deployed HFL in multi-layer wireless network to reduce the114

communication overhead and long latency compared with115

wireless single-layer FL. A client-edge-cloud HFL system has116

been proposed in [26], where the edge servers perform partial117

model aggregation. The proposed system achieves an enhanced118

learning performance in different data distribution scenarios.119

Similarly, fog learning has been proposed in [27] to distribute120

the multi-layer learning architecture over heterogenous wire-121

less networks. A joint resource allocation and edge association122

problem has been formulated in [28] to improve both the123

communication efficiency and energy efficiency. Nevertheless,124

the effect of user association on the convergence rate or125

learning accuracy has not been considered.126

C. Motivations and Contributions127

Although there exist several works investigating wireless128

HFL, two technical challenges remain unsolved. On the one129

hand, how to characterize the effect of data distribution and130

traffic load imbalance on the learning performance when 131

examining HFL in wireless multi-cell networks? For wireless 132

HFL, the convergence rate, learning accuracy, and learning 133

latency are all important performance indicators that depend 134

on data distribution and traffic load imbalance. However, it is 135

difficult to mathematically derive the effect of such analysis. 136

On the other hand, how to develop user association and 137

resource allocation schemes to improve the learning per- 138

formance? Different from traditional cellular networks, user 139

association and resource allocation depend on more factors, 140

such as local computing power, channel state information, 141

and data distribution. Thus, it is challenging to develop the 142

optimal scheme for wireless HFL. To this end, in this paper, 143

we analyze the learning performance, i.e., model error and 144

learning latency, and derive the impact of user association and 145

resource allocation on the learning performance. Moreover, 146

the local computing power, data distribution, and channel 147

state information are jointly accounted for when designing the 148

optimal user association and resource allocation algorithms for 149

wireless HFL in both the IID and non-IID cases. The main 150

contributions from our work are summarized as follows. 151

• We study the problem of joint user association and 152

wireless resource allocation in wireless HFL under both 153

IID and non-IID cases, respectively. First, we analyze 154

the learning performance, i.e., model error and learning 155

latency, and characterize the impact of user association 156

and resource allocation on the learning performance. 157

On the one hand, the upper bound of model error is 158

dependent on the data distribution and user association. 159

On the other hand, the learning latency consisting of two 160

parts (local-edge stage and edge-cloud stage), which is 161

affected by the user association and resource allocation, 162

is analyzed. 163

• For the IID case, the optimal user association and 164

resource allocation are obtained by minimizing the learn- 165

ing latency. The results show that the optimal user asso- 166

ciation is the same as in a traditional multi-cell network, 167

where mobile devices select the BS with the maximal 168

uplink channel signal-to-noise ratio (SNR). In addition, 169

wireless resources are allocated in accordance with both 170

local computing power and uplink channel SNR, which 171

is different from that in traditional throughput-oriented 172

cellular networks. 173

• For the non-IID case, the weighted sum of total data 174

distribution distance and learning latency is minimized 175

to achieve the optimal user association and resource 176

allocation. Different from the IID case, the solutions 177

account for both data distribution distance and uplink 178

channel SNR for the user association. The proposed user 179

association policy is meaningful from the perspective of 180

demonstrating the importance of rethinking user associa- 181

tion for wireless HFL. Finally, numerical simulations are 182

implemented to validate the effectiveness of the proposed 183

algorithms. 184

D. Organization 185

The rest of the paper is organized as follows. In Section II, 186

we introduce the system model of wireless HFL. Then, the 187
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Fig. 1. The wireless HFL system model.

model error and learning latency are analyzed in Section III.188

For the IID case, the learning latency aware strategy is189

designed in Section IV. In Section V, we jointly minimize the190

total data distribution distance and learning latency to obtain191

the user association and resource allocation for the non-IID192

case. Experimental results are presented to verify the proposed193

algorithm in Section VI. Finally, Section VII concludes the194

whole paper.195

II. SYSTEM MODEL196

As depicted in Fig. 1, we consider a wireless HFL scenario197

where multiple BSs and multiple mobile devices (e.g., mobile198

phone, laptop, and pad) collaboratively participate in training199

a neural network model, such as image classification or200

recognition. There exist overlapping areas among BSs, where201

mobile devices are uniformly distributed. Therefore, some202

mobile devices are able to access multiple BSs simultaneously.203

During model training, each device selects one BS to exchange204

the model parameters. Each BS sends the edge model to the205

cloud server for global model aggregation.206

The number of classes in the classification or recognition207

task is C, for which we denote the set C = {1, 2, . . . , C}. Let208

K = {1, 2, . . . , K} and N = {1, 2, . . . , N} denote the sets209

of BS and mobile devices, respectively. There are Nk mobile210

devices located in the coverage of BS k, the set of which is211

denoted as Nk. In addition, for the device n, the available212

BSs are denoted by a set Kn. We adopt the indicator variable213

an,k ∈ {0, 1} to represent the association between a BS k and214

a device n. If an,k = 1, the device n is served by the BS k to215

support the local model update, and vice versa. Each mobile216

device has the same amount of training data [29], denoted as217

Dn. This assumption is made for the convenience of analysis.218

The proposed policies and algorithms are still applicable for219

these general cases where devices have different amounts of220

training data.221

A. Hierarchical Federated Learning Model222

For any neural network, model training aims to find an223

optimal function Hw : X → Y , where X is the training data,224

Y is the ground-truth label, and w represents the model para-225

meter. By minimizing the distance, f (Hw (X ) ,Y), between226

Fig. 2. Synchronous model aggregation in wireless HFL.

the network output Hw (X ) and the label Y , the optimal model 227

w∗ can be obtained. Therefore, the model training can be 228

formulated as 229

min
w

F (w) =
1
|X |

∑
x∈X ,y∈Y

f (Hw (x) , y). (1) 230

When the model is trained in a centralized way, SGD can 231

be adopted. Similarly, FedSGD and FedAvg are proposed 232

for FL [30]. Model parameters or gradients are exchanged 233

between mobile devices and the edge server for model aggre- 234

gation and update. Specifically, for FedSGD, the model aggre- 235

gation is performed at each iteration. As for FedAvg, the 236

model aggregation occurs after multiple local model updates. 237

Without loss of generality, we consider a two-layer FL in this 238

work, as in Fig. 1. The global model aggregation is divided 239

into two parts: local-edge model aggregation and edge-cloud 240

model aggregation, as shown in Fig. 2. Both FedSGD and 241

FedAvg are adopted to obtain the global model. Since BSs 242

are closer to mobile devices than the cloud server in general, 243

the communication cost and transmission latency are low. 244

Therefore, to facilitate the local model update, we use FedSGD 245

to aggregate the local model at each iteration. Unlike local- 246

edge aggregation, FedAvg is adopted for edge-cloud model 247

aggregation to avoid frequent communication between the BS 248

and core network. After E local iterations, all BSs upload the 249

edge model to the cloud server. A similar HFL model is also 250

adopted in [23], [25], [28]. 251

1) Local-Edge Model Aggregation: For each local iteration, 252

mobile devices should upload the local model parameters to 253

its associated BS after one round local model update. Then, 254

the BS aggregates the local model and broadcasts the edge 255

model to its associated mobile devices. 256

Denote the local model of device n at the mE-th local 257

iteration as wL,n
mE . Note that m represents the number of global 258

iterations. Hence, the corresponding number of local iterations 259

is mE. The local model update can be written as 260

wL,n
mE+1 =wL,n

mE +α
∑

c

pn (c)∇wEx|y(c)

{
log
(
HwL,n

mE
(x)
)}

, 261

(2) 262

where α is the learning rate, pn (c) is the data distribution of 263

device n on the class c, and ∇wEx|y(c)

{
log
(
HwL,n

mE
(x)
)}

264

is the gradient calculated based on a batch of Dn. Note that 265

there are many ways to evaluate the data distribution, such 266

as feature distribution and label distribution [31], [32]. In this 267
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work, we mainly adopt the label distribution. Thus, the data268

distribution of device n is defined as the proportion of each269

class in the dataset Dn, which is widely adopted in [17]–[19].270

Specifically, denote Dn as the data volume owned by device271

n, and dn,c as the data volume of class c. Then, the data272

distribution can be written as273

pn (c) =
dn,c

Dn
. (3)274

In this work, we concentrate on the popular learning task,275

i.e., classification task, which adopts cross entropy as the276

loss function in general. Other loss functions for regression277

problems, such as MSE, are not considered in this work. For278

the cross entropy with regularizer, our proposed algorithm279

can also be applicable. Moreover, in practical HFL where280

the gradient cannot be accurately derived, the learning perfor-281

mance degrades compared with the accurate case. However,282

the effect of data distribution remains unchanged and our283

proposal can still be applied. Denote the edge model of BS k284

at the (mE + 1)-th iteration as wB,k
mE+1. Then, the edge model285

average aggregation can be written as286

wB,k
mE+1 =

1
nk

∑
n∈Nk

an,kwL,n
mE+1, (4)287

where nk is the traffic load of BS k and nk =
∑

n∈Nk

an,k.288

After that, the local model wL,n
mE+1 is updated with the edge289

model wB,k
mE+1.290

2) Edge-Cloud Model Aggregation: Denote the global291

model at the ((m + 1)E)-th local iteration as wG
(m+1)E .292

According to FedAvg, the global model aggregation can be293

expressed as294

wG
(m+1)E =

1∑
k

nk

∑
k

nkwB,k
(m+1)E . (5)295

For the single-connectivity scenario where each mobile device296

can connect only one BS,
∑
k

nk = N . In summary, the297

one global iteration training process for HFL is presented in298

Algorithm 1.299

Algorithm 1 Hierarchical Federated Learning Algorithm

From global iteration m to iteration (m + 1):
1: for local iteration i = 1 : E do
2: Each device obtains the local model wL,n

mE+i based on
(2).

3: The local model wB,k
mE+i can be aggregated by each BS

according to (4).
4: Each device updates the local model with wB,k

mE+i.
5: end for
6: The global model wG

(m+1)E can be achieved by the cloud
server based on (5).

7: The local and edge model are updated with wG
(m+1)E .

B. Transmission Model300

In wireless HFL, the model parameters are exchanged301

among mobile devices, BSs, and the cloud server. For302

local-edge model aggregation, the model parameters are trans- 303

mitted over the wireless channels. We assume that BSs use 304

multiple orthogonal narrowband channels. Thus, the inter- 305

ference among BSs is ignored.1 Specifically, let BU
k denote 306

the uplink bandwidth planned for the BS k. In each BS, 307

mobile devices can share the wireless channel for uploading 308

local model with a multiple access mechanism. Without loss 309

of generality, orthogonal frequency-division multiple access 310

(OFDMA) is adopted in this paper. Therefore, the uplink data 311

rate of device n associated with the BS k is 312

rU
n,k = an,kln,kBU

k RU
n,k, (6) 313

where ln,k is the uplink bandwidth fraction allocated for the 314

device n and RU
n,k is the uplink spectrum efficiency. The 315

efficiency is RU
n,k = log2

(
1 + pU

n hU
n,k/N0

)
, where pU

n is 316

the transmission power of the device n, hU
n,k is the uplink 317

channel power gain of the device n, and N0 is the channel 318

noise variance [28], [34]. 319

Regarding the edge model broadcasting, all available down- 320

link channels can be used by the BS for broadcasting the 321

edge model to its associated devices. Compared with the local 322

model uploading, the latency for edge model broadcasting can 323

be ignored since the BSs have adequate transmission power 324

and broadcast bandwidth in general [28], [35], [36]. Hence, 325

the analysis for the downlink data rate is omitted in this work. 326

For edge-cloud model aggregation, the BSs and cloud 327

server exchange the global model over the wired or wireless 328

backhaul. Denote rk as the uplink data rate of the BS k. The 329

cloud server can broadcast the global model to the BSs over all 330

bandwidth of the backhaul. Owing to the sufficient transmis- 331

sion resource for global model broadcasting, the latency for 332

global model broadcasting is neglected and the corresponding 333

data rate analysis is omitted as well. 334

III. LEARNING PERFORMANCE ANALYSIS 335

In this section, we will analyze the learning performance, 336

i.e., model error and learning latency, taking into account the 337

effect of the imbalanced data distribution and traffic load. Note 338

that the analysis on the model error and learning latency is 339

applicable for both the IID and non-IID cases. 340

A. Model Error Analysis 341

Regarding the data distribution imbalance, the model error 342

compared with the optimal model trained with IID data in a 343

centralized way can be adopted to evaluate the convergence 344

rate and learning accuracy in wireless HFL system [17], 345

[18], [23]. Denote the optimal model at the (mE)-th iter- 346

ation as w∗
mE . Then, the model error can be expressed as 347∥∥wG

mE − w∗
mE

∥∥. The optimal model can be also derived by 348

1We make this assumption to derive the optimal wireless resource allocation
and user association strategy in closed-form. However, our work can be still
extended into the more general scenario with frequency reuse by exploring
these existing channel reuse and interference management techniques in
multi-cell networks [33].

Authorized licensed use limited to: Oulu University. Downloaded on February 09,2023 at 10:58:47 UTC from IEEE Xplore.  Restrictions apply. 



7856 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 10, OCTOBER 2022

the gradient descent method, as349

w∗
mE =w∗

mE−1+α
∑

c

p (c)∇wEx|y(c)

{
log
(
Hw∗

mE−1
(x)
)}

,350

(7)351

where p (c) is the data distribution of IID training data.352

Since we adopt label distribution to evaluate the data dis-353

tribution, having the IID training data means that each354

class has a uniform distribution for a typical classification355

task [17], [31]. In particular, p (c) = 1
C , c ∈ C. Therefore,356

p (c) is determined by the specific learning task, without357

the need of aggregating the local data. The smaller the358

model error is, the better the learning performance will be.359

By analyzing the model error, the effect of user association360

and data distribution on the learning performance can be361

derived. To analyze the model error, the following assumptions362

are made.363

• (Gradient smoothness) The gradient364

∇wEx|y(c) {log (Hw (x))} is L (c)-Lipschitz smooth,365

which can be written as366 ∥∥∇wEx|y(c) {log (Hw1 (x))}−∇wEx|y(c) {log (Hw2 (x))}∥∥367

≤ L (c) ‖w1 − w2‖ , (8)368

where L (c) is the Lipschitz constant.369

• (Bounded gradient) The mE-th iteration gradient370

∇wEx|y(c)

{
log
(
HwB,k

mE
(x)
)}

is bounded, which can be371

expressed as372 ∥∥∥∇wEx|y(c)

{
log
(
HwB,k

mE
(x)
)}∥∥∥ ≤ AmE . (9)373

Then, the upper bound of model error compared with the374

optimal model after one global iteration can be given in the375

following theorem.376

Theorem 1: For the wireless HFL with N mobile devices,377

K BSs, C classes, and E synchronization iterations, the upper378

bound of the model error between the global model and the379

optimal model after one global iteration can be expressed as380

(10), shown at the bottom of the page, where p (c) is the data381

distribution of IID training data.382

Proof: Please refer to Appendix A.383

Remark 1: From the theorem, the upper bound of the model384

error increases with the total data distribution distance from385

the IID training data, 1
N

∑
k

∑
c

∥∥∥∥∥ ∑n∈Nk

an,k (pn (c) − p (c))

∥∥∥∥∥.386

Specifically, a large total data distribution distance causes387

a low convergence rate and learning accuracy. In addition,388

user association has a significant impact on the total data389

distribution distance. Due to the data distribution imbalance390

among mobile devices, a large total data distribution distance 391

may be caused with an improper user association. Therefore, 392

user association should be adjusted to alleviate the effect 393

of data distribution imbalance by reducing the total data 394

distribution distance. In particular, when the training data of 395

mobile devices are IID, the total distribution distance is zero 396

and user association will not affect the convergence rate and 397

learning accuracy. 398

B. Learning Latency Analysis 399

Due to the limited wireless resources, the learning latency 400

is the main bottleneck of wireless HFL. We adopt the syn- 401

chronous model aggregation mechanism in both the local-edge 402

aggregation stage and the edge-cloud aggregation stage, 403

as described in Fig. 2. 404

1) Local-Edge Aggregation Stage: At this stage, the learn- 405

ing latency is composed of two parts: the latency for local 406

model computation and the latency for local model uploading. 407

Since the edge server equipped at the BS has in general rich 408

computing resources, the latency for edge model aggregation 409

is ignored in this paper. 410

• Local model computation: The latency for local model 411

computation can be expressed as 412

tLn =
bdL

fn
, (11) 413

where b is the batchsize, dL is the CPU cycle for one 414

training data calculation, including both forward and back 415

propagation, and fn is the n-th device’s computing power 416

evaluated by the CPU frequency. Here, dL is determined 417

by the learning task and the computing power of mobile 418

device. 419

• Local model uploading: Denote the data volume of the 420

model parameters as M . Then, the latency for model 421

uploading from device n to BS k can be expressed as 422

tUn,k =
M

rU
n,k

. (12) 423

Due to the synchronous model aggregation mechanism, the 424

latency at the local-edge stage is determined by the maximum 425

latency among all devices. Accordingly, the learning latency 426

at the local-edge stage can be written as 427

tE = max
{
an,k

(
tLn + tUn,k

)}
. (13) 428

2) Edge-Cloud Aggregation Stage: The latency at this stage 429

is mainly determined by the edge model uploading. Due to 430

the high computing power of the cloud server, the latency for 431

∥∥wG
mE − w∗

mE

∥∥ ≤
(
1 + α

∑
p (c)L (c)

)E ∥∥∥wG
(m−1)E − w∗

(m−1)E

∥∥∥
+ α

⎛
⎝E−1∑

i=0

AmE−1−i

(
1 + α

∑
c

p (c)L (c)

)i
⎞
⎠ 1

N

∑
k

∑
c

∥∥∥∥∥ ∑
n∈Nk

an,k (pn (c) − p (c))

∥∥∥∥∥︸ ︷︷ ︸
effect of data distribution imbalance

. (10)
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global model aggregation is neglected as well. The latency for432

the edge model uploading can be expressed as433

tG = max
{

M

rk

}
. (14)434

To facilitate the analysis of learning latency at each iter-435

ation, we divide one global iteration into E local iterations.436

Therefore, the learning latency of one local iteration can be437

written as438

T = tE +
1
E

tG. (15)439

A similar learning latency analysis method is also adopted440

in [25]. From the latency analysis, local uplink transmission441

is the main bottleneck. Due to the limited wireless resource442

for each BS, a large transmission latency will be caused if443

the traffic load is unevenly distributed across BSs. Thus, user444

association and wireless resource allocation should be care-445

fully designed to mitigate the impact of traffic load imbalance,446

and eventually reduce the overall learning latency.447

According to the learning performance analysis, the effect448

of user association and resource allocation on the learning449

performance differs from the IID case to the non-IID case.450

When the training data of mobile device is IID, user associa-451

tion and resource allocation only influence the learning latency452

without impacting the model error. However, both model error453

and learning latency are determined by user association and454

resource allocation under non-IID data.455

IV. OPTIMAL USER ASSOCIATION AND RESOURCE456

ALLOCATION: THE IID CASE457

In this section, an optimization problem is first formulated458

for wireless HFL with IID data to improve the learning459

latency. Then, the optimal wireless resource allocation and user460

association algorithm is developed.461

A. Problem Formulation462

As analyzed above, improper user association and resource463

allocation will cause a large learning latency while not affect-464

ing the model error in the IID case. Therefore, the learning465

latency can be minimized to improve the learning performance466

of wireless HFL with IID data by jointly optimizing user467

association and resource allocation while the effect of HFL468

convergence is not considered in this problem. The problem469

can be mathematically formulated as470

min
{an,k,ln,k,BU

k }
T, (16)471

subject to
∑

n∈Nk

an,kln,k ≤ 1, k ∈ K, (16a)472

∑
k

BU
k ≤ BU, (16b)473

∑
k∈Kn

an,k = 1, (16c)474

an,k ∈ {0, 1} , (16d)475

where BU is the total uplink bandwidth for all BSs, (16a) and476

(16b) are the constraints related to the resource allocation,477

and (16c) and (16d) are the constraints on user association. 478

It is obvious that this problem is a mixed integer nonlinear 479

programming (MINLP) problem. Thus, the optimal solution 480

cannot be directly obtained in general. Fortunately, this prob- 481

lem can be decomposed into two subproblems by separating 482

integer variables from continuous variables and by performing 483

wireless resource allocation and user association, respectively. 484

B. Optimal Wireless Resource Allocation 485

Given the user association an,k, n ∈ N , k ∈ K, the problem 486

(16) is transformed into minimizing the learning latency at the 487

local-edge stage according to the learning latency analysis, 488

which can be written as 489

min
{ln,k,BU

k ,tE}
tE, (17) 490

subject to (16a), (16b), and 491

an,k

(
bdL

fn
+

M

rU
n,k

)
≤ tE, n ∈ N , k ∈ K.

(17a)

492

As in Lemma 1 below, the above problem is convex. 493

Lemma 1: The problem in (17) is a convex optimization 494

problem. 495

Proof: Please refer to Appendix B. 496

Accordingly, the optimal resource allocation can be derived 497

as in the following theorem. 498

Theorem 2: Given the user association an,k, n ∈ N , k ∈ 499

K, the optimal resource allocation l∗n,k and BU∗
k can be 500

written as 501

l∗n,k = an,k
M(

tE∗ − bdL

fn

)
BU∗

k log2

(
1 +

pU
n hU

n,k

N0

) , (18) 502

and 503

BU∗
k =

∑
n∈Nk

an,k
M(

tE∗ − bdL

fn

)
log2

(
1 +

pU
n hU

n,k

N0

) , (19) 504

respectively, where tE∗ is the optimal learning latency at the 505

local-edge stage and can be obtained from 506∑
k

∑
n

an,k
M(

tE∗ − bdL

fn

)
log2

(
1 +

pU
n hU

n,k

N0

) = BU. (20) 507

Proof: Please refer to Appendix C. 508

Remark 2: From Theorem 2, resource allocation for a given 509

device is determined by both the local computing power 510

and channel SNR. Mobile device with a high computing 511

power or uplink channel SNR will be allocated with less 512

wireless resources. Note that this resource allocation policy 513

is different from that in traditional throughput-oriented cellu- 514

lar networks. Furthermore, to reduce learning latency, more 515

wireless resources should be allocated to those devices with 516

a low computing power or uplink channel SNR. In addition, 517

user-balancing constraint is not necessary here since we 518

assume that resource allocation is performed among different 519

BSs. As a result, load balance can be achieved by resource 520

allocation among BSs. For the BSs associated with more 521

mobile devices, more uplink channels should be reserved for 522

these BSs to reduce the local model uploading latency. 523
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C. Optimal User Association524

With the optimal wireless resource allocation, the problem525

in (17) can be rewritten as526

min
{tE∗,an,k}

tE∗, (21)527

subject to (16c), (16d), and528 ∑
k

∑
n

an,k
M(

tE∗ − bdL

fn

)
log2

(
1 +

pU
n hU

n,k

N0

) ≤ BU. (21a)529

Note that the problem in (21) is equivalent to the problem in530

(16) since we just replace the optimal resource allocation with531

an,k and tE∗. The optimal user association can be achieved by532

the following theorem.533

Theorem 3: For wireless HFL with IID training data, the534

optimal user association of mobile device n is535

k∗
n = arg max

k∈Kn

{
log2

(
1 +

pU
n hU

n,k

N0

)}
. (22)536

Proof: Based on (16c) and (16d), (21a) can be rewritten537

as538 ∑
n

M(
tE∗ − bdL

fn

)∑
k

an,klog2

(
1 +

pU
n hU

n,k

N0

) ≤ BU. (23)539

To obtain the minimal learning latency tE∗,540 ∑
k

an,klog2

(
1 +

pU
n hU

n,k

N0

)
should be the maximum. Therefore,541

the device n should be associated with the BS with the highest542

uplink channel SNR, which ends the proof.543

Remark 3: From Theorem 3, the optimal user association544

strategy for wireless HFL with IID training data is the same545

with that in traditional wireless networks. The uplink channel546

SNR is the most important factor for the user association.547

Different from the scheduling problem in wireless single-layer548

FL, the local computing power doesn’t need to be considered549

in the user association.550

The optimal user association and wireless resource allo-551

cation for HFL with IID training data is concluded in552

Algorithm 2. Note that different from the traditional iterative553

algorithm, we decompose the problem by replacing the optimal554

resource allocation with an,k and tE∗. Therefore, the optimal555

solutions can be directly obtained without multiple iterations556

between these two subproblems and remain the same with that557

of original problem in (16).558

V. OPTIMAL USER ASSOCIATION AND RESOURCE559

ALLOCATION: THE NON-IID CASE560

In this section, an optimization problem is formulated to561

improve the learning performance by considering both the562

total data distribution distance and learning latency. After that,563

an algorithm for optimal wireless resource allocation and user564

association is developed.565

A. Problem Formulation566

According to the previous analysis, both the upper bound567

of model error and the learning latency with non-IID training568

Algorithm 2 Latency Aware User Association Algorithm for
the IID Scenario
Input: hU

n,k, pU
n , N0.

Output: User association, a∗
n,k, wireless resource allocation,

l∗n,k and BU∗
k .

1: Calculate the uplink channel SNR
pU

n hU
n,k

N0
.

2: Obtain the optimal user association a∗
n,k according to

Theorem 3.
3: Determine the wireless resource allocation l∗n,k and BU∗

k

as (18) and (19).

data are affected by user association and resource allocation. 569

That is, the learning performance depends on both the upper 570

bound of model error and the learning latency. Therefore, 571

the weighted sum of the total data distribution distance and 572

the learning latency can be adopted to evaluate the learning 573

performance, expressed as, 574

I = β
1
N

∑
k

∑
c

∥∥∥∥∥ ∑
n∈Nk

an,k (pn (c) − p (c))

∥∥∥∥∥+ (1 − β)T, 575

(24) 576

where β is the weight coefficient to balance the importance of 577

the total data distribution distance and the learning latency.2 578

Note that the smaller the I is, the better the learning perfor- 579

mance will be. To improve learning performance in wireless 580

HFL system, we should minimize I by jointly optimizing 581

user association and resource allocation. Therefore, the opti- 582

mization problem to achieve the optimal user association and 583

resource allocation can be formulated as 584

min
{an,k,ln,k,BU

k }
I, (25) 585

subject to (16a), (16b), (16c), and (16d). This problem is also 586

an MINLP problem and NP-hard. Thus, it is hard to find its 587

optimal solution. Since the total data distribution distance is 588

not affected by the wireless resource allocation, this problem 589

can be decomposed into two subproblems: wireless resource 590

allocation and user association. 591

B. Wireless Resource Allocation and User Association 592

Given the user association an,k, the problem for wire- 593

less resource allocation in HFL is the same under 594

both IID and non-IID data. Therefore, the optimal wire- 595

less resource allocation can be achieved according to 596

Theorem 2. 597

With the optimal resource allocation, the problem in (25) 598

can be rewritten as 599

min
{an,k,tE′}

β
1
N

(∑
k

∑
c

∥∥∥∥∥ ∑
n∈Nk

an,k (pn (c) − p (c))

∥∥∥∥∥
)

600

+ (1 − β)
(

tE
′
+

1
E

tG
)

, (26) 601

2We suggest that the weight coefficient β should be set to ensure that the
total data distribution distance and the learning latency are within the same
order of magnitude to achieve a better learning performance, as shown in
simulations.
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subject to (16c), (16d), and602 ∑
n

∑
k

an,k
M(

tE′− bdL

fn

)
log2

(
1+

pU
n hU

n,k

N0

) ≤BU.

(26a)

603

Here, tE
′

is the optimal local-edge latency obtained by opti-604

mizing the wireless resource allocation under the given an,k.605

Similarly, this problem is equivalent to the problem in (25)606

by substituting an,k and tE
′

for ln,k and BU
k , respectively.607

It is still very hard to solve this problem due to the binary608

indicators, an,k. However, compared with the problem (25),609

there are fewer optimization variables since the variables about610

wireless resource allocation are replaced with the local-edge611

latency, and thereby the computational complexity is reduced.612

By further observation, the optimal user association can be613

achieved under the given tE
′
. By introducing a new variable614

qk,c to remove the norm operation in (26), the problem under615

the given tE
′

can be rewritten as616

min
{an,k,qk,c}

{
β

1
N

∑
k

∑
c

qk,c + (1 − β)
(

tE
′
+

1
E

tG
)}

,

(27)

617

subject to (26a), (16c), (16d), and618

qk,c≥
∑

n

an,k (pn (c)−p (c)), k∈K, c∈C,

(27a)

619

qk,c≥
∑

n

an,k (p (c)−pn (c)), k∈K, c∈C.

(27b)

620

The problem in (27) is a mixed integer linear programming621

(MILP) problem. The optimal solution to user association622

under the given optimal resource allocation can be achieved by623

the traditional algorithm, i.e., the branch-and-bound algorithm.624

A low-complexity algorithm, such as interior point method,625

can also be used to achieve the sub-optimal user association626

by variable relaxation.627

To obtain the insightful conclusions about the user associa-628

tion, the problem in (27) can be transformed with Lagrangian629

relaxation into (28), shown at the bottom of the page, subject630

to (16c) and (16d), where λk,c, μk,c, and γ are nonnegative631

Lagrangian multipliers related to the constraints (27a), (27b),632

and (26a), respectively. From the Lagrangian function, the 633

conclusion about the optimal user association can be directly 634

obtained in the following lemma. 635

Lemma 2: For wireless HFL with non-IID data, the optimal 636

user association of the device n under the given wireless 637

resource allocation satisfies (29), shown at the bottom of the 638

page, where λ∗
k,c, μ∗

k,c, and γ∗ are the corresponding optimal 639

Lagrangian multipliers. 640

Proof: Please refer to Appendix D. 641

Remark 4: From Lemma 2, user association is determined 642

by both the uplink channel SNR and data distribution in 643

the non-IID case.
∑
c

(
λ∗

k,c
− μ∗

k,c

)
(pn (c) − p (c)) can be 644

interpreted as the weighted data distribution distance when 645

device n is associated with BS k. A small weighted data 646

distribution distance means that the device n covers more 647

data required by the BS k or the data distribution of this 648

device is close to IID. Therefore, from the perspective of data 649

distribution, the probability that the device n associates with 650

the BS k decreases with the increase of the weighted data 651

distribution distance. Different from the traditional multi-cell 652

networks and wireless HFL under the IID case, the device 653

should select the BS with a high uplink channel SNR and 654

a small weighted data distribution distance to improve the 655

learning performance. This proposed policy is meaningful and 656

can demonstrate the importance of rethinking user association 657

for wireless HFL. 658

To achieve optimal Lagrangian multipliers, λ∗
k,c, μ∗

k,c, and 659

γ∗, the primal-dual method can be applied [34], [37], [38]. 660

The detailed procedures can be summarized in Algorithm 3. 661

C. Proposed Algorithm and Computational Complexity 662

Analysis 663

In line with the above analysis, the user association under 664

the given local-edge latency tE
′

can be obtained by the branch- 665

and-bound algorithm or interior point method. For the global 666

solutions of (26), one-dimensional search method can be 667

applied in the interval [tE
′

min, t
E′
max]. Herein, tE

′
min and tE

′
max 668

are the minimal and maximal local-edge latency and can 669

be obtained by max-SNR based and min-SNR based user 670

association, respectively. The optimal resource allocation can 671

be directly obtained according to Theorem 2, without multiple 672

L (λk,c, μk,c, γ, qk,c, an,k) = β
1
N

∑
k

∑
c

qk,c (1 − λk,c − μk,c) − γBU + (1 − β)
(

tE
′
+

1
E

tG
)

+
∑

k

∑
n

an,k

⎛
⎜⎝γ

M(
tE′ − bdL

fn

)
log2

(
1 +

pU
n hU

n,k

N0

) +
∑

c

(λk,c − μk,c) (pn (c) − p (c))

⎞
⎟⎠.

(28)

k∗
n = arg min

k∈Kn

⎧⎪⎨
⎪⎩γ∗ M(

tE′ − bdL

fn

)
log2

(
1 +

pU
n hU

n,k

N0

) +
∑

c

(
λ∗

k,c
− μ∗

k,c

)
(pn (c) − p (c))

⎫⎪⎬
⎪⎭ . (29)
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Algorithm 3 Primal-Dual Algorithm for Optimal User
Association
Input: tE

′
, pn (c), p (c), and other system parameters.

Output: User association, a∗
n,k, Lagrangian multipliers, λ∗

k,c,
μ∗

k,c, and γ∗.

1: Initialize λ
(0)
k,c, μ

(0)
k,c, γ(0), s = 1, and the step size ηλ, ημ,

and ηγ .
2: repeat
3: Obtain a∗

n,k and q∗k,c according to (44) and (45), respec-
tively.

4: Update Lagrangian multipliers as λ
(s)
k,c = λ

(s−1)
k,c +

ηλ
∂L

∂λk,c
, μ

(s)
k,c = μ

(s−1)
k,c + ημ

∂L
∂μk,c

, and γ(s) = γ(s−1) +

ηγ
∂L
∂γ , respectively.

5: s = s + 1.
6: until Convergence
7: Obtain the optimal user association a∗

n,k and Lagrangian
multipliers, λ∗

k,c, μ∗
k,c, and γ∗.

iterations between these two subproblems. Accordingly, the673

joint user association and resource allocation algorithm can be674

summarized in Algorithm 4. Note that the algorithm should675

be performed at each iteration due to the dynamic wireless676

environment and computing power of mobile devices, as well677

as the algorithm for the IID case.678

Algorithm 4 Joint User Association and Resource Allocation
Algorithm for the Non-IID Case

Input: The interval [tE
′

min, tE
′

max] and other system parameters.
Output: User association, a∗

n,k, wireless resource allocation,
l∗n,k and BU∗

k .
1: Initialize the best objective value I∗ with an enough large

value.
2: Initialize the optimal user association a∗

n,k.
3: Initialize tE

′
= tE

′
max.

4: repeat
5: Obtain the optimal user association an,k by solving the

problem (27) under tE
′
.

6: Obtain the objective value I and tE
′

with an,k.
7: Set tE

′
= tE

′ − δ. /* δ is a very small positive value.
*/

8: if I < I∗ then
9: I∗ = I .

10: a∗
n,k = an,k.

11: end if
12: until tE

′ ≤ tE
′

min

13: Obtain the optimal user association a∗
n,k.

14: Obtain the optimal wireless allocation l∗n,k and BU∗
k

according to Theorem 2 with a∗
n,k.

Regarding the branch-and-bound algorithm adopted to679

obtain the optimal user association under the given local-edge680

latency, the computational complexity is exponential in gen-681

eral, thereby cannot be implemented in practice. The interior682

point method [39] can be used to achieve the sub-optimal683

solution to (27) with a polynomial computational complexity,684

TABLE I

SIMULATION PARAMETERS

O
(
(KC + NK)3.5

J
)

, where J is the number of quanti- 685

zation bits. With the interior point method, a comparable 686

learning performance can also be obtained as demonstrated 687

in the simulations. Denote S as the number of required 688

steps in the one-dimensional search algorithm. Then, the 689

computational complexity for solving the problem (26) is 690

O
(
S (KC + NK)3.5

J
)

. 691

VI. EXPERIMENTS 692

In the simulations, we consider 4 BSs and 30 mobile devices 693

randomly distributed in system coverage. These devices have 694

one or multiple candidate BSs. Both large-scale fading and 695

small-scale fading are considered for the channels between the 696

mobile devices and BSs. The path loss model of large-scale 697

fading is 128.1 + 37.6 log10(d), and the small-scale fading 698

follows Rayleigh distribution. Two classic neural networks, 699

i.e., ResNet18 and MobileNet, and two classic datasets, i.e., 700

CIFAR10 and CIFAR100, are adopted to demonstrate the 701

effectiveness of the proposed policies, where 50,000 training 702

data and 10,000 test data are included in these datasets. The 703

computing power of mobile devices is randomly distributed 704

in the interval [2GHz, 3GHz]. Other major parameter values 705

used in experiments are listed in Table I. 706

A. IID Case 707

In this subsection, the learning performances, i.e., con- 708

vergence rate, learning accuracy, and learning latency, are 709

demonstrated to validate the effectiveness of Algorithm 2 710

with ResNet18 and CIFAR10. The training data are uniformly 711

allocated to all devices, ensuring that the training data of each 712

device are IID. Three baselines are simulated for performance 713

comparisons. 714

• Max-SNR, equal resource allocation: User association 715

is performed based on max-SNR while the wireless 716

resources are equally allocated to all devices and BSs. 717

• Random, optimal resource allocation: The user associa- 718

tion is randomly performed while the wireless resources 719

are optimally allocated. 720

• Random, equal resource allocation: The user association 721

is randomly performed and the wireless resources are 722

equally allocated. 723

Fig. 3 depicts the performance comparison among different 724

user association and resource allocation strategies in the IID 725
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Fig. 3. Performance comparison of different user association and resource
allocation strategies in the IID case.

case. From Fig. 3(a), the proposed algorithm can achieve a726

larger convergence rate compared to the baselines. It can be727

explained by that both user association and resource allocation728

can reduce the learning latency, thereby improving the conver-729

gence rate. In addition, the max-SNR based user association730

is the optimal solution in the IID case. Moreover, wireless731

resources should also be allocated according to the device732

computing power and channel state information. Moreover,733

all algorithms enjoy the same learning accuracy. The reason734

is that the user association does not affect the model error735

in the IID case. As for Fig. 3(b), the learning latency at one736

iteration decreases with the total uplink bandwidth. Since more737

wireless resources are allocated to mobile devices, the local738

communication latency can be reduced. With more wireless739

resources, the effect of user association and resource allocation740

becomes small since wireless communication is no longer the741

bottleneck.742

B. Non-IID Case743

This subsection demonstrates the performance of the pro-744

posed algorithm for the non-IID case. In this case, the training745

Fig. 4. Effect of data distribution on test accuracy.

Fig. 5. The optimization algorithm performance comparison.

data are equally allocated to all devices, but each device only 746

has partial classes of data. 747

1) Data Distribution: Fig. 4 presents the impact of data 748

distribution on the learning performance with ResNet18 and 749

CIFAR10. In the simulations, mobile devices uniformly select 750

c classes from the training data. Therefore, the number of 751

selected classes represents the data distribution distance from 752

the IID training data. The data distribution distance becomes 753

smaller when mobile devices select more classes. From the 754

figure, both convergence rate and learning accuracy increase 755

with the number of selected classes. The reason is that the 756

model error compared with the optimal model trained with 757

IID data decreases as the data distribution distance decreases. 758

From this result, the necessity of reducing the data distribution 759

distance using user association is corroborated. 760

2) Optimality: We examine the optimality of the proposed 761

Algorithm 4 with ResNet18 and CIFAR10. In addition to the 762

proposed optimal algorithm, three baselines are also imple- 763

mented for the performance comparison. 764

• Sub-optimal algorithm: The interior point method is 765

applied to obtain the user association by variable relax- 766

ation and rounding. In addition, the wireless resources 767

are optimally allocated. 768
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Fig. 6. Performance comparison of different user association strategies in the non-IID case.

• Equal resource allocation: The user association is769

obtained by joint data distribution and learning latency.770

However, the wireless resources are equally allocated.771

• Random selection: The devices randomly select a BS and772

the wireless resources are equally allocated.773

Fig. 5 illustrates the optimality of the proposed algorithm.774

From the curves, the proposed algorithm outperforms three775

baseline algorithms from both aspects of the convergence776

rate and learning accuracy. With the sub-optimal algorithm,777

the comparable learning performance can be achieved while778

significantly reducing the computational complexity. There-779

fore, the sub-optimal algorithm is more practical than the780

proposed optimal algorithm. In addition, the optimal wireless781

resource allocation can also significantly improve the learning782

performance in the non-IID case. Since the local computing783

power and channel state information differ from device to784

device in general, the latency for local communication can785

be reduced by the resource allocation.786

3) User Association Strategy: In this part, three user asso-787

ciation strategies are tested with two models (ResNet18 and788

MobileNet) and two datasets (CIFAR10 and CIFAR100),789

respectively. They are the proposed algorithm, the max-SNR790

based strategy, and the data distribution based strategy.791

• Max-SNR based strategy: Max-SNR based strategy is the792

optimal solution in the IID case. Mobile devices select793

the BS with the highest uplink channel SNR. Meanwhile,794

the optimal wireless resource allocation is executed for795

mobile devices and BSs.796

• Data distribution based strategy: The user association797

is obtained by only minimizing the data distribution798

distance while the uplink channel SNR is not considered. 799

Moreover, the wireless resources are optimally allocated. 800

Note that Max-SNR based strategy is the algorithm without 801

considering data distribution according to the analysis in IID 802

case, corresponding to [28]. The authors in [28] consider both 803

the learning latency and energy consumption. For comparison, 804

we ignore the energy consumption in this simulation. Data 805

distribution based strategy is the algorithm without considering 806

SNR, corresponding to [23]. 807

Fig. 6 describes the learning performance comparison of 808

different user association strategies in the non-IID case. From 809

the figure, the proposed algorithm can achieve a higher 810

convergence rate and learning accuracy compared with the 811

max-SNR based strategy. The reason behind is that the pro- 812

posed algorithm has a smaller model error compared with 813

the optimal model, thereby increasing the convergence rate 814

and learning accuracy. Moreover, as compared against the 815

data distribution based strategy, a faster convergence rate 816

and a comparable learning accuracy can be obtained by the 817

proposed algorithm. It is because that the proposed algorithm 818

can reduce the learning latency while maintaining a small 819

model error by jointly minimizing the total data distribution 820

distance and learning latency. Therefore, different from the 821

traditional cellular networks and HFL, both the uplink channel 822

SNR and data distribution should be incorporated into user 823

association in wireless HFL. 824

4) The Weight Coefficient β: Fig. 7 shows the impact of the 825

weight coefficient selection on the learning performance with 826

ResNet18 and CIFAR10. From the figure, the larger the β is, 827

the closer the proposed algorithm is to the data distribution 828
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Fig. 7. Effect of the weight β on the learning performance.

based strategy. Conversely, similar learning performance to829

the max-SNR strategy is achieved under a small β. In other830

words, the proposed algorithm reduces to the max-SNR based831

strategy under a sufficiently small β and the data distribution832

based strategy under a sufficiently large β. The results tell that833

properly setting β can well balance the total data distribution834

distance and the learning latency. To achieve a better learning835

performance, the weight coefficient β should be set to ensure836

that the total data distribution distance and the learning latency837

are within an order of magnitude.838

VII. CONCLUSION839

In this paper, we investigate user association and resource840

allocation in wireless HFL taking into account the imbalanced841

data distribution and traffic load. First, we derive the model842

error and learning latency and analyze the effect of the data843

distribution, user association, and wireless resource allocation844

on the learning performance. Then, the user association and845

resource allocation are optimized for both the IID and non-IID846

cases to improve the learning performance. For the IID case,847

max-SNR based user association achieves the optimal learning848

latency. Meanwhile, the wireless resources should be optimally849

allocated according to both local computing power and uplink850

channel SNR. For the non-IID case, both the data distribution851

distance and learning latency are minimized to improve the852

learning performance. Different from the IID case, the optimal853

user association is determined by both the data distribution854

and uplink channel SNR. Furthermore, wireless resources855

are optimally allocated for mobile devices according to both856

local computing power and uplink channel SNR. Finally, 857

extensive simulation results demonstrate the effectiveness of 858

the proposed algorithms. 859

APPENDIX A 860

PROOF OF THEOREM 1 861

According to the definition of wG
mE and w∗

mE , we have 862

(30), shown at the bottom of the page, where pk (c) is the 863

data distribution of BS k and (a) holds since the local-edge 864

aggregation is performed at every local iteration, which has 865

been proved in [23]. Then, the model error can be further 866

written as 867∥∥wG
mE − w∗

mE

∥∥ 868

≤
∥∥∥∥∥∥
∑

k

nk∑
k

nk
wB,k

mE−1−w∗
mE−1

∥∥∥∥∥∥ 869

+ α‖
∑

k

nk∑
k

nk

∑
c

pk (c)∇wEx|y(c)

{
log
(
HwB,k

mE−1
(x)
)}

870

−
∑

c

p (c)∇wEx|y(c)

{
log
(
Hw∗

mE−1
(x)
)}

‖ 871

≤
∑

k

nk∑
k

nk

∥∥∥wB,k
mE−1 − w∗

mE−1

∥∥∥ 872

+ ‖α
∑

k

nk∑
k

nk

∑
c

pk (c)∇wEx|y(c)

{
log
(
HwB,k

mE−1
(x)
)}

873

−α
∑

k

nk∑
k

nk

∑
c

p (c)∇wEx|y(c)

{
log
(
HwB,k

mE−1
(x)
)}

‖ 874

+ ‖α
∑

k

nk∑
k

nk

∑
c

p (c)∇wEx|y(c)

{
log
(
HwB,k

mE−1
(x)
)}

875

−α
∑

k

nk∑
k

nk

∑
c

p (c)∇wEx|y(c)

{
log
(
Hw∗

mE−1
(x)
)}

‖. 876

(31) 877

With the assumptions on the gradient smoothness and bounded 878

gradient, the model error can be further written as 879∥∥wG
mE − w∗

mE

∥∥ 880

≤
∑

k

nk∑
k

nk

(
1 + α

∑
c

p (c)L (c)

)∥∥∥wB,k
mE−1 − w∗

mE−1

∥∥∥ 881

+ αAmE−1

∑
k

nk∑
k

nk

∑
c

∥∥pk (c) − p (c)
∥∥. (32) 882

∥∥wG
mE − w∗

mE

∥∥ =

∥∥∥∥∥∥
∑

k

nk∑
k

nk
wB,k

mE − w∗
mE

∥∥∥∥∥∥
(a)
= ||

∑
k

nk∑
k

nk

(
wB,k

mE−1 + α
∑

c

pk (c)∇wEx|y(c)

{
log
(
HwB,k

mE−1
(x)
)})

−
(

w∗
mE−1 + α

∑
c

p (c)∇wEx|y(c)

{
log
(
Hw∗

mE−1
(x)
)})

||. (30)
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For the first term in (32), we have883 ∥∥∥wB,k
mE−1 − w∗

mE−1

∥∥∥884

≤
∥∥∥wB,k

mE−2 − w∗
mE−2

∥∥∥885

+ α‖
∑

c

pk (c)∇wEx|y(c)

{
log
(
HwB,k

mE−2
(x)
)}

886

−
∑

c

p (c)∇wEx|y(c)

{
log
(
Hw∗

mE−2
(x)
)}

‖887

≤
(

1 + α
∑

c

p (c)L (c)

)∥∥∥wB,k
mE−2 − w∗

mE−2

∥∥∥888

+ αAmE−2

∑
c

∥∥pk (c) − p (c)
∥∥. (33)889

By substituting (33) to the first term in (32) until the890

(m − 1)E-th iteration, the model error after one global itera-891

tion can be written as (34), which ends the proof.892

APPENDIX B893

PROOF OF LEMMA 1894

Define un,k = ln,kBU
k . Then the uplink data rate rU

n,k and895

the constraints (16a), (16b) can be rewritten as896

rU
n,k = un,klog2

(
1 +

pU
n hU

n,k

N0

)
, (35)897

and898 ∑
n

∑
k

an,kun,k ≤ BU, (36)899

respectively. Accordingly, the problem (17) becomes convex900

since f (x) = 1
x , x > 0 is convex, which ends the proof.901

APPENDIX C902

PROOF OF THEOREM 2903

According to the Lagrangian multiplier904

method, the Lagrangian function of the problem905

(17) can be constructed as 906

L
(
un,k, ηn,k, ν, tE, un,k

)
= tE 907

+
∑

n

∑
k

ηn,k

⎛
⎜⎝an,k

⎛
⎜⎝bdL

fn
+

M

un,klog2

(
1+

pU
n hU

n,k

N0

)
⎞
⎟⎠−tE

⎞
⎟⎠ 908

+ ν

(∑
n

∑
k

an,kun,k − BU

)
, (37) 909

where ηn,k and ν are Lagrangian multipliers related to the con- 910

straints (17a) and (36), respectively. Then, the corresponding 911

Karush-Kuhn-Tucker (KKT) conditions are 912

∂L

∂tE
= 1 −

∑
n

∑
k

ηn,k = 0, n ∈ N , k ∈ K, (38) 913

∂L

∂un,k
= an,kν − an,kηn,k

M

u2
n,klog2

(
1 +

pU
n hU

n,k

N0

) = 0, 914

n ∈ N , k ∈ K, (39) 915

ηn,k

⎛
⎜⎝an,k

⎛
⎜⎝bdL

fn
+

M

un,klog2

(
1 +

pU
n hU

n,k

N0

)
⎞
⎟⎠− tE

⎞
⎟⎠ = 0, 916

n ∈ N , k ∈ K, (40) 917

ν

(∑
n

∑
k

an,kun,k − BU

)
= 0, (41) 918

ηn,k ≥ 0, ν ≥ 0. (42) 919

The condition in (38) shows that there exists ηn,k 920

that satisfies ηn,k �= 0. With this conclusion, 921

ν �= 0 can be derived according to (39), thereby 922

ηn,k �= 0, ∀ {n, k|an,k = 1}. Then, we have 923

an,k

⎛
⎜⎝ bdL

fn
+ M

un,klog2

�
1+

pU
n hU

n,k
N0

�
⎞
⎟⎠ = tE, ∀ {n, k|an,k = 1} 924

and
∑
n

∑
k

an,kun,k = BU according to the conditions in (40) 925

∥∥wG
mE − w∗

mE

∥∥ ≤
(
1 + α

∑
p (c)L (c)

)E ∥∥∥wG
(m−1)E − w∗

(m−1)E

∥∥∥
+ α

⎛
⎝E−1∑

i=0

AmE−1−i

(
1 + α

∑
c

p (c)L (c)

)i
⎞
⎠ 1

N

∑
k

∑
c

∥∥∥∥∥ ∑
n∈Nk

an,k (pn (c) − p (c))

∥∥∥∥∥︸ ︷︷ ︸
effect of data distribution imbalance

. (34)

min
{qk,c,an,k}

L (λk,c, μk,c, γ) = β
1
N

∑
k

∑
c

qk,c (1 − λk,c − μk,c) − γBU + (1 − β)
(

tE
′
+

1
E

tG
)

+
∑

k

∑
n

an,k

⎛
⎜⎝γ

M(
tE′ − bdL

fn

)
log2

(
1 +

pU
n hU

n,k

N0

) +
∑

c

(λk,c − μk,c) (pn (c) − p (c))

⎞
⎟⎠. (43)

subject to
∑

k∈Kn

an,k = 1, (43a)

0 ≤ an,k ≤ 1. (43b)
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a∗
n,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, k = argmin
k

⎛
⎜⎝γ

M(
tE′ − bdL

fn

)
log2

(
1 +

pU
n hU

n,k

N0

) +
∑

c

(λk,c − μk,c) (pn (c) − p (c))

⎞
⎟⎠,

0, otherwise.

(44)

q∗k,c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

(∑
n

a∗
n,k (pn (c) − p (c)),

∑
n

a∗
n,k (p (c) − pn (c))

)
, 1 − λk,c − μk,c ≥ 0,

max

(∑
n

a∗
n,k (pn (c) − p (c)),

∑
n

a∗
n,k (p (c) − pn (c))

)
, 1 − λk,c − μk,c < 0.

(45)

and (41). Accordingly, the expression in (20) can be obtained.926

With the condition
∑
k

an,kun,k = BU
k , the optimal solutions927

of ln,k and BU
k can also be derived as in (18) and (19), which928

ends the proof.929

APPENDIX D930

PROOF OF LEMMA 2931

As analyzed in Section V.B, we transform the problem in932

(27) into (28) by the Lagrangian relaxation method, as (43),933

shown at the bottom of the previous page. Under the given934

λk,c, μk,c, and γ, optimal solutions of a∗
n,k and q∗k,c can be935

easily obtained as (44) and (45), shown at the top of the page.936

Therefore, with optimal Lagrangian multipliers, λ∗
k,c, μ∗

k,c,937

and γ∗, Lemma 2 can be derived from (44), which ends the938

proof.939
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