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Abstract—1In this work, hierarchical federated learning (HFL)
over wireless multi-cell networks is proposed for large-scale
model training while preserving data privacy. However, the
imbalanced data distribution has a significant impact on the
convergence rate and learning accuracy. In addition, a large
learning latency is incurred due to the traffic load imbalance
among base stations (BSs) and limited wireless resources. To cope
with these challenges, we first provide an analysis of the
model error and learning latency in wireless HFL. Then, joint
user association and wireless resource allocation algorithms are
investigated under independent identically distributed (1ID) and
non-IID training data, respectively. For the IID case, a learning
latency aware strategy is designed to minimize the learning
latency by optimizing user association and wireless resource
allocation, where a mobile device selects the BS with the maximal
uplink channel signal-to-noise ratio (SNR). For the non-IID case,
the total data distribution distance and learning latency are
jointly minimized to achieve the optimal user association and
resource allocation. The results show that both data distribution
and uplink channel SNR should be taken into consideration for
user association in the non-IID case. Finally, the effectiveness of
the proposed algorithms are demonstrated by the simulations.

Index Terms— User association, hierarchical federated learn-
ing, non-IID, data distribution, learning latency.

I. INTRODUCTION
A. Background

ECENTLY, artificial intelligence has played an impor-
tance role in many emerging applications, such as auto-
matic driving, face and voice recognition, etc. With massive
amounts of data, neural networks can be trained in a central-
ized way to support these applications [1]. As the data privacy
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and security concerns increase, federated learning (FL) has
been proposed for distributed model training [2]. Under FL,
clients exchange their model parameters with the edge server
rather than uploading raw training data. Wireless FL has also
been applied in various applications [3], [4], where mobile
devices perform local model updates and transmit the model
parameters to the base station (BS).

Since learning is based on single BS connectivity, which
can be limited, calling for hierarchical federated learning
(HFL) to fully exploit the training data of mobile devices
connected to multiple BSs. After multiple local model updates
at each BS, the cloud server aggregates the edge model
from BSs to improve the learning performance. As a result,
wireless HFL can achieve higher communication efficiency
since mobile devices can obtain the global model without
directly exchanging model parameters with the cloud server.

However, a large learning latency is still incurred due to the
traffic load imbalance and limited wireless resource in wireless
HFL. In general, mobile devices are able to communicate
with multiple BSs. If more mobile devices are associated with
a BS, less wireless resources are allocated to each mobile
device, resulting in an increase in communication latency.
Then, the global latency will increase owing to the edge
model aggregation. In addition, the learning performance, i.e.,
convergence rate and learning accuracy, is affected by the data
distribution imbalance, which may differ from device to device
and the overall data distribution of the BS will be highly
imbalanced with an improper user association. Therefore, it is
critical to develop user association and resource allocation
algorithms to improve the learning performance and reduce
learning latency as well.

B. Related Works

There have been extensive efforts to analyze and improve
the learning performance for both single-layer FL and HFL.

1) Single-Layer Federated Learning: Many existing works
have been focused on single-layer FL. Regarding the com-
putation and communication bottlenecks in a single-layer FL,
various strategies have been designed to reduce the learning
latency and improve the learning performance [5]. In [6]-[9],
authors have applied network pruning and gradient compres-
sion to reduce latency for local model computation and model
uploading. By exploiting the characteristics of the wireless
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channel, over-the-air computation has been adopted for model
aggregation in [10], [11] to improve the spectrum efficiency of
wireless FL. Considering limited wireless resources, authors
in [12] have proposed a solution based on selecting a part
of devices for model aggregation during each iteration. Dif-
ferent scheduling policies have been designed in [13]-[15]
to improve the convergence rate and reduce the commu-
nication latency. Moreover, the unreliable wireless channel
has been taken into consideration [16]. The convergence rate
with transmission error has been analyzed and the wireless
resource allocation has been optimized to improve the learning
performance.

With respect to the data distribution, many works have been
devoted to analyzing the learning performance of single-layer
FL under non-independent identically distributed (non-1ID)
training data. In [17], the effect of non-IID training data on
the learning performance has been evaluated. By analyzing
the model error compared with the model trained in a cen-
tralized way, the learning performance is determined by the
data distribution distance between the client and the whole
population. The convergence rate has been analyzed in [18]
for FL with non-IID data. The authors in [19] have proposed
a deep Q-learning based strategy to select a subset of devices
in terms of uploaded weights in non-IID scenarios. By this
means, the convergence can be speeded up as compared with
the conventional federated averaging (FedAvg) algorithm.

2) Hierarchical Federated Learning: To train models on a
large scale, HFL has been proposed on the basis of a single-
layer FL. In [20], the authors have shown that the commu-
nication rounds can be reduced by hierarchical clustering of
local updates on non-IID training data. The convergence of
multi-level local stochastic gradient descent (SGD) on convex
and non-convex objective functions has been analyzed for HFL
in [21] and [22]. In [23] and [24], the user-edge assignment
problem has been proposed for HFL with non-IID training data
to improve the learning performance. By analyzing the effect
of data distribution on the learning performance, the user-edge
assignment has been optimized. However, the learning latency
has not been considered in the above works.

For wireless HFL, the authors in [25] and [26] have
deployed HFL in multi-layer wireless network to reduce the
communication overhead and long latency compared with
wireless single-layer FL. A client-edge-cloud HFL system has
been proposed in [26], where the edge servers perform partial
model aggregation. The proposed system achieves an enhanced
learning performance in different data distribution scenarios.
Similarly, fog learning has been proposed in [27] to distribute
the multi-layer learning architecture over heterogenous wire-
less networks. A joint resource allocation and edge association
problem has been formulated in [28] to improve both the
communication efficiency and energy efficiency. Nevertheless,
the effect of user association on the convergence rate or
learning accuracy has not been considered.

C. Motivations and Contributions

Although there exist several works investigating wireless
HFL, two technical challenges remain unsolved. On the one
hand, how to characterize the effect of data distribution and
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traffic load imbalance on the learning performance when
examining HFL in wireless multi-cell networks? For wireless
HFL, the convergence rate, learning accuracy, and learning
latency are all important performance indicators that depend
on data distribution and traffic load imbalance. However, it is
difficult to mathematically derive the effect of such analysis.
On the other hand, how to develop user association and
resource allocation schemes to improve the learning per-
formance? Different from traditional cellular networks, user
association and resource allocation depend on more factors,
such as local computing power, channel state information,
and data distribution. Thus, it is challenging to develop the
optimal scheme for wireless HFL. To this end, in this paper,
we analyze the learning performance, i.e., model error and
learning latency, and derive the impact of user association and
resource allocation on the learning performance. Moreover,
the local computing power, data distribution, and channel
state information are jointly accounted for when designing the
optimal user association and resource allocation algorithms for
wireless HFL in both the IID and non-IID cases. The main
contributions from our work are summarized as follows.

e We study the problem of joint user association and
wireless resource allocation in wireless HFL under both
IID and non-IID cases, respectively. First, we analyze
the learning performance, i.e., model error and learning
latency, and characterize the impact of user association
and resource allocation on the learning performance.
On the one hand, the upper bound of model error is
dependent on the data distribution and user association.
On the other hand, the learning latency consisting of two
parts (local-edge stage and edge-cloud stage), which is
affected by the user association and resource allocation,
is analyzed.

o For the IID case, the optimal user association and
resource allocation are obtained by minimizing the learn-
ing latency. The results show that the optimal user asso-
ciation is the same as in a traditional multi-cell network,
where mobile devices select the BS with the maximal
uplink channel signal-to-noise ratio (SNR). In addition,
wireless resources are allocated in accordance with both
local computing power and uplink channel SNR, which
is different from that in traditional throughput-oriented
cellular networks.

o For the non-IID case, the weighted sum of total data
distribution distance and learning latency is minimized
to achieve the optimal user association and resource
allocation. Different from the IID case, the solutions
account for both data distribution distance and uplink
channel SNR for the user association. The proposed user
association policy is meaningful from the perspective of
demonstrating the importance of rethinking user associa-
tion for wireless HFL. Finally, numerical simulations are
implemented to validate the effectiveness of the proposed
algorithms.

D. Organization

The rest of the paper is organized as follows. In Section II,
we introduce the system model of wireless HFL. Then, the
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Fig. 1. The wireless HFL system model.

model error and learning latency are analyzed in Section III.
For the IID case, the learning latency aware strategy is
designed in Section IV. In Section V, we jointly minimize the
total data distribution distance and learning latency to obtain
the user association and resource allocation for the non-IID
case. Experimental results are presented to verify the proposed
algorithm in Section VI. Finally, Section VII concludes the
whole paper.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a wireless HFL scenario
where multiple BSs and multiple mobile devices (e.g., mobile
phone, laptop, and pad) collaboratively participate in training
a neural network model, such as image classification or
recognition. There exist overlapping areas among BSs, where
mobile devices are uniformly distributed. Therefore, some
mobile devices are able to access multiple BSs simultaneously.
During model training, each device selects one BS to exchange
the model parameters. Each BS sends the edge model to the
cloud server for global model aggregation.

The number of classes in the classification or recognition
task is C, for which we denote the set C = {1,2,...,C}. Let
K={1,2,...,K} and N = {1,2,..., N} denote the sets
of BS and mobile devices, respectively. There are [N mobile
devices located in the coverage of BS k, the set of which is
denoted as N}. In addition, for the device n, the available
BSs are denoted by a set K,,. We adopt the indicator variable
ank € {0,1} to represent the association between a BS % and
a device n. If a,, 1, = 1, the device n is served by the BS £ to
support the local model update, and vice versa. Each mobile
device has the same amount of training data [29], denoted as
D,,. This assumption is made for the convenience of analysis.
The proposed policies and algorithms are still applicable for
these general cases where devices have different amounts of
training data.

A. Hierarchical Federated Learning Model

For any neural network, model training aims to find an
optimal function H,, : X — ), where X is the training data,
Y is the ground-truth label, and w represents the model para-
meter. By minimizing the distance, f (H (X),)), between
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Fig. 2. Synchronous model aggregation in wireless HFL.

the network output H,, (') and the label ), the optimal model

*

w* can be obtained. Therefore, the model training can be
formulated as
. 1
min F () = 17 > f(Huw(@),y). (1)
rzeX yey

When the model is trained in a centralized way, SGD can
be adopted. Similarly, FedSGD and FedAvg are proposed
for FL [30]. Model parameters or gradients are exchanged
between mobile devices and the edge server for model aggre-
gation and update. Specifically, for FedSGD, the model aggre-
gation is performed at each iteration. As for FedAvg, the
model aggregation occurs after multiple local model updates.
Without loss of generality, we consider a two-layer FL in this
work, as in Fig. 1. The global model aggregation is divided
into two parts: local-edge model aggregation and edge-cloud
model aggregation, as shown in Fig. 2. Both FedSGD and
FedAvg are adopted to obtain the global model. Since BSs
are closer to mobile devices than the cloud server in general,
the communication cost and transmission latency are low.
Therefore, to facilitate the local model update, we use FedSGD
to aggregate the local model at each iteration. Unlike local-
edge aggregation, FedAvg is adopted for edge-cloud model
aggregation to avoid frequent communication between the BS
and core network. After F local iterations, all BSs upload the
edge model to the cloud server. A similar HFL model is also
adopted in [23], [25], [28].

1) Local-Edge Model Aggregation: For each local iteration,
mobile devices should upload the local model parameters to
its associated BS after one round local model update. Then,
the BS aggregates the local model and broadcasts the edge
model to its associated mobile devices.

Denote the local model of device n at the mE-th local
iteration as w];n% Note that m represents the number of global
iterations. Hence, the corresponding number of local iterations
is mE. The local model update can be written as

0 0 9 T o (s 2}
(2)

where « is the learning rate, p™ (c) is the data distribution of
device n on the class ¢, and V,Ey (o) ilog (Hwa{g (x))}
is the gradient calculated based on a batch of D,,. Note that
there are many ways to evaluate the data distribution, such
as feature distribution and label distribution [31], [32]. In this
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work, we mainly adopt the label distribution. Thus, the data
distribution of device n is defined as the proportion of each
class in the dataset D,,, which is widely adopted in [17]-[19].
Specifically, denote D,, as the data volume owned by device
n, and d, . as the data volume of class c. Then, the data
distribution can be written as

() =55 3)

In this work, we concentrate on the popular learning task,
i.e., classification task, which adopts cross entropy as the
loss function in general. Other loss functions for regression
problems, such as MSE, are not considered in this work. For
the cross entropy with regularizer, our proposed algorithm
can also be applicable. Moreover, in practical HFL where
the gradient cannot be accurately derived, the learning perfor-
mance degrades compared with the accurate case. However,
the effect of data distribution remains unchanged and our
proposal can still be applied. Denote the edge model of BS &
at the (mE + 1)-th iteration as wi’g 41~ Then, the edge model
average aggregation can be written as

Wi = Z U W, )
nENk
where ny, is the traffic load of BS k and ny = > ap.
neN
After that, the local model w}n% 41 is updated with the edge

B
model wmg y1

2) Edge-Cloud Model Aggregation: Denote the global
model at the ((m+1)E)-th local iteration as w(, )y
According to FedAvg, the global model aggregation can be
expressed as

1 ,
G B,k
Wimt+1)E = D an’w(m-i-l)E' )
P
For the single-connectivity scenario where each mobile device
can connect only one BS, > ny = N. In summary, the

k
one global iteration training process for HFL is presented in
Algorithm 1.

Algorithm 1 Hierarchical Federated Learning Algorithm

From global iteration m to iteration (m + 1):
1: for local iteration : = 1 : E do
2. Each device obtains the local model w"
(2).
3. The local model w®
according to (4).
Each device updates the local model with wijg i
5: end for
6: The global model w&
server based on (5).
7: The local and edge model are updated with w?m 1B

mEH based on

mEH can be aggregated by each BS

(mt1)E Can be achieved by the cloud

B. Transmission Model

In wireless HFL, the model parameters are exchanged
among mobile devices, BSs, and the cloud server. For
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local-edge model aggregation, the model parameters are trans-
mitted over the wireless channels. We assume that BSs use
multiple orthogonal narrowband channels. Thus, the inter-
ference among BSs is ignored.! Specifically, let BY denote
the uplink bandwidth planned for the BS k. In each BS,
mobile devices can share the wireless channel for uploading
local model with a multiple access mechanism. Without loss
of generality, orthogonal frequency-division multiple access
(OFDMA) is adopted in this paper. Therefore, the uplink data
rate of device n associated with the BS £ is

nk‘ = Qn, kln kBk Rnkv (6)

where [,, ;, is the uplink bandwidth fraction allocated for the
device n and RUk is the uplink spectrum efficiency. The

efficiency is Ry, = log, (1 +pihy ./ No), where p)

the transmission power of the device n, h,, , is the uplink
channel power gain of the device n, and Ny is the channel
noise variance [28], [34].

Regarding the edge model broadcasting, all available down-
link channels can be used by the BS for broadcasting the
edge model to its associated devices. Compared with the local
model uploading, the latency for edge model broadcasting can
be ignored since the BSs have adequate transmission power
and broadcast bandwidth in general [28], [35], [36]. Hence,
the analysis for the downlink data rate is omitted in this work.

For edge-cloud model aggregation, the BSs and cloud
server exchange the global model over the wired or wireless
backhaul. Denote rj, as the uplink data rate of the BS k. The
cloud server can broadcast the global model to the BSs over all
bandwidth of the backhaul. Owing to the sufficient transmis-
sion resource for global model broadcasting, the latency for
global model broadcasting is neglected and the corresponding
data rate analysis is omitted as well.

III. LEARNING PERFORMANCE ANALYSIS

In this section, we will analyze the learning performance,
i.e., model error and learning latency, taking into account the
effect of the imbalanced data distribution and traffic load. Note
that the analysis on the model error and learning latency is
applicable for both the IID and non-IID cases.

A. Model Error Analysis

Regarding the data distribution imbalance, the model error
compared with the optimal model trained with IID data in a
centralized way can be adopted to evaluate the convergence
rate and learning accuracy in wireless HFL system [17],
[18], [23]. Denote the optimal model at the (mFE)-th iter-
ation as w;, . Then, the model error can be expressed as
|wS gz — w}, |- The optimal model can be also derived by

'We make this assumption to derive the optimal wireless resource allocation
and user association strategy in closed-form. However, our work can be still
extended into the more general scenario with frequency reuse by exploring
these existing channel reuse and interference management techniques in
multi-cell networks [33].
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the gradient descent method, as

W, g = UMm71+a§:P \% Emmq{bg@ﬁ%E,J$D}
(7

where p(c) is the data distribution of IID training data.
Since we adopt label distribution to evaluate the data dis-
tribution, having the IID training data means that each
class has a uniform distribution for a typical classification
task [17], [31]. In particular, p (c) = %,c € C. Therefore,
p(c) is determined by the specific learning task, without
the need of aggregating the local data. The smaller the
model error is, the better the learning performance will be.
By analyzing the model error, the effect of user association
and data distribution on the learning performance can be
derived. To analyze the model error, the following assumptions
are made.
o (Gradient smoothness) The gradient
VwEq ) {log (Hw (z))} is L (c)-Lipschitz smooth,
which can be written as

||V'wE:r\y(c) {1Og (H’w ( ))} \% Ex|y(c) {log }H
< L(c) lwi — w2, (®)

where L (c) is the Lipschitz constant.
o (Bounded {gradlent) The mE-th

VwEm|y(c) 1og (Hwig (l‘))
expressed as

ooz foe g )} < s

iteration gradient
} is bounded, which can be

Then, the upper bound of model error compared with the
optimal model after one global iteration can be given in the
following theorem.

Theorem 1: For the wireless HFL with N mobile devices,
K BSs, C classes, and E synchronization iterations, the upper
bound of the model error between the global model and the
optimal model after one global iteration can be expressed as
(10), shown at the bottom of the page, where p (c) is the data
distribution of IID training data.

Proof: Please refer to Appendix A. [ ]

Remark 1: From the theorem, the upper bound of the model
error increases with the total data distribution distance from

the IID training data, % Y0 Y ank (p™(e) —p(e))]-
k ¢ |[neEN

Specifically, a large total data distribution distance causes
a low convergence rate and learning accuracy. In addition,
user association has a significant impact on the total data
distribution distance. Due to the data distribution imbalance
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among mobile devices, a large total data distribution distance
may be caused with an improper user association. Therefore,
user association should be adjusted to alleviate the effect
of data distribution imbalance by reducing the total data
distribution distance. In particular, when the training data of
mobile devices are IID, the total distribution distance is zero
and user association will not affect the convergence rate and
learning accuracy.

B. Learning Latency Analysis

Due to the limited wireless resources, the learning latency
is the main bottleneck of wireless HFL. We adopt the syn-
chronous model aggregation mechanism in both the local-edge
aggregation stage and the edge-cloud aggregation stage,
as described in Fig. 2.

1) Local-Edge Aggregation Stage: At this stage, the learn-
ing latency is composed of two parts: the latency for local
model computation and the latency for local model uploading.
Since the edge server equipped at the BS has in general rich
computing resources, the latency for edge model aggregation
is ignored in this paper.

o Local model computation: The latency for local model

computation can be expressed as

bd
th = ,
fn

where b is the batchsize, d“ is the CPU cycle for one
training data calculation, including both forward and back
propagation, and f,, is the n-th device’s computing power
evaluated by the CPU frequency. Here, d" is determined
by the learning task and the computing power of mobile
device.

o Local model uploading: Denote the data volume of the
model parameters as M. Then, the latency for model
uploading from device n to BS k can be expressed as

Y

M
bk = o~ (12)
n,k

Due to the synchronous model aggregation mechanism, the
latency at the local-edge stage is determined by the maximum
latency among all devices. Accordingly, the learning latency
at the local-edge stage can be written as

t® = max {ank (th +taz)}- (13)

2) Edge-Cloud Aggregation Stage: The latency at this stage
is mainly determined by the edge model uploading. Due to
the high computing power of the cloud server, the latency for

|wS 5 — whp| < (1+aZp(c)L

G *
(C)) Hw(m—l)E _w(m—l)EH

E-1
+ Z AmE_l_i<1 —l—aZp(c)L
=0 c

E Qn, k

nENk

o) |4y b0 -p(@)

c

’. (10)

effect of data distribution imbalance
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global model aggregation is neglected as well. The latency for
the edge model uploading can be expressed as

M
S :max{—}.
Tk

To facilitate the analysis of learning latency at each iter-
ation, we divide one global iteration into E local iterations.
Therefore, the learning latency of one local iteration can be
written as

(14)

E, l.a

T=1"+ Et .

A similar learning latency analysis method is also adopted

in [25]. From the latency analysis, local uplink transmission

is the main bottleneck. Due to the limited wireless resource

for each BS, a large transmission latency will be caused if

the traffic load is unevenly distributed across BSs. Thus, user

association and wireless resource allocation should be care-

fully designed to mitigate the impact of traffic load imbalance,
and eventually reduce the overall learning latency.

According to the learning performance analysis, the effect
of user association and resource allocation on the learning
performance differs from the IID case to the non-IID case.
When the training data of mobile device is IID, user associa-
tion and resource allocation only influence the learning latency
without impacting the model error. However, both model error
and learning latency are determined by user association and
resource allocation under non-IID data.

5)

IV. OPTIMAL USER ASSOCIATION AND RESOURCE
ALLOCATION: THE IID CASE

In this section, an optimization problem is first formulated
for wireless HFL with IID data to improve the learning
latency. Then, the optimal wireless resource allocation and user
association algorithm is developed.

A. Problem Formulation

As analyzed above, improper user association and resource
allocation will cause a large learning latency while not affect-
ing the model error in the IID case. Therefore, the learning
latency can be minimized to improve the learning performance
of wireless HFL with IID data by jointly optimizing user
association and resource allocation while the effect of HFL
convergence is not considered in this problem. The problem
can be mathematically formulated as

min (16)
{an kiln. k> k}
subject to Z anilnr <1, kek, (16a)
neNg
> Bl <BY, (16b)
k
D ank=1, (16¢)
ke,
ank € {0, 1}, (16d)

where BY is the total uplink bandwidth for all BSs, (16a) and
(16b) are the constraints related to the resource allocation,
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and (16¢) and (16d) are the constraints on user association.
It is obvious that this problem is a mixed integer nonlinear
programming (MINLP) problem. Thus, the optimal solution
cannot be directly obtained in general. Fortunately, this prob-
lem can be decomposed into two subproblems by separating
integer variables from continuous variables and by performing
wireless resource allocation and user association, respectively.

B. Optimal Wireless Resource Allocation

Given the user association a,, ,n € N, k € K, the problem
(16) is transformed into minimizing the learning latency at the
local-edge stage according to the learning latency analysis,
which can be written as

mm & (17
{ln.x,BJ tP}
subject to (16a), (16b), and
bd™ M
k| 7+ | <t% neN, kek.
fn rn,k’

(17a)

As in Lemma 1 below, the above problem is convex.

Lemma 1: The problem in (17) is a convex optimization
problem.

Proof: Please refer to Appendix B. [ ]

Accordingly, the optimal resource allocation can be derived
as in the following theorem.

Theorem 2: Given the user association a, ,n € N,k €
K, the optimal resource allocation 1}, , and BY* can be
written as

M

U U )
) BU*logQ (1 + P by k)

I = Gk (18)
(tE* _

and

19)

= Z An, K M

UpU )
neN, (tE*_b}i_:‘)logQ( +va 'nk)

respectively, where t** is the optimal learning latency at the
local-edge stage and can be obtained from

M
Z Z Qp
P (tE*—bJZLﬂL)lg(l—i—p” ‘)
Proof: Please refer to Appendix C. |
Remark 2: From Theorem 2, resource allocation for a given
device is determined by both the local computing power
and channel SNR. Mobile device with a high computing
power or uplink channel SNR will be allocated with less
wireless resources. Note that this resource allocation policy
is different from that in traditional throughput-oriented cellu-
lar networks. Furthermore, to reduce learning latency, more
wireless resources should be allocated to those devices with
a low computing power or uplink channel SNR. In addition,
user-balancing constraint is not necessary here since we
assume that resource allocation is performed among different
BSs. As a result, load balance can be achieved by resource
allocation among BSs. For the BSs associated with more
mobile devices, more uplink channels should be reserved for
these BSs to reduce the local model uploading latency.

= BY. (20)
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C. Optimal User Association

With the optimal wireless resource allocation, the problem
in (17) can be rewritten as

{tEEn;n }tE*, (1)
sAn ke
subject to (16¢), (16d), and
< BY. (2la)

zk:zn:an’k( M( pE{th) -

L ) p .
{0 — b log, (14 Digne

Note that the problem in (21) is equivalent to the problem in
(16) since we just replace the optimal resource allocation with
Q.1 and tB*. The optimal user association can be achieved by
the following theorem.

Theorem 3: For wireless HFL with IID training data, the
optimal user association of mobile device n is

pih,
k:=argmax{1og2 (1—!— ’k>}.
kEKn No

Proof: Based on (16c¢) and (16d), (21a) can be rewritten

(22)

as
M
Z Ty < BY. (23)
n (tE* - f ) > an, rlog, (1 4+ P o, ")
To  obtain the minimal  learning  latency  tP¥,

Z an,klog, (1 + Pulin ’“) should be the maximum. Therefore,

the device n should be associated with the BS with the highest
uplink channel SNR, which ends the proof. [ ]

Remark 3: From Theorem 3, the optimal user association
strategy for wireless HFL with IID training data is the same
with that in traditional wireless networks. The uplink channel
SNR is the most important factor for the user association.
Different from the scheduling problem in wireless single-layer
FL, the local computing power doesn’t need to be considered
in the user association.

The optimal user association and wireless resource allo-
cation for HFL with IID training data is concluded in
Algorithm 2. Note that different from the traditional iterative
algorithm, we decompose the problem by replacing the optimal
resource allocation with a,, j, and tE* . Therefore, the optimal
solutions can be directly obtained without multiple iterations
between these two subproblems and remain the same with that
of original problem in (16).

V. OPTIMAL USER ASSOCIATION AND RESOURCE
ALLOCATION: THE NON-IID CASE

In this section, an optimization problem is formulated to
improve the learning performance by considering both the
total data distribution distance and learning latency. After that,
an algorithm for optimal wireless resource allocation and user
association is developed.

A. Problem Formulation

According to the previous analysis, both the upper bound
of model error and the learning latency with non-IID training
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Algorithm 2 Latency Aware User Association Algorithm for

the IID Scenario

Input: hn ko pn, Np.

Output: User association, a; ,, wireless resource allocation,
%, and BY*. ’

U, U
1: Calculate the uplink channel SNR p’”;—gk
2: Obtain the optimal user association ay, , according to
Theorem 3.
3: Determine the wireless resource allocation [} & and BU*

as (18) and (19).

data are affected by user association and resource allocation.
That is, the learning performance depends on both the upper
bound of model error and the learning latency. Therefore,
the weighted sum of the total data distribution distance and
the learning latency can be adopted to evaluate the learning
performance, expressed as,

I=p~ ZZ > ank (@ (@) —p )|+ 1 =BT,

¢ |lneNy
(24)

where [ is the weight coefficient to balance the importance of
the total data distribution distance and the learning latency.’
Note that the smaller the I is, the better the learning perfor-
mance will be. To improve learning performance in wireless
HFL system, we should minimize I by jointly optimizing
user association and resource allocation. Therefore, the opti-
mization problem to achieve the optimal user association and
resource allocation can be formulated as

min

{ankslnk,BY }

subject to (16a), (16b), (16¢), and (16d). This problem is also
an MINLP problem and NP-hard. Thus, it is hard to find its
optimal solution. Since the total data distribution distance is
not affected by the wireless resource allocation, this problem
can be decomposed into two subproblems: wireless resource
allocation and user association.

(25)

B. Wireless Resource Allocation and User Association

Given the user association a, i, the problem for wire-
less resource allocation in HFL is the same under
both IID and non-IID data. Therefore, the optimal wire-
less resource allocation can be achieved according to
Theorem 2.

With the optimal resource allocation, the problem in (25)
can be rewritten as

foriey "N (ZZ 2 o pn(c)_p@))

¢ |IneN

+ (1-p) (tE' + %tG> , (26)

2We suggest that the weight coefficient 3 should be set to ensure that the
total data distribution distance and the learning latency are within the same
order of magnitude to achieve a better learning performance, as shown in
simulations.
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subject to (16¢), (16d), and

D)
=5

M

L
- %) log,

Here, ¥ is the optimal local-edge latency obtained by opti-
mizing the wireless resource allocation under the given a,, .
Similarly, this problem is equivalent to the problem in (25)
by substituting a,,x and t* for I, and BY, respectively.
It is still very hard to solve this problem due to the binary
indicators, a,, ;. However, compared with the problem (25),
there are fewer optimization variables since the variables about
wireless resource allocation are replaced with the local-edge
latency, and thereby the computational complexity is reduced.
By further observation, the optimal user association can be
achieved under the given & By introducing a new variable
gk, to remove the norm operation in (26), the problem under
the given &' can be rewritten as

<BY.

UpU —
pnhn,k
<1+ & )

(26a)

tE

/ 1
i ct+(@1-p) (" +—tG> :
{aﬁ}i,c}{ﬁ qu’“ )< E
(27)
subject to (26a), (16¢), (16d), and
Qk,czzan,k (p" (C)—p (C)), ke, ceC,
' (27a)
Ghe> Y ani (p(c)=p" (c), keK, ceC.
! (27b)

The problem in (27) is a mixed integer linear programming
(MILP) problem. The optimal solution to user association
under the given optimal resource allocation can be achieved by
the traditional algorithm, i.e., the branch-and-bound algorithm.
A low-complexity algorithm, such as interior point method,
can also be used to achieve the sub-optimal user association
by variable relaxation.

To obtain the insightful conclusions about the user associa-
tion, the problem in (27) can be transformed with Lagrangian
relaxation into (28), shown at the bottom of the page, subject
to (16¢) and (16d), where Ar ., fik., and 7 are nonnegative
Lagrangian multipliers related to the constraints (27a), (27b),
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and (26a), respectively. From the Lagrangian function, the
conclusion about the optimal user association can be directly
obtained in the following lemma.

Lemma 2: For wireless HFL with non-I1ID data, the optimal
user association of the device n under the given wireless
resource allocation satisfies (29), shown at the bottom of the
page, where \j. ., jiy. ., and 7" are the corresponding optimal
Lagrangian multlpllers

Proof: Please refer to Appendix D. [ ]

Remark 4: From Lemma 2, user association is determined

by both the uplink channel SNR and data distribution in

the non-IID case. Z ()\k LM C) (p" (c) —p(c)) can be

interpreted as the wetghted data distribution distance when
device n is associated with BS k. A small weighted data
distribution distance means that the device n covers more
data required by the BS k or the data distribution of this
device is close to IID. Therefore, from the perspective of data
distribution, the probability that the device n associates with
the BS k decreases with the increase of the weighted data
distribution distance. Different from the traditional multi-cell
networks and wireless HFL under the IID case, the device
should select the BS with a high uplink channel SNR and
a small weighted data distribution distance to improve the
learning performance. This proposed policy is meaningful and
can demonstrate the importance of rethinking user association
for wireless HFL.

To achieve optimal Lagrangian multipliers, A} ., p ., and

, the primal-dual method can be applied [34], [37] [38].
The detailed procedures can be summarized in Algorithm 3.

C. Proposed Algorithm and Computational Complexity
Analysis

In line with the above analysis, the user association under
the given local-edge latency tE can be obtained by the branch-
and-bound algorithm or interior point method. For the global
solutions of (26), one-dimensional search method can be
applied in the interval [t%. ¢E ] Herein, t2, and tF,
are the minimal and maximal local-edge latency and can
be obtained by max-SNR based and min-SNR based user
association, respectively. The optimal resource allocation can

be directly obtained according to Theorem 2, without multiple

1 '
L (Mkcs k,es Vs Qhyes On k) = 5N zk: zc: Qre (1= Mg — pie) —yBY 4+ (1 = B) (tE +

1G
—t
5)

M

pihy
%)ng (1+ Nok)

# 2 O =) (07 () =2 0)

(28)

k¥ = argmin { v*

n
keKC,, pn

(-

) log, (1 +

+> (Ai,u - Mi,u) (" () —p(0)) (29)

wr) 5
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Algorithm 3 Primal-Dual Algorithm for Optimal User
Association

Input: t*', p™ (¢), p(c), and other system parameters.

Output: User association, a;‘l’ «» Lagrangian multipliers, X;E,c’
H,c» and y*.

1: Initialize /\,(6(2, u,(c?i, 7, s =1, and the step size nx, 7,
and 7.

2: repeat

Obtain a;‘l’  and q,’gyc according to (44) and (45), respec-

tively.

4:  Update Lagrangian multipliers as )\5;2: =

s s—1
MBRE ik = M

mg—ﬁ, respectively.

50 s=s+1.

6: until Convergence

7: Obtain the optimal user association ay, , and Lagrangian
multipliers, )\,’:76, u,”;c, and v*.

Neo )+
+iga, and ) = 407D 4

iterations between these two subproblems. Accordingly, the
joint user association and resource allocation algorithm can be
summarized in Algorithm 4. Note that the algorithm should
be performed at each iteration due to the dynamic wireless
environment and computing power of mobile devices, as well
as the algorithm for the IID case.

Algorithm 4 Joint User Association and Resource Allocation

Algorithm for the Non-IID Case

Input: The interval [tE{in, tE{ax] and other system parameters.

Output: User association, a;“% » Wireless resource allocation,
[}, ) and B,g*.

1: Initialize the best objective value I* with an enough large
value.

2: Initialize the optimal user association ay, ;.
3: Initialize t* = tE{ax.
4: repeat
5:  Obtain the optimal user association a,, j by solving the
problem (27) under ¢¥'.
Obtain the objective value I and 2 with G -
. Set t® =¥ — 5. /* § is a very small positive value.
*/
if I < I* then
: I =1
10: ay, ) = Qn k-
11:  end if
12: until 7 < 2,

min
13: Obtain the optimal user association a; ;..
14: Obtain the optimal wireless allocation [, and B*
according to Theorem 2 with a; ,.

Regarding the branch-and-bound algorithm adopted to
obtain the optimal user association under the given local-edge
latency, the computational complexity is exponential in gen-
eral, thereby cannot be implemented in practice. The interior
point method [39] can be used to achieve the sub-optimal
solution to (27) with a polynomial computational complexity,
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TABLE I
SIMULATION PARAMETERS
Parameters Values
Path loss model 128.1 + 37.6log,,(d)
BS coverage radius 1500m
Transmission power of device 28dBm
Noise power density -174dBm/Hz
Number of devices 30
Number of BSs 4
Total bandwidth of uplink channel, BY 50MHz
The number of local updates, E/ 5
The uplink data rate of BS, r 20 Mbps
Batchsize 64
The weight coefficient, 5 0.9

(@] ((KC+NK)3'5 J), where J is the number of quanti-
zation bits. With the interior point method, a comparable
learning performance can also be obtained as demonstrated
in the simulations. Denote S as the number of required
steps in the one-dimensional search algorithm. Then, the
computational complexity for solving the problem (26) is
o (S (KC + NK)*° J).

VI. EXPERIMENTS

In the simulations, we consider 4 BSs and 30 mobile devices
randomly distributed in system coverage. These devices have
one or multiple candidate BSs. Both large-scale fading and
small-scale fading are considered for the channels between the
mobile devices and BSs. The path loss model of large-scale
fading is 128.1 + 37.6log,((d), and the small-scale fading
follows Rayleigh distribution. Two classic neural networks,
i.e., ResNet18 and MobileNet, and two classic datasets, i.e.,
CIFAR10 and CIFARI100, are adopted to demonstrate the
effectiveness of the proposed policies, where 50,000 training
data and 10,000 test data are included in these datasets. The
computing power of mobile devices is randomly distributed
in the interval [2GHz, 3GHz]. Other major parameter values
used in experiments are listed in Table I.

A. IID Case

In this subsection, the learning performances, i.e., con-
vergence rate, learning accuracy, and learning latency, are
demonstrated to validate the effectiveness of Algorithm 2
with ResNet18 and CIFAR10. The training data are uniformly
allocated to all devices, ensuring that the training data of each
device are IID. Three baselines are simulated for performance
comparisons.

o Max-SNR, equal resource allocation: User association
is performed based on max-SNR while the wireless
resources are equally allocated to all devices and BSs.

o Random, optimal resource allocation: The user associa-
tion is randomly performed while the wireless resources
are optimally allocated.

o Random, equal resource allocation: The user association
is randomly performed and the wireless resources are
equally allocated.

Fig. 3 depicts the performance comparison among different
user association and resource allocation strategies in the IID
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Fig. 3. Performance comparison of different user association and resource

allocation strategies in the IID case.

case. From Fig. 3(a), the proposed algorithm can achieve a
larger convergence rate compared to the baselines. It can be
explained by that both user association and resource allocation
can reduce the learning latency, thereby improving the conver-
gence rate. In addition, the max-SNR based user association
is the optimal solution in the IID case. Moreover, wireless
resources should also be allocated according to the device
computing power and channel state information. Moreover,
all algorithms enjoy the same learning accuracy. The reason
is that the user association does not affect the model error
in the IID case. As for Fig. 3(b), the learning latency at one
iteration decreases with the total uplink bandwidth. Since more
wireless resources are allocated to mobile devices, the local
communication latency can be reduced. With more wireless
resources, the effect of user association and resource allocation
becomes small since wireless communication is no longer the
bottleneck.

B. Non-I1ID Case

This subsection demonstrates the performance of the pro-
posed algorithm for the non-IID case. In this case, the training

7861

Test accuracy
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Fig. 4. Effect of data distribution on test accuracy.
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Fig. 5. The optimization algorithm performance comparison.
data are equally allocated to all devices, but each device only
has partial classes of data.

1) Data Distribution: Fig. 4 presents the impact of data
distribution on the learning performance with ResNet18 and
CIFARI1O. In the simulations, mobile devices uniformly select
c classes from the training data. Therefore, the number of
selected classes represents the data distribution distance from
the IID training data. The data distribution distance becomes
smaller when mobile devices select more classes. From the
figure, both convergence rate and learning accuracy increase
with the number of selected classes. The reason is that the
model error compared with the optimal model trained with
IID data decreases as the data distribution distance decreases.
From this result, the necessity of reducing the data distribution
distance using user association is corroborated.

2) Optimality: We examine the optimality of the proposed
Algorithm 4 with ResNetl18 and CIFARI10. In addition to the
proposed optimal algorithm, three baselines are also imple-
mented for the performance comparison.

o Sub-optimal algorithm: The interior point method is
applied to obtain the user association by variable relax-
ation and rounding. In addition, the wireless resources
are optimally allocated.
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(a) ResNet18 on CIFARI10.
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(c) MobileNet on CIFARI10.
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Fig. 6. Performance comparison of different user association strategies in the non-IID case.

o Equal resource allocation: The user association is
obtained by joint data distribution and learning latency.
However, the wireless resources are equally allocated.

e Random selection: The devices randomly select a BS and
the wireless resources are equally allocated.

Fig. 5 illustrates the optimality of the proposed algorithm.
From the curves, the proposed algorithm outperforms three
baseline algorithms from both aspects of the convergence
rate and learning accuracy. With the sub-optimal algorithm,
the comparable learning performance can be achieved while
significantly reducing the computational complexity. There-
fore, the sub-optimal algorithm is more practical than the
proposed optimal algorithm. In addition, the optimal wireless
resource allocation can also significantly improve the learning
performance in the non-IID case. Since the local computing
power and channel state information differ from device to
device in general, the latency for local communication can
be reduced by the resource allocation.

3) User Association Strategy: In this part, three user asso-
ciation strategies are tested with two models (ResNetl8 and
MobileNet) and two datasets (CIFAR10 and CIFAR100),
respectively. They are the proposed algorithm, the max-SNR
based strategy, and the data distribution based strategy.

o Max-SNR based strategy: Max-SNR based strategy is the
optimal solution in the IID case. Mobile devices select
the BS with the highest uplink channel SNR. Meanwhile,
the optimal wireless resource allocation is executed for
mobile devices and BSs.

o Data distribution based strategy: The user association
is obtained by only minimizing the data distribution

distance while the uplink channel SNR is not considered.
Moreover, the wireless resources are optimally allocated.

Note that Max-SNR based strategy is the algorithm without
considering data distribution according to the analysis in IID
case, corresponding to [28]. The authors in [28] consider both
the learning latency and energy consumption. For comparison,
we ignore the energy consumption in this simulation. Data
distribution based strategy is the algorithm without considering
SNR, corresponding to [23].

Fig. 6 describes the learning performance comparison of
different user association strategies in the non-IID case. From
the figure, the proposed algorithm can achieve a higher
convergence rate and learning accuracy compared with the
max-SNR based strategy. The reason behind is that the pro-
posed algorithm has a smaller model error compared with
the optimal model, thereby increasing the convergence rate
and learning accuracy. Moreover, as compared against the
data distribution based strategy, a faster convergence rate
and a comparable learning accuracy can be obtained by the
proposed algorithm. It is because that the proposed algorithm
can reduce the learning latency while maintaining a small
model error by jointly minimizing the total data distribution
distance and learning latency. Therefore, different from the
traditional cellular networks and HFL, both the uplink channel
SNR and data distribution should be incorporated into user
association in wireless HFL.

4) The Weight Coefficient 3: Fig. 7 shows the impact of the
weight coefficient selection on the learning performance with
ResNet18 and CIFAR10. From the figure, the larger the [ is,
the closer the proposed algorithm is to the data distribution
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Fig. 7. Effect of the weight 3 on the learning performance.

based strategy. Conversely, similar learning performance to
the max-SNR strategy is achieved under a small 5. In other
words, the proposed algorithm reduces to the max-SNR based
strategy under a sufficiently small 5 and the data distribution
based strategy under a sufficiently large 3. The results tell that
properly setting 3 can well balance the total data distribution
distance and the learning latency. To achieve a better learning
performance, the weight coefficient 5 should be set to ensure
that the total data distribution distance and the learning latency
are within an order of magnitude.

VII. CONCLUSION

In this paper, we investigate user association and resource
allocation in wireless HFL taking into account the imbalanced
data distribution and traffic load. First, we derive the model
error and learning latency and analyze the effect of the data
distribution, user association, and wireless resource allocation
on the learning performance. Then, the user association and
resource allocation are optimized for both the IID and non-1ID
cases to improve the learning performance. For the IID case,
max-SNR based user association achieves the optimal learning
latency. Meanwhile, the wireless resources should be optimally
allocated according to both local computing power and uplink
channel SNR. For the non-IID case, both the data distribution
distance and learning latency are minimized to improve the
learning performance. Different from the IID case, the optimal
user association is determined by both the data distribution
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local computing power and uplink channel SNR. Finally,
extensive simulation results demonstrate the effectiveness of
the proposed algorithms.

APPENDIX A
PROOF OF THEOREM 1

According to the definition of w$ ; and w, ;, we have
(30), shown at the bottom of the page, where p* (c) is the
data distribution of BS k and (a) holds since the local-edge
aggregation is performed at every local iteration, which has
been proved in [23]. Then, the model error can be further
written as

ngE —wanH

.
mE 1~ WmE—1

+a”ZE Zp ) VawEey(e) {108;( WPk 1(55))}
= > p(0) Vuapyo {108 (s, , ()}

< Xk: mh_1 = Wi
+Ha; L 27O Vuapie {log (s, @)}
—azk: Z’Lgk;m ©) VaEay(e) {log (Hyps (@)}
+|azk:§’;kzcjp( 0) VaEapy(e) {log (Moo (@)}

—a) Zn Zk 2 2(€) VaoEayy(o {log (Hw:nE_l (fﬂ))} I
T

(€19

With the assumptions on the gradient smoothness and bounded
gradient, the model error can be further written as

*
) meE 1 me—lH

mEH

Zznk <1+azc:p(c)

||wSzE —w,

and uplink channel SNR. Furthermore, wireless resources +04AmE—1Z Zn ZHP p(9)- (32)
are optimally allocated for mobile devices according to both k k
|wiig —wh | = Z S wh — w B
m m Z nk mE m
k%
@ Z <wi’§1 + Och ) VewEajy(e) {log (H BE (x)) })
k
( o1+ 0 3P (@) VuEayo {log (o <x>)}) I (30)
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For the first term in (32), we have

*
< meE 2 'me72H

+of ZP ) VawEe|y(e) {10g (H B (m))}
=30 (0) VaEapyo {108 (Huy,,_, @)}

*
H'me 1~ WipE—1

(33)

By substituting (33) to the first term in (32) until the
(m — 1) E-th iteration, the model error after one global itera-
tion can be written as (34), which ends the proof.

APPENDIX B
PROOF OF LEMMA 1

Define u,, 1, = ln,kB,g. Then the uplink data rate 7"57 , and
the constraints (16a), (16b) can be rewritten as

pghg k
Ny ’

§ § : U
An, kUn,k S B )
n k

respectively. Accordingly, the problem (17) becomes convex

T ) = Un,ilogy <1 + (35)

and

(36)

since f(z) =1,z > 0 is convex, which ends the proof.
APPENDIX C
PROOF OF THEOREM 2
According to the Lagrangian multiplier
method, the Lagrangian function of the problem
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(17) can be constructed as

E E
L (U}n,kvnn,k’v v, t 7un,k) =t

bd™
+ Z Z Mn,k | On,k f_ +
n k n

_¢{E

pRh
Un klogy (14 =7

+v <Z Z An kUn,k — BU) )
n k

where 7,, ;. and v are Lagrangian multipliers related to the con-
straints (17a) and (36), respectively. Then, the corresponding
Karush-Kuhn-Tucker (KKT) conditions are

(37

=3 ) k=0, neN, kek, (38)
n k
oL M
8— = Qn,kV — Qn, kMn,k pURU = Oa
Un,k logg (1 4 B hy k)
neN, kelk, (39)
bd™ M
nn,k an,k f— + pUh,U - tE = Oa
n Un, klogy (1 + Nok)
neN, kelk, (40)
v <Z D dnktng — BU> =0, 1)
n k
Nnge =0, v =>0. (42)
The condition in (38) shows that there exists 7,k
that satisfies 7,k # 0. With this conclusion,
v # 0 can be derived according to (39), thereby
Mk + 0,V{n,klanr =1}. Then, we have
n, bjii—: + M =tV {n, kla,, =1}

U
Up, ;logsy 1+ Pilhy .k

and > ay, punk = BY according to the conditions in (40)
n k

|wSs —wis] < (140> p(e)L

(c ) me l)E_wszl)EH

E—-1
+a ZAmE_l_i<1+aZp(c)L(c)> NZZ > an ’(c)—p(c))’. (34)
i=0 c c |lneN
effect of data distribution imbalance
1 / 1
in L (A\ge x =f— 1= Mpe — pige) —yBY + (1= 0) (% + =t©
{qk?}zrik} (Ak,er tkyesY) ﬁN zk:zc:%C( ke — fke) —YBY + (1= 0) ( + E
M n
+ Z Z Ak | Y L pURU + Z (/\k,c - Mk,c) (p ) (C) -Pp (C)) (43)
kK n (tE/ bd® ) log 9 (1 + Pn o, k) c
subject to Z anp =1, (43a)
ke,
0<a,,<1. (43b)
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M

1, k=argmin | ~v
an,k - k

0, otherwise.

(tE' — %) log, (1 +

min (> ap (0" (0) = p(e), > an . (p

max Z ay, . (p" (c) —p(c)), Z an i (P
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ey * S One i) M@ -p@ |-y
(C) - pn (C)) ) 1- Ak,c — Kk,c Z 07

(45)

(C) _pn (C)) , 1= /\k,c — Pk,e < 0.

and (41). Accordingly, the expression in (20) can be obtained.
With the condition > a, ktn ik = B,g, the optimal solutions
k

of l,, 1, and B,g can also be derived as in (18) and (19), which
ends the proof.

APPENDIX D
PROOF OF LEMMA 2

As analyzed in Section V.B, we transform the problem in
(27) into (28) by the Lagrangian relaxation method, as (43),
shown at the bottom of the previous page. Under the given
Ak,c» Jk,c, and 7y, optimal solutions of a) , and qu can be
easily obtained as (44) and (45), shown at the top of the page.

Therefore, with optimal Lagrangian multipliers, )\27 o M3 o
and v*, Lemma 2 can be derived from (44), which ends the
proof.
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