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Abstract—In recent years, there has been a surge in applying
deep learning to various challenging design problems in commu-
nication networks. The early attempts adopt neural architectures
inherited from applications such as computer vision, which suffer
from poor generalization, scalability, and lack of interpretability.
To tackle these issues, domain knowledge has been integrated
into the neural architecture design, which achieves near-optimal
performance in large-scale networks and generalizes well under
different system settings. This paper endeavors to theoretically
validate the importance and effects of neural architectures when
applying deep learning to communication network design. We
prove that by exploiting permutation invariance, a common
property in communication networks, graph neural networks
(GNNs) converge faster and generalize better than fully connected
multi-layer perceptrons (MLPs), especially when the number of
nodes (e.g., users, base stations, or antennas) is large. Specifically,
we prove that under common assumptions, for a communication
network with n nodes, GNNs converge O(n log n) times faster
and their generalization error is O(n) times lower, compared
with MLPs.

Index Terms—Communication networks, deep learning, graph
neural networks, neural tangent kernel.

I. INTRODUCTION

Deep learning has recently emerged as a revolutionary

technique for various applications in communication networks,

e.g., resource management [1], data detection [2], and joint

source-channel coding [3]. The early attempts adopt neural

architectures inherited from applications such as computer

vision, e.g., fully connected multi-layer perceptrons (MLPs) or

convolutional neural networks (CNNs) [1], [4], [5]. Although

these classic architectures achieve near-optimal performance

and provide computation speedup for small-scale networks,

the performance is severely degraded when the number of

clients becomes large. For example, for FDD massive MIMO

beamforming, the performance of CNNs is near-optimal for a

two-user network while an 18% gap to the classic algorithm

exists with 10 users [6]. Moreover, these neural architectures

generalize poorly when the system settings (e.g., the signal-

to-noise ratio or the user number) in the test dataset are

different from those in the training dataset. For example, for

power control in cloud radio-access networks (Cloud-RANs),

the performance degradation of MLPs can be more than 50%
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when the SNR in the test dataset is slightly different from that

in the training dataset [4]. Dense communication networks, a

characteristic of 5G, usually involve hundreds of clients, and

the user number and SNR change dynamically. Hence, it is

very challenging to apply MLP-based methods in practical

wireless networks.

To improve scalability and generalization, recent works

incorporated the domain knowledge of target tasks to improve

the architectures of neural networks, e.g., unrolled neural

networks [7]–[9], and group invariant neural networks [10],

[11]. Particularly, graph neural networks (GNNs) have recently

attracted much attention thanks to their superior performance

on large-scale networks [11]–[17]. GNNs achieve good scal-

ability, generalization, and interpretability by exploiting the

permutation invariance property in communication networks

[11], [13], [17]. For example, for the beamforming problem,

a GNN trained on a network with 50 users is able to achieve

near-optimal performance on a network with 1000 users [11].

In [14], GNNs were applied to resource allocation without

channel state information (CSI) in intelligent reflecting surface

(IRS) aided systems. It was shown that GNNs not only

generalize well across different SNRs and different numbers

of users, but the reflecting angles generated by GNNs are also

easy to interpret.

Despite the empirical successes, it remains elusive why

these architectures outperform unstructured MLPs and how

much performance gains we can obtain via improving the

neural architecture. Meanwhile, for reliable operation in real

systems, it is crucial to provide theoretical guarantees and

understand when the neural network works. For deep learning-

based methods, the test performance, e.g., the sum rate or

spectrum efficiency, is controlled by the convergence rate at

the training stage and the generalization error at the test stage.

Specifically, if the convergence speed is too slow, we cannot

even obtain a low training loss, let alone performing well

at the test stage. Additionally, combining the generalization

error and training error provides an upper bound for the test

performance. Unfortunately, the existing theoretical analysis

of MLPs and GNNs for communication networks [1], [11],

[18] cannot characterize either of them.

The technical difficulty of the theoretical analysis lies in the

non-convex nature of neural networks. Fortunately, there is a
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recent breakthrough that connects overparameterized neural

networks and neural tangent kernels (NTK), which makes

the training objective convex in the functional space [19].

Based on this result, we will demonstrate the importance and

effects of neural architectures when applying deep learning to

designing communication networks. Specifically, we observe

that the convergence and generalization are determined by

the alignment between the eigenvectors of the random NTK

matrix and the label vectors (Theorems 2 and 4). Thus,

we theoretically characterize how neural architectures affect

convergence and generalization by studying this alignment

(Theorems 3 and 5). Specifically, we prove that under certain

assumptions, for a communication network with n nodes,

GNNs converge O(n logn) times faster and the generaliza-

tion error is O(n) times lower, compared with MLPs. This

demonstrates that GNNs are superior to MLPs in large-scale

communication networks. To the best of our knowledge, this

paper is the first attempt to theoretically study the conver-

gence benefits of structured neural networks from both the

communication and machine learning communities. Hence

the developed results are not only timely but also will have

significant impacts on the design, analysis, and performance

evaluation of communication networks.

II. PRELIMINARIES

A. Permutation Invariance

Let [n] represent the set {1, · · · , n}, and denote the permu-

tation operator as π : [n] → [n]. For the vector-form variable

γ ∈ Cd and matrix-form variable Γ = [γ1, · · · ,γn] ∈ Cn×d,

the permutation is defined as

(π ⋆ γ)(π(i1)) = γ(i1), (π ⋆ Γ)(π(i1),:) = Γ(i1,:).

A function f(·) is called permutation invariant if for any π,

we have f(π ⋆γ) = f(γ) or f(π ⋆Γ) = f(Γ) when the input

is a vector or matrix, respectively.

Example 1. (Sum and weighted sum) It is easy to check

that the sum function is permutation invariant as
∑n

i=1 xi =
∑n

i=1 xπ(i). The weighted sum
∑n

i=1 wixi is not permutation

invariant if the vector variable is γ = [xi]
n
i=1. However, if the

variables are γi = [wi, xi], then we have

f(Γ) =

n
∑

i=1

wixi =

n
∑

i=1

wπ(i)xπ(i) = f(π(Γ)),

which makes the weighted sum permutation invariant.

B. Permutation Invariant Problems in Communication Net-

works

In this paper, we consider the following permutation invari-

ant optimization problem,

P : minimize
Γ

g(Γ) subject to Q(Γ) ≤ 0, (1)

such that g(Γ) = g(π ⋆ Γ), Q(Γ) = Q(π ⋆ Γ), ∀π.

We next present the power control problem in a K-user

interference channel as a specific example. Let pk denote the

transmit power of the k-th transmitter, hk,k ∈ C denote the

direct-link channel between the k-th transmitter and receiver,

hk,j ∈ C denote the cross-link channel between transmitter j
and receiver k, sk ∈ C denote the data symbol for the k-th

receiver, and nk ∼ CN (0, σ2
k) is the additive Gaussian noise.

The signal-to-interference-plus-noise ratio (SINR) for the k-th

receiver is given by SINRk =
|hk,k|

2pk∑
i6=k |hk,i|2pi+σ2

k

. The power

control problem is formulated as follows:

maximize
p

K
∑

k=1

wk log2 (1 + SINRk)

subject to 0 ≤ pk ≤ 1, ∀k,
To elaborate the permutation invariance property of this

problem, we consider a permuted problem with parameters

w′
·, h

′
·,·, p

′
·, σ·, such that p′k = pπ(k), w

′
k = wπ(k), h′

k,i =
hπ(k),π(i), σk = σ′

π(k).

Under this permutation, we have
∑

i6=k |hk,i|2pk + σ2
k =

∑

i6=π(k) |h′
π(k),i|2pπ(k) + (σ′

π(k))
2 and thus SINRk =

SINR′
π(k). We then have

K
∑

k=1

wk log2 (1 + SINRk) =

K
∑

k=1

w′
π(k) log2

(

1 + SINR′
π(k)

)

(a)
=

K
∑

k=1

w′
k log2

(

1 + SINR′
k

)

,

where (a) is due to the permutation invariant propery of

the weighted sum as shown in Example 1. The following

proposition shows that permutation invariant problems are

ubiquitous in communication networks.

Proposition 1. [11] Any graph optimization problem can be

formulated as in (1).

A direct implication of Proposition 1 is that if the problem

can be formulated as a graph optimization problem, then it

enjoys the permutation invariance property. As communica-

tion networks can naturally be modeled as graphs, resource

allocation in communication networks can be formulated as

graph optimization problems. Examples include the K-user

interference channel beamforming (modeled in Section II.C

of [11]), joint beamforming and phase shifter design in IRS-

assisted systems (modeled in Section IV.A of [14]), and power

control in multi-cell-multi-user systems (modeled in Section

II.A of [13] and Section III of [17]). Additionally, inference

on factor graphs is also a graph optimization problem. Thus,

channel estimation or data detection also enjoys the permu-

tation invariance property [15]. Furthermore, graph structures

are ubiquitous in signal processing systems, e.g., topological

interference management, hybrid precoding, localization, and

traffic prediction. As a result, permutation invariance also

holds for these problems.

C. Message Passing Graph Neural Networks

To apply deep learning to solve Problem (1), our task is to

identify a neural network that maps the problem parameters

to the optimal solution. Thus, it is desirable that the adopted



neural architecture respects the permutation invariance prop-

erty of the problem. Message passing graph neural networks

(MPGNNs), which are developed for learning on graphs, are a

class of neural networks that exploit the permutation invariance

property. Like other neural networks, they adopt a layer-wise

structure. The update rule for the k-th layer at vertex i in an

MPGNN is

x
(k)
i = α(k)

(

x
(k−1)
i , φ(k)

({[

x
(k−1)
j , ej,i

]

: j ∈ N (i)
}))

,

(2)

where x
(0)
i is the node feature of node i, ej,i is the edge

feature of the edge (j, i), N (i) is the set of neighbors of node

i, and x
(k)
i is the hidden state of node i at the k-th layer.

If the desired output is a single vector, then the output of the

MPGNN is given by o =
∑n

i=1 x
(K)
i , where K is its maximal

layer, and n is the number of nodes in the graph. If the desired

output is a vector for each node, the output of MPGNNs is

given by O =
[

x
(K)
1 , · · · ,x(K)

n

]T

.

Example 2. The wireless channel graph convolution network

(WCGCN) proposed in [11] is a special case of MPGNNs

designed for interference management in wireless networks.

For the K-user interference channel power control problem,

the update of the k-th node in the j-th layer is given as

y
(j)
k = MAXi6=k

{

MLP1

(

p
(j−1)
k , hi,k, hk,i

)}

,

p
(j)
k = σ

(

MLP2
(

y
(j)
k , wk, hk,k

))

,
(3)

where MLP1 and MLP2 are two different MLPs, and σ(x) =
1

1+exp(−x) is the sigmoid function. Furthermore, p
(j)
k is the

output power at the j-th iteration, and y
(j)
k denotes the hidden

state at the j-th iteration.

As most GNNs developed for communication networks are

MPGNNs, for simplicity, we refer to MPGNNs as GNNs in

the remainder of this paper.

III. MAIN RESULTS

This section presents our main theoretical results. We first

introduce the neural tangent kernel as a technical tool for our

analysis. Then we present the main theorem, which is verified

by simulations.

A. Neural Tangent Kernel

Neural tangent kernel (NTK) [19] is a powerful tool

that has been recently proposed to theoretically characterize

the properties of neural networks [20], [21]. Let u(t) =
(f(θ(t),xi))i∈[m] be the network’s output on xi at time t,
where θ denotes the neural network parameters. We consider

minimizing a loss function ℓ(θ) by the gradient descent with

an infinitesimally small learning rate. The parameters evolve

according to the following ODE

θ̇(t) = −∂ℓ(θ(t))

∂θ
= −

m
∑

i=1

∂ℓ

∂f(θ(t),xi)

∂f(θ(t),xi)

∂θ
.

For the i-th training sample, the evolution of the neural

network’s output can be written as

ḟ(θ(t),xi) = −
m
∑

j=1

∂ℓ

∂u

〈

∂f(θ(t),xi)

∂θ
,
∂f(θ(t),xj)

∂θ

〉

.

Thus, for the vector-form output u(t), we have

u̇(t) = −H(t) · ∂ℓ

∂u
(4)

where [H(t)]i,j =
〈

∂f(θ(t),xi)
∂θ ,

∂f(θ(t),xj)
∂θ

〉

.

As the network width goes to infinity, the time-varying

kernel H(t) approaches the time-invariant neural tangent

kernel H∗ ∈ R
m×m, where

H∗
(i,j) = Eθ∼W

〈

∂f(θ,xi)

∂θ
,
∂f(θ,xj)

∂θ

〉

, (5)

and W is a Gaussian distribution.

It is shown in (4) that if H(t) is a positive definite matrix,

u̇ = 0 if and only if ∂ℓ
∂u = 0. Thus, if ℓ is convex, the global

optimality is guaranteed at the training stage. Furthermore,

as NTK bridges the neural network and kernel methods, the

generalization error of the neural network can be analyzed by

leveraging classic results on kernels. Different neural architec-

tures correspond to different kernels, and thus we can analyze

the convergence and generalization behaviors by studying the

matrix H∗ in (5).

B. Overview of Theoretical Results

In this subsection, we study the convergence and general-

ization of MLPs and GNNs. We first define the generalization

error:

Egen = Ex∼D[ℓ(f(x, θ))− ℓ(f(x, θ∗))], (6)

where f(xi, θ) is the neural network’s output for input xi and

parameter θ, ℓ(·) is the loss function (performance metric),

and D is the test distribution. We denote θ as the obtained

neural network’s weights, and θ∗ as the optimal weights for

the test distribution. The overall theoretical results are given

in Theorem 1.

Theorem 1. (Informal) Assuming we train MLPs and GNNs

in the NTK regime and the loss function is convex with respect

to the output of the neural networks, gradient descent finds a

global minimizer with a O(1/t) rate, where t is the number

of epochs. Furthermore, suppose we learn a class of infinite-

order permutation invariant functions y = f(x1, · · · ,xn)
with two-layer neural networks, then the convergence speed of

GNNs is O(n log(n)) times faster than MLPs at the training

stage. At the test stage, the generalization error of MLPs is

O(n) times larger than GNNs.

Proof. Theorem 2 in Section IV-A shows that gradient descent

converges to the global minimizer with a O(1/t) rate. The

gap in convergence is shown in Theorem 3 and the gap in

generalization is shown in Theorem 5.



10 1

Epochs

-1.6

-1.4

-1.2

-1

-0.8

N
eg

at
iv

e 
S

um
 R

at
e

GNN_train
GNN_test
MLP_train
MLP_test

(a) 5 users.

10 0 10 1 10 2

Epochs

-2.5

-2

-1.5

-1

N
eg

at
iv

e 
S

um
 R

at
e

GNN_train
GNN_test
MLP_train
MLP_test

(b) 20 users.

Fig. 1. Convergence and generalization of GNNs and MLPs for the K-user interference channel power control problem. The loss is the negative sum rate.

To demonstrate the power and significance of Theorem

1, we apply GNNs and MLPs to the K-user interference

channel power control problem, where the system setting

follows that of Section V.A in [11]. The results are shown

in Fig. 1. With 5 users, both MLPs and GNNs achieve a

good training loss and a similar test error. However, with 20
users, MLPs have difficulty in training while GNNs converge

quickly. Furthermore, there is a large performance gap between

MLPs and GNNs with 20 users at the test stage.

IV. DETAILED ANALYSIS

This section presents detailed derivations of Theorem 1.

A. Convergence

In this subsection, we study the convergence of GNNs

and MLPs. We first discuss the convergence rate of neural

networks under convex loss functions.

Theorem 2. (Global convergence of neural networks with

convex loss functions) Assume λmin(H
∗) > 0, for a con-

vex and differentiable loss function, the convergence rate

is given by ℓ(u(t)) − ℓ(u∗) ≤ ‖u(0)−u∗‖2

2

2κt , where κ =

maxt
‖H∗x(t)‖2‖x(t)‖2

x(t)H∗x(t) ≤ λmax(H
∗)

λmin(H∗) , and x(t) = ∂ℓ
∂u . For the

squared loss function, we have y − u(t) = exp(−H∗t)y.

In the context of communication networks, the universal

approximation theorem of neural networks has been adopted

to justify the application of deep learning, e.g., for resource

management [1], [13], and MIMO detection [18], but nothing

has been said about whether the optimal weights of the neural

network can be found via training. Theorem 2 makes a further

step by showing that the gradient descent algorithm is able

to find such a neural network, given that the loss function

is convex. For non-convex loss functions, there exist bad

stationary points as shown in [23].

In Theorem 2, the convergence heavily depends on the

alignment between the eigenvectors of the NTK matrix (H∗)

and the target vector (y or x(t)). As H∗ is a structured random

matrix, it is possible to have a fine-grained analysis on the

convergence by studying its eigenvectors, which reveals the

gap between GNNs and MLPs.

Theorem 3. (GNNs converge faster than MLPs) Suppose

we train two-layer neural networks in the NTK regime

with squared loss function, and the target function is

u∗(x1, · · ·xn) =
∑n

i=1(β
Txi)

p. Then for GNNs, we have

‖u(t)−u∗‖2 ≤ exp (−cp,σ (
∑n

i=1 λi) t) ‖β‖p2. For MLPs, we

have ‖u(t) − u∗‖2 ≤ n exp (−cp,σλmint) ‖β‖p2, where cp,σ
is a constant related to p and the activation function σ. In

addition, λ1, · · · , λn are non-negative constants regarding the

input data, and λmin = mini(λ1, · · · , λn).

One concluding message from Theorem 3 is that a proper

neural architecture improves the convergence rate. Specifically,

both the permutation invariance property and the activation

function influence the convergence upper bound. Thus, the

convergence rate can be improved with a specialized design

of these components.

Impact of permutation invariance: In the bound, we see

that the convergence rate of MLPs depends on λmin, while

the rate of GNNs depends on
∑n

i=1 λi if the target function

u∗ is permutation invariant. This is because the architecture

of GNNs improves the optimization landscape. We plot the

conditional number of infinitely wide MLPs [21] and GNNs

[22] in Fig. 2. We see that as n grows, the conditional number

of MLPs becomes larger while that of GNNs remains the same.

This shows that as the problem size grows, the convergence

of MLPs slows down dramatically while that of GNNs does

not. This impedes MLPs to achieve a low training loss at the

training stage and is the main reason why GNNs can achieve

near-optimal performance with a large number of users while

MLPs fail to do so.

Impact of activation functions and unrolling: The ac-

tivation function influences the convergence by controlling

the term cp,σ. The constant cp,σ is to measure the similarity

between the activation function σ and the target function u∗.

For example, denoting σ1(x) = x2 and σ2(x) = max(0, x),
we have c2,σ1

= 1 and c2,σ2
= 1

2π . This implies that if the

target function is quadratic, the neural network with quadratic

activation will converge faster than neural networks with other

activation functions. In the deep unrolling methods [7], we

can view the operations borrowed from classic algorithms as
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Fig. 2. An illustration of the optimization landscape for two-layer infinitely wide MLPs [21] and GNNs [22]. The length of the long axis represents the
conditional number. A more isotropic plot means better convergence. The plots are generated from 300 i.i.d. Gaussian samples. In (a)(b)(c), the target function
is a linear permutation invariant function while in (d) the target function is non-permutation invariant.

activation functions. Thus, for tasks where precise mathemat-

ical modelling is available, deep unrolling can accelerate the

training of both MLPs and GNNs [16].

No free lunch: The previous discussion shows that GNNs

converge faster than MLPs for permutation invariant tar-

get functions. Nevertheless, when the target function is not

permutation invariant, GNNs may have a worse conditional

number than MLPs as shown in Fig. 2 (d). This implies that

GNNs are good at learning permutation invariant functions

while performing poorly in learning non-permutation invariant

functions.

In the context of communication networks, as discussed in

Section II, permutation invariance commonly exists, so GNNs

stand out as a promising neural architecture.

B. Generalization

In this section, we analyze the generalization of GNNs and

MLPs, based on [21], [22], [24]. We begin with a classic result

on the generalization error of kernel methods.

Theorem 4. [22], [25] Given m training data {xi, yi}mi=1

drawn i.i.d. from the underlying distribution D. Consider a

loss function ℓ : R × R → [0, 1] that is 1-Lipschitz in

the first argument. With probability 1 − δ, the population

loss of infinitely wide neural networks is bounded by Egen =

Ex∼D[ℓ(f(x, y)] = O
(√

yT (H∗)−1y·Tr(H∗)

m +
√

log(1/δ)
m

)

.

Higher sample efficiency implies better generalization:

Recently, there is a growing interest in sample-efficient neural

architectures for solving communication problems [4], [12],

[26]. Theorem 4 suggests that the generalization error Egen is

inversely propositional to the number of training data points

m. Thus, a neural architecture with a higher sample efficiency

results in a smaller test error.

The next theorem analyzes the generalization error of MLPs

and GNNs, which is based on [21], [22].

Theorem 5. (GNNs generalize better than MLPs) Sup-

pose we train two-layer neural networks in the NTK

regime with squared loss function, and the target func-

tion is u∗(x1, · · ·xn) =
∑n

i=1(β
Txi)

p. Then for

GNNs, with probability 1 − δ, we have EGNN
gen ≤

O
(

cσ,p‖β‖p
2

m +
√

log(1/δ)
m

)

. For MLPs, with probability 1 −

δ,EMLP
gen ≤ O

(

ncσ,p‖β‖p
2

m +
√

log(1/δ)
m

)

, where cp,σ is a con-

stant related to the activation function σ and the degree p and

activation function σ(·).
Similar to the convergence results, the generalization error

is also influenced by the permutation invariance and activation

function, and GNNs are superior if the target function is

permutation invariant.

C. Can MLPs Match GNNs with Sufficient Data?

Theorem 5 indicates that with a finite number of training

samples (i.e., m), there is a substantial gap in the generaliza-

tion performance between MLPs and GNNs, proportional to

the number of nodes (i.e., n). In some problems, training data

can be easily generated from simulations or ray tracing [27],

which allows us to have sufficiently many training samples. A

natural question to ask is: Given a sufficiently large amount of

data, can MLPs perform as well as GNNs? The answer is yes

if we can train the model for infinitely long time. In practice,

however, a larger dataset will make the training more difficult.

This is because the smallest eigenvalue of H∗ ∈ Rm×m

shrinks as the number of training samples m increases. For

MLPs, the smallest eigenvalue of H∗ will be reduced when

the number of training samples increases, which increases

the training difficulty. For GNNs with permutation invariant

target functions, this phenomenon is not obvious due to the

improvement of the landscape by neural architectures. In Fig.

3, we follow the system setting of Section V.A in [11] and test

MLPs and GNNs in the K-user interference channel power

control problem with K = 20. It shows that more training

data slow down the convergence of MLPs to a large extent,

which deteriorates the performance. Thus, GNNs are superior

to MLPs even if a very large number of samples are available

for training.

V. CONCLUSIONS

This paper theoretically investigated the importance of neu-

ral architectures when applying deep learning in communica-

tion networks. We proved that by exploiting the permutation
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Fig. 3. Convergence and generalization of MLPs and GNNs with different numbers of training samples. The loss value is the negative sum rate. Different
curve represents different numbers of training samples. For example, MLP train 20000 is the training loss curve of the MLP with 20000 training samples.

invariance property, GNNs converge faster and generalize bet-

ter than MLPs. For future directions, it is interesting to extend

the analysis to other neural architectures, which will lead to

a systematic and principled design of neural architectures in

the area of machine learning for communication.
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