
Communication-Efficient Federated Distillation
with Active Data Sampling

Lumin Liu, Jun Zhang, S. H. Song, and Khaled B. Letaief, Fellow, IEEE

Dept. of ECE, The Hong Kong University of Science and Technology, Hong Kong
Email: lliubb@ust.hk, eejzhang@ust.hk, eeshsong@ust.hk, eekhaled@ust.hk

Abstract—Federated learning (FL) is a promising paradigm to
enable privacy-preserving deep learning from distributed data.
Most previous works are based on federated average (FedAvg),
which, however, faces several critical issues, including a high
communication overhead and the difficulty in dealing with het-
erogeneous model architectures. Federated Distillation (FD) is a
recently proposed alternative to enable communication-efficient
and robust FL, which achieves orders of magnitude reduction
of the communication overhead compared with FedAvg and is
flexible to handle heterogeneous models at the clients. However,
so far there is no unified algorithmic framework or theoretical
analysis for FD-based methods. In this paper, we first present
a generic meta-algorithm for FD and investigate the influence
of key parameters through empirical experiments. Then, we
verify the empirical observations theoretically. Based on the
empirical results and theory, we propose a communication-
efficient FD algorithm with active data sampling to improve the
model performance and reduce the communication overhead.
Empirical simulations on benchmark datasets will demonstrate
that our proposed algorithm effectively and significantly reduces
the communication overhead while achieving a satisfactory
performance.

I. INTRODUCTION

Federated Learning (FL) has recently attracted considerable
attention due to its ability to collaboratively and effectively
train machine learning models while preserving users’ privacy
[1]. A popular FL algorithm is Federated Average (FedAvg)
[2], which aggregates models trained by different clients via
weight averaging. FedAvg has been successfully implemented
on real-world applications [3] and has inspired tremendous
research interests in designing efficient and robust FL algo-
rithms [4].

Nevertheless, weight-averaging-based methods have many
limitations. For example, the local neural network architec-
tures at different clients have to be the same, and the commu-
nication overhead is proportional to the local model size. The
communication issue has been partially addressed by adopting
model compression techniques to reduce the communication
cost [5], while the restrictions of model architectures have
been largely ignored. In a realistic FL system, clients have
heterogeneous computational and communication resources.
Hence, it would be highly ineffective to require all the local
models to be of the same architecture.

To allow heterogeneous models and reduce the communica-
tion overhead, knowledge distillation (KD) was introduced to
enable effective low-cost information exchange in FL. KD [6]

This work is supported in part by the Hong Kong Research Grant Council
under Grant No. 16208921.

is an effective mechanism to transfer knowledge from a large
teacher model to a small student model, where the student
model mimics the teacher model’s output, i.e., logits, on the
same training data. Thus, the model architecture of the student
can be different and the communication cost only depends on
the logits size rather than the model weights. However, since
KD is data-dependent, the training data were assumed to be
universally accessible in classic KD methods. Considering the
privacy regulation in FL, Federated Distillation (FD) needs to
achieve distillation without sharing the local private data.

In [7], distillation was achieved by transmitting and ag-
gregating label-wise logits of the local training data. In [8],
an auxiliary distillation dataset was generated with a linear
mixture of the local training data. However, the learning
performance of these two approaches degrades noticeably
compared with FedAvg. In [9], it was assumed that there
exists a public unlabeled dataset at both the server and
the clients for the distillation process. An entropy reduction
technique was proposed to improve the model performance
under non-iid data. In [10], delta-coding on the logits was
proposed to further reduce the communication cost and the
knowledge was distilled at the server side. In [11], distillation
was introduced as an additional technique after weight aver-
aging at the server side. In [12], fully distributed distillation
in a connected network was considered and the gradient of
the training loss function was proved to converge to zero
asymptotically. These approaches showed comparable or even
better performance than the weight-averaging method with a
much less communication cost and even in heterogeneous
model architectures.

Existing FD algorithms, while sharing similar key steps,
are proposed from different perspectives, which makes it
difficult to characterize and improve their performance. For
FedAvg, systematic and theoretical understandings have been
developed [13], which enables further design and optimization
for the FL system with weight-averaging-based methods.
However, for these FD algorithms, despite the empirical suc-
cess, there lacks a clear understanding, either experimentally
or theoretically, of the key components, i.e., 1) the auxiliary
data distribution; 2) the logits aggregation strategy; and 3) the
size of the upload logits.

In this paper, we endeavor to fill this important gap and
answer these questions. We will first propose a generic meta-
algorithm for FD, and investigate the effects of key param-
eters. Our results will show that in order to achieve a good

ar
X

iv
:2

20
3.

06
90

0v
1

 [
cs

.L
G

]
 1

4
M

ar
 2

02
2

training performance, the public auxiliary data distribution
should be close to the local training data, the logits aggrega-
tion strategy should reduce the logits entropy, and the size of
the upload logits size should be sufficiently large. To verify
and better understand these observations, we will provide a
theoretical characterization of the FD meta-algorithm with a
binary classification problem and Gaussian mixture models.

Inspired by the findings from these empirical observations
and theoretical results, i.e., the logit entropy should be low
and the distillation set size should be large, we will propose
a communication-efficient FD algorithm, named, Federated
distillation with Active data Sampling (FAS). In the proposed
algorithm, each client only uploads a subset of the logits with
low entropy. Accordingly, the samples from the public data
that join the distillation will be different among different users
and thus the size of the distillation logits at the server size
will be larger than the upload communication cost. Simulation
results will demonstrate that the proposed algorithm achieves
a better performance under a limited communication cost and
non-iid data distribution compared with baseline FD methods.

II. PRELIMINARY

In this section, we briefly introduce the notations for FL
and KD, respectively.

A. Federated Learning

In FL, there are n clients with local private datasets
{Di}ni=1 following the probability distribution {Pi}ni=1. The
dataset size of the i-th client is Di. Based on the local dataset
{Di}, the empirical local loss function for the i-th client is
expressed as

Li(θ) =
1

Di

∑
{xj ,yj}∈Di

L(θ,xj , yj), (1)

where L(θ,xj , yj) is the loss function of the training data
sample xj and its label yj , and θ denotes the model parame-
ters. The target in FL is to learn a global model that performs
well on the average of the local data distributions. Denote
the joint dataset as D =

⋃n
i=1Di then the target training loss

function in FL is given by

L(θ) =
1∑n

i=1Di

∑
ξj∈D

L(θ, ξj) =
1∑n

j=1Dj

n∑
i=1

DiLi(θ).

(2)
The most commonly adopted training algorithm in FL is
FedAvg, where each client periodically updates its model
locally and averages the local model parameters through
communications with a central server (e.g., at the cloud or
edge). The parameters of the local model on the i-th client
after t steps of stochastic gradient descent (SGD) iterations
are denoted as θit. In this case, θit evolves as follows

θit =

{
θit−1 − η∇̃Li(θit−1) t | τ 6= 0

1
n

∑n
i=1[θit−1 − η∇̃Li(θit−1)] t | τ = 0

(3)

B. Knowledge Distillation

Knowledge Distillation (KD) is the process of distilling
knowledge from a large and well-trained teacher model to

Figure 1: Illustration of FD meta-algorithm.

a small student model. For a classification problem with Nc
classes, the logit of data sample xi is denoted as t(xi) and
it is the vector of the class probabilities which is obtained by
using a softmax function on the neural network output. That
is,

t(xi) = softmax(θ(xi)), (4)

where θ(xi) ∈ RNc denotes the model output of input
data sample xi, and θ(·) is the neural network function
parameterized by model parameters θ. Speficically, for the
n-th element of logit t(xi) of data sample xi,

tn(xi) =
exp (θ(xi)

n/T)∑Nc

m=1 exp (θ(xi)m/T)
, (5)

where T is the distillation temperature with a higher tem-
perature producing a smoother probability distribution over
classes.

The distillation loss of the trainset D is the cross-entropy
loss for the teacher logit tt and the student logit ts, which is

Ldistill = −
∑
x∈D

Nc∑
n=1

tnt (x)log(tns (x)). (6)

In the distillation process, the student’s objective function is
an average of the distillation loss Ldistll and the cross entropy
loss with the groudtruth labels.

III. FEDERATED DISTILLATION META-ALGORITHM

In this section, we will first introduce the FD system and
present a meta-algorithm, which is constituted of several key
components. Then, we will investigate the impacts of these
key components both empirically and theoretically.

A. FD Meta-Algorithm

For a FD system with n clients, the local private labeled
dataset of the i-th client is denoted as Di = {xj

i , y
j
i }
Di
j=1. A

shared public unlabeled dataset Dpub = {xj}Dpub

j=1 is assumed
accessible for each client and the server, where each data
sample is identified by a unique and universal index. The
local loss function of client i with local model parameters θi
is denoted as Li(θi). In the k-th communication round, the
selected clients perform local updates on their local private
datasets Di’s and get locally trained models θik’s.

Table I: Comparison of different algorithms.

Upload Aggregation
Auxiliary
Dataset

Model
Heterogeneity

Communication
Cost (Uplink)

Model
Performance

FedAvg [2] Weights Average × × O(|θ|) Baseline
FedDF [11] Weights Average & Distill X X O(|θ|) X

FDA [7] Label-logits Average × X N2
c ×

DSFL [9] Logits Entropy Reduction
Average X X |Dlogit|Nc X

CEFD [10] Delta-coded logits Average X X \1 X
FD meta-algorithm Logits Average&Distill X X |Dlogit|Nc X

Algorithm 1: FD Meta-Algorithm

Initialize local model {θi} and server model θ
for k = 0,1,. . . , K-1 do

Download the server model θik−1 = θk−1,
Select clients C from the n clients,
Select a subset Dlogit of the public dataset Dpub,
for client i ∈ C do

Local update: θik = θik−1 − η∇̃Li(θik−1),
Compute the logits:
ti(ξ) = softmax(θit(ξ)) for ξ ∈ Dlogit

Upload the logits and indexes:
{ti(x))}x∈Dlogit

, Ilogit
end
Aggregate the logits: t(x) = 1

|C|
∑

i∈Cti(x)

Model distillation: θt = θk−1 − η∇̃Ldistill(θk−1)
end

The weight-averaging-based method will directly upload
and average the model weights of different clients, and then
the training proceeds to the next communication round. How-
ever, since the local models {θi}ni=1 may have different neural
network architectures, e.g., simple fully-connected neural
networks and ResNets, it is infeasible to directly average the
model weights of these heterogeneous clients.

To enable information sharing of the clients with hetero-
geneous neural architectures, in FD, the selected clients will
compute the logits on a subset Dlogit of the public unlabeled
dataset Dpub, and the indexes of the data sample in Dlogit
are denoted as Ilogit. The computed logits of the selected
subset {ti(x)}x∈Dlogit

and the index Ilogit are uploaded to
the server for logits averaging. The averaged logits then serve
as the teacher logits in the distillation loss in (6). The distilled
model is then distributed back to the selected clients in the
next communication round. The uploading communication
cost is Nc ∗ |Dlogit| and the downloading communication
cost is proportional to the local model size, i.e., O(|θi|). The
FD system and the detailed procedure of the algorithm are
illustrated in Fig. 1 and Algorithm 1, respectively.

It is worth noting that in some existing works (e.g., [9]),
the averaged logits are distributed to the clients and the dis-
tillation happens at the client side. Local distillation reduces

1Since in CEFD, delta coding is applied to the logits of the whole
distillation datasets Dpub, the communication cost is smaller than |Dpub|Nc.
But it varies in the training process.

the downloading communication cost to Nc ∗ |Dlogit| and
is completely free of the worry of the model heterogeneity.
However, it also induces more local computation. In addition,
partial client participation is not allowed if the averaged logits
are sent back to clients. To allow a heterogeneous model for
the local update, the server can distill the averaged weights
into different models and then send back the weights to
its corresponding client. We compared these two methods
empirically and found that the weights downloading method
exhibits a faster convergence. Thus, we will adopt the model
weights downloading method. Finally, the differences of the
typical algorithms mentioned in this paper are summarized
in Table I. Given the enormous size of deep learning models,
distillation-based methods achieve orders of magnitude reduc-
tion in the communication overhead and allow heterogeneous
models for the local update. Comparable model performance
can be achieved with an auxiliary public dataset. The FD-
meta algorithm concluded the key components for the FD-
based methods and can be extended to the existing work [9],
[10] with slight modifications, e.g. in [9] the entropy of the
averaged logits was reduced. With this FD meta-algorithm, we
can better understand the design principles in a FD system.

B. Empirical Observations

There are some key components in the FD system which
influence the communication cost and the final learning per-
formance, i.e., the data distribution of public dataset Dpub, the
logits aggregation method, and the upload logits size. In this
section, we investigate these key components with the FD-
meta algorithm. With extensive simulations on the CIFAR-10
dataset, we will show their impacts in the following.

1) Distillation dataset distribution: A vital assumption in
FD is the availability of a public unlabeled dataset which
enables the distillation process. In practice, it is not difficult
to collect or generate many unlabeled samples. However, it
is difficult to collect or generate a public dataset which has
the same data distribution as the private labeled dataset. In
the empirical simulations of the FD works, the public dataset
distribution problem is often ignored.

To investigate the impact of the distillation dataset distribu-
tion, we performed experiments with two distillation datasets,
i.e., CIFAR-10, the dataset with exactly the same distribution,
and STL-10, the dataset with a similar but broader distribu-
tion. The result is demonstrated in Fig. 2a, which shows the
test accuracy of the server model after the clients upload their
logits or weights to the server, which is one communication

0 25 50 75 100 125 150 175 200
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CIFAR-10 as distillation dataset
STL-10 as distillation dataset
FedAvg

(a) Distillation data distribution.

0 25 50 75 100 125 150 175 200
Communication Round

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Upload logit size = 1000
Upload logit size = 2000
Upload logit size = 5000
Upload logit size = 8000
Upload logit size = 10000
Upload logit size = 20000

(b) Size of upload logits.

0 25 50 75 100 125 150 175 200
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

ERA(α= 100)
Average(α= 100)
ERA(α= 1)

Average(α= 1)
ERA(α= 0.1)
Average(α= 0.1)

(c) Aggregation method.

Figure 2: Empirical observations of the algorithm key components’ impacts on the FD training performance. The figure lists the test accuracy versus the
number of communication rounds between the clients and server.

round. It can be clearly seen that there exists a noticeable
performance gap between the public dataset with similar
distribution and the same distribution. And when distilling
with CIFAR-10 dataset, the model reaches a comparable test
accuracy with FedAvg.

2) Upload Logits Size: In the FD meta-algorithm, the
uplink communication cost is determined by the number of
selected data samples, i.e., the upload logits size. A straight-
forward way to further reduce the communication cost is to
reduce the size of the selected public dataset subset, Dlogit.
However, this will cause insufficient data for the distillation
step at the server side. Hence, there exists a trade-off between
the communication cost and accuracy.

To empirically investigate this trade-off, we perform experi-
ments where the size of the uploaded logits ranges from 1,000
to 20,000. The empirical results are demonstrated in Fig. 2b. It
is seen that increasing the upload logits size from a relatively
small number improves the training performance. However,
as the logits size increases to a very large number, the
performance gain of more distillation data samples becomes
marginal. For example, by uploading 20,000 logits, we barely
see any performance gain compared with the one with 10,000.

3) Logits Aggregation Method: In the meta-algorithm, a
simple average is adopted for the logits aggregation at the
server side. However, the simple average method shows a bad
performance when the local private data distribution is non-
i.i.d.. Entropy reduction aggregation (ERA) is an aggregation
method, which was proposed in [9]. There it was shown that
it can achieve much better performance compared with the
simple average method.

The main idea in ERA is to increase the confidence of the
aggregated teacher logits during the server distillation step.
ERA first averages the logits uploaded by the selected clients

t(x) =
1

|C|
∑

i∈Cti(x) for x ∈ Dlogit, (7)

The entropy of the averaged logit t(x) is then reduced by:

t̂(x) =
exp (t(x)/T)∑Nc

m=1 exp (t(x)m/T)
(8)

where T here should be set between 0 and 1 so as to sharpen
the output and reduce the entropy of t̂.

We adopt the Dirichlet distribution Dir(α) to simulate
the non-i.i.d. data distribution in FL and perform experi-
ments with three levels of non-i.i.d. data distribution, i.e.,
α = 100, 1, and 0.1. It is noted that the data heterogeneity
increases as α decreases. The result is demonstrated in Fig.
2c. When α = 0.1, i.e., the local data distribution is very
non-i.i.d., reducing the entropy of the logits greatly improves
the FD training performance.

C. Theoretical Verification

From the empirical observations, we have seen that for the
FD meta-algorithm,

1) A public unlabeled dataset with the same input distri-
bution is necessary to guarantee a good training perfor-
mance;

2) The size of upload logits influences the convergence
speed. More logits lead to a better performance, but
the performance gain becomes marginal when there is
a sufficient amount of uploaded logits;

3) ERA improves the model performance of non-i.i.d. data
distribution.

In this subsection, we verify the latter two observations
theoretically through a binary classification problem with
Gaussian mixture models. Particularly, we show that for
this setting, the FD meta-algorithm is equivalent to semi-
supervised learning (SSL) with self-training [14].

We first give a definition of the binary classification prob-
lem, the Gaussian mixture models, and self-training. For
the binary classification problem, suppose there is a labeled
dataset S = (xi, yi) ∈ Rp×{−1,+1} and f : Rp → R is the
prediction function. The prediction rule is then defined as:

ŷf (x) =

{
1 if f(x) ≥ 0

−1 otherwise
(9)

Definition 1 (Binary Gaussian Mixture Model (GMM)) The
distribution (x, y) ∼ D is given as follows. Fix a unit vector
u ∈ Rp and a scalar σ > 0, and let y be a Rademacher
random variable (P(y = 1) = 1 − P(y = −1) = 1

2 and
x ∼ N (yu, σIp)).

The component mean u is the optimal linear classifier for
this binary classification problem, where the prediction func-

tion is f(x) = uTx. With a labeled dataset S = (xi, yi)
n
i=1,

u can be estimated by the following averaging estimator

βinit =
1

n

n∑
i=1

yixi, (10)

The self-training approach uses the predicted labels ŷf (x) for
an unlabeled dataset U = {xi}n+u

i=n+1 (a.k.a, pseudo labels) to
self-train. Given the initial averaging estimator βinit of the
labeled dataset in (10) and an acceptance threshold βTinitx >
Γ, the updated estimator after self-training with the unlabeled
dataset U is then

β̂ =

∑u
i=n+1 1(|βTinitxi| > Γ)sgn(βTinitxi)xi∑u

i=n+1 1(|βTinitxi| > Γ)
. (11)

In the following, we will show the training process of the
FD meta-algorithm with the binary classification problem of
GMM as the learning objective. In FD, there are N locally
stored private datasets, Si = (xi

k, yki)nk
i=1, and the unlabeled

auxiliary distillation dataset is denoted as U = {xi}n+u
i=n .

Following the steps in the FD meta-algorithm (Algorithm 1),
the training proceeds as follows

1) Local Update: After the local updates, each user k will
have a local averaging estimator as

βk
init =

1

nk

n∑
i=1

yix
k
i (12)

2) Logits Comptutation: Each user will compute the lo-
cal model output (logits) of the unlabeled dataset, i.e.,
{(βkinit)Txi}

n+u
i=n and upload the logits to the server.

3) Logits Aggregation: The server averages the logits and
we have the averaged logits of the distillation dataset
U = {xi}n+u

i=n as
n∑
k=1

nk
n
{(βkinit)Txi} = βTs xi (13)

4) Model Distillation: The server creates pseudo labels by
choosing data samples in U whose logits satisfy |βTs x| >
Γ and the pseudo labels are generated by ỹ = ŷβT

s x(x).
After distillation with the averaged logits, the estimator
at the server side with the averaged logits is then

β̂ =

∑u
i=n+1 1(|βTs xi| > Γ)sgn(βTs xi)x∑u

i=n+1 1(|βTs xi| > Γ)
(14)

where Γ >= 0 is the acceptance threshold that eliminates
low-confidence predictions. It is noted that this is similar
to the ERA method, which also eliminates high-entropy,
i.e., low confidence predictions in the distillation process.

We measure the estimator performance with the cotangent of
the angle of the estimator β and the optimal classifier u:

cot(β,u) =
ρ(β,u)√

1− ρ2(β,u)
. (15)

With β̂, we have the following theorem.

Theorem 1. ([14]) Let u ∈ Rp be a uniform vector from
Definition 1 and suppose βs ∈ Rp as defined in (13) has
correlation ρ(βs,u) = α > 0. Set β =

√
1− α2 and draw

i.i.d. unlabeled samples {xi}n+u
i=n+1 from GMM. Let β̂ be

defined in (14). Define the normalized thresholds Γ̄− = α+Γ
σ

and Γ̄+ = Γ−α
σ and the quantities

Λ =
1

2πρ
(exp(−Γ̄2

+/2) + exp(−Γ̄2
−/2))

ρ = Q(Γ̄+) +Q(Γ̄−)

ν = Q(Γ̄−)/ρ

(16)

where Q(·)) is the tail of standard normal variable. Then, by
fixing ū = u/p and letting p→∞, we have

cot(β̂,µ)
P−→ 1 + σαΛ− 2ν

σ
√

(1− α2)Λ2 + 1/ūρ
. (17)

Proof. From [14], it is proved that for the self-training
algorithm with the initial estimator βinit = 1

n

∑n
i=1 yixi in

(10) and β̂ in (11) Theorem 1 holds.
From (12) and (13),

βs =

n∑
k=1

nk
n
βkinit =

1

n

n∑
i=1

yixi. (18)

The estimator by distributed training of the labeled data
samples is the same as the self-training algorithms. Thus, the
result still holds for the FD meta-algorithm.

Remark 1 Theorem 1 shows that for the GMM binary
classification problem, the FD algorithm can obtain a higher
correlation for the estimator than the initial estimator βinit,
i.e., a better model is obtained after the model distillation
step. The distilled model β̂ benefits from a larger unlabeled
dataset and a higher accepting threshold, which is consistent
with the empirical observations in Section III-B.

IV. PROPOSED ALGORITHM VIA ADAPTIVE DATA
SAMPLING

The theoretical and empirical results suggest two ap-
proaches to improve the training performance: 1) increase
the size of the logits; or 2) choose the public data with
low-entropy logits. Thus, we propose a communication-
efficient FD algorithm with Active data Sampling (FAS). To
increase the size of the distillation logits while maintaining
the communication cost, each user will actively select the low-
entropy logits to be uploaded with its locally trained model.

The main difference between the FD meta-algorithm and
the proposed FAS algorithm is the active data sampling
step. To generate better teacher logits, the entropy of the
selected logits should be low, which means that the local
model is confident. However, using the low entropy as the
only criterion may lead to the result that every client is
very confident about its uploaded logits, but the selected data
samples for distillation are very easy to classify, which may
degrade the final performance. This is similar to the process of
human learning. If we always learn tasks that we are already
very confident about, then we cannot learn new things. We
need to learn something basic but we also need to explore
new and challenging things. Thus, we propose the following
mixed active data selection strategy. For a selected client i,

assuming the communication budget is Nlogit logit samples,
then the active data sampling step proceeds as follows:

1) Generate pseudo labels of Dpub with the locally trained
model θi;

2) Select Nlogit/2 logits from Dpub with an ascending
order in entropy to generate half of Di

logit, and the
pseudo label distribution in this half Dilogit needs be
close to the local data distribution;

3) Randomly select Nlogit/2 from Dpub to generate the
other half of Di

logit.
We next provide experimental results to demonstrate the

effectiveness of the proposed FAS algorithm. In the simulated
FD system, there are 20 clients. The local private training
data are a subset with 20,000 data samples of the CIFAR-10
dataset, which means each user has only 1,000 local private
data samples. The distillation dataset is the other 20,000
data samples of the CIFAR-10 dataset. The neural network
model is ResNet-8. In each communication round, 8 clients
are selected randomly to participate in the learning process.
For the local update and distillation, we adopt Adam with a
batch size of 8 as the optimizer. The local update steps and the
distillation steps are set as 20 epochs in each communication
round. The step sizes of the local update and distillation are
set to 0.02 and 0.001, respectively. The step size decays at
the 300-th and 600-th epochs by a rate of 0.1.

We compare the following 4 data sampling methods for
FAS under different data distributions:

1) No data sampling (Dlogit is the same);
2) Random data sampling (Di

logit is randomly sampled
from Dpub);

3) Low-entropy data sampling (Di
logit is sampled from

Dpub assuming an entropy ascending order);
4) Mixed-random-low-entropy sampling.
The results are listed in Table II and Table III. To ensure

that there is an overlap of the selected logits, we select
400 logits from 2000 unlabeled public data samples for the
simulations in Table II and 2000 logits from 8000 unlabeled
public data for the simulations in Table III in each com-
munication round. We perform experiments with different
degrees of non-i.i.d. data distribution controlled by α in the
Dirichlet distribution. A smaller α leads to a more non-i.i.d.
data distribution.

All the methods with data sampling exhibit better perfor-
mance than the No data sampling method due to a larger
distillation dataset. The performance of the random sampling
method degrades evidently when the data becomes non-
i.i.d., i.e., α decreases. And the performance of low-entropy
sampling increases with more non-i.i.d. data. The mixed
sampling strategy provides consistently better or comparable
performance in terms of test accuracy compared with the other
sampling methods, under different degrees of non-i.i.d. local
data distributions.

V. CONCLUSIONS

In this paper, we presented an FD meta-algorithm that
incorporates existing FD methods and investigated the effects
of key parameters both experimentally and theoretically to

Table II: Test accuracy of ResNet-8 on CIFAR-10, Nlogit = 500.
NoSample Random Low-Entropy Mixed

α = 100 0.6835 0.6956 0.6694 0.7058
α = 1 0.6376 0.6516 0.6468 0.6506
α = 0.1 0.4644 0.468 0.5219 0.5498

Table III: Test accuracy of ResNet-8 on CIFAR-10, Nlogit = 2000.
NoSample Random Low-Entropy Mixed

α = 100 0.7314 0.7381 0.7031 0.7400
α = 1 0.6947 0.6827 0.7014 0.6947
α = 0.1 0.5511 0.5308 0.5573 0.5788

provide several design guidelines. Inspired by the design
guidelines, a simple but effective FD algorithm with active
data sampling was proposed. Experiments showed that the
proposed algorithm performs consistently well under different
distributions of heterogeneous data. Analyzing the FD meta-
algorithm for neural networks and adapting it to the auxiliary
dataset with similar distribution are left for future work.

REFERENCES

[1] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” Artificial Intelligence and Statistics, pp. 1273–1282, 2017.

[3] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[4] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” IEEE International Conference on
Communications (ICC), pp. 1–6, 2020.

[5] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and
R. Pedarsani, “Fedpaq: A communication-efficient federated learning
method with periodic averaging and quantization,” Proceedings of the
Twenty Third International Conference on Artificial Intelligence and
Statistics, vol. 108, pp. 2021–2031, 2020.

[6] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[7] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-iid private data,” arXiv preprint
arXiv:1811.11479, 2018.

[8] S. Oh, J. Park, E. Jeong, H. Kim, M. Bennis, and S.-L. Kim, “Mix2fld:
Downlink federated learning after uplink federated distillation with two-
way mixup,” IEEE Communications Letters, vol. 24, no. 10, pp. 2211–
2215, 2020.

[9] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Ya-
mamoto, “Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-iid private
data,” IEEE Transactions on Mobile Computing, 2021.

[10] F. Sattler, A. Marban, R. Rischke, and W. Samek, “Communication-
efficient federated distillation,” arXiv preprint arXiv:2012.00632, 2020.

[11] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation
for robust model fusion in federated learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 2351–2363, 2020.

[12] I. Bistritz, A. Mann, and N. Bambos, “Distributed distillation for on-
device learning,” Advances in Neural Information Processing Systems,
vol. 33, pp. 22 593–22 604, 2020.

[13] S. Wan, J. Lu, P. Fan, Y. Shao, C. Peng, and K. B. Letaief, “Conver-
gence analysis and system design for federated learning over wireless
networks,” IEEE J. Select. Areas Commun. Early Access, 2021.

[14] S. Oymak and T. Cihad Gulcu, “A theoretical characterization of semi-
supervised learning with self-training for gaussian mixture models,”
Proceedings of The 24th International Conference on Artificial Intelli-
gence and Statistics, vol. 130, pp. 3601–3609, 13–15 Apr 2021.

	I Introduction
	II Preliminary
	II-A Federated Learning
	II-B Knowledge Distillation

	III Federated Distillation Meta-Algorithm
	III-A FD Meta-Algorithm
	III-B Empirical Observations
	III-B1 Distillation dataset distribution
	III-B2 Upload Logits Size
	III-B3 Logits Aggregation Method

	III-C Theoretical Verification

	IV Proposed Algorithm via Adaptive Data Sampling
	V Conclusions
	References

